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Abstract: A new lifetime distribution is suggested using the Sine function by considering power hazard distribution as baseline

distribution. Some mathematical and statistical features are discussed. The Maximum likelihood method is used to estimate the

parameters for proposed distribution. Three real data sets are examined to analyze the performance of proposed distribution with some

other distributions. The new distribution has been shown better fit to the bladder cancer patients’ data and COVID-19 data as

compared to some distributions through statistical criterion.

Keywords: Lifetime distribution, power hazard distribution, sine family, data analysis.

1 Introduction

In recent years, many authors have studied several mechanisms for generating many probability distributions. These
generalizations enabled the statisticians to have various applications in finance, biology, medicine, physics, engineering
and economics. Most generalization methods depend on adding new parameter(s) to a baseline distribution function
based on a specific rule. The new parameter(s) can significantly improve the statistical properties of the baseline
distribution. Accordingly, new families of distributions have been obtained, namely, the exp-G family, [1], Weibull-G
family [2], Topp-Leone generated (TL-G) [3], odd - generalized NH-G [4], a new alpha power transformed-G [5], new
power TL-G [6], truncated inverted Kumaraswamy-G [7], a new extended alpha power transformed-G [8], type II
general inverse exponential-G [9], exponentiated truncated inverse Weibull-G [10], type II power TL-G [11], and others.
In addition, there is a new generalization to obtain new families of continuous probability distributions using the
trigonometric transformation. It started with using the sine function to generate the sine-G family by [12,13].

Let F(x) be the cumulative distribution function (CDF) of a baseline distribution, then the CDF G(x) of sine-G family
is

G(x) = sin
(π

2
F(x)

)

. (1)

The corresponding probability density function (PDF) is

g(x) =
π

2
f (x)cos

(π

2
F(x)

)

, (2)

and the hazard rate function (HRF), h(x) is given as

h(x) =
π

2
f (x)

[

cos
(

π
2

F(x)
)

1− sin
(

π
2

F(x)
)

]

. (3)

The transformation (1) and (2) is called SS transformation, for more details, see [14]. The use of the sine function
makes it possible to describe trigonometric distributions via the deformation of any classic distribution. The study of the
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sine-G family has led to the discussion of many trigonometric families with different modeling.

[15] considered the two-parameter power hazard distribution, denoted by PHD (ϑ ,γ) and studied its different
properties. The PDF and CDF for PHD are given by

f (x;ϑ ,γ) = ϑxγe
− ϑ

γ+1 xγ+1

, x ≥ 0. (4)

F(x;ϑ ,γ) = 1− e
− ϑ

γ+1 xγ+1

, x ≥ 0, ϑ > 0,γ >−1, (5)

where ϑ and γ are the scale and shape parameters, respectively. It is a very flexible model because it has different
distributions based on its parameter’s values.

PHD is reached to (i) Rayleigh distribution when ϑ = 1/ν2 and γ = 1, (ii) Weibull (ϑ ,1) when γ = ϑ − 1, and (iii)
an exponential with mean 1/ϑ , when γ = 0. Therefore, the PHD is useful for analyzing and modeling the lifetime data in
engineering, biological sciences and medical, and so on.
Many researchers have studied the PHD and estimated its parameters in the case of complete data and different censored
samples, see [16,17,18]. The stress-strength reliability model for PHD obtained by [19]. Several applications using the
weighted, length biased and transmuted PHD are introduced by [20,21,22] and among others.

In this article, a new distribution referred to as SS-transformation power hazard distribution (SS-PHD) is presented.
It can be outlined as follows, the CDF, PDF, and HRF of the SS-PHD are established in Section 2. In Sections 3, some
statistical properties are derived. Section 4 consists of the order statistics from SS-PHD. Inequality measures are discussed
in Section 5. The parameters of the model are estimated in Section 6. Some numerical applications are shown in Section
7. The Section 8 ends with some conclusion

2 SS Transformation of PHD

Consider the baseline (4), then by SS transformation (2), the PDF of the SS-PHD is obtained by

g(x) =
π

2
ϑxγ e

− ϑ
γ+1 xγ+1

sin
(π

2
e
− ϑ

γ+1 xγ+1
)

, ϑ > 0,γ >−1, x ≥ 0. (6)

The CDF and HRF of SS-PHD (ϑ ,γ) are given by,

G(x) = cos
(π

2
e
− ϑ

γ+1 xγ+1
)

, ϑ > 0,γ >−1, x ≥ 0, (7)

h(x) =

π
2

ϑxγe
− ϑ

γ+1 xγ+1

sin
(

π
2

e
− ϑ

γ+1 xγ+1
)

1− cos
(

π
2

e
− ϑ

γ+1 xγ+1
) , (8)

respectively. For different values of ϑ and γ , one can graph PDF and HRF as shown in the following figures.

3 Distributional Properties

3.1 The moments

The rth moment of SS-PH distribution is

µ
′

r =
ϑ

γ + 1

∞

∑
i=0

(−1)i(π/2)2i+2

(2i+ 1)!

(

γ + 1

2ϑ(i+ 1)

) r
γ+1+1

Γ

(

r

γ + 1
+ 1

)

(9)

Proof. We know that

µ
′

r =

∫ ∞

0
xrg(x)dx =

π

2
ϑ

∫ ∞

0
xγ+re

− ϑ
γ+1 xγ+1

sin
(π

2
e
− ϑ

γ+1 xγ+1
)

dx.
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Fig. 1: Visual illustration of g(x) with ϑ = 0.6.

Fig. 2: Visual illustration of h(x) with ϑ = 0.6.

Since

sin(x) =
∞

∑
i=0

(−1)i

(2i+ 1)!
x2i+1,

then

µ
′

r = ϑ
∞

∑
i=0

(−1)i(π/2)2i+2

(2i+ 1)!

∫ ∞

0
xγ+re

−
ϑ(2i+2)

γ+1 xγ+1

dx
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Let u = 2ϑ (i+1)
γ+1

xγ+1, then x =
(

γ+1

2ϑ (i+1)u
) 1

γ+1
and dx = 1

γ+1

(

γ+1

2ϑ (i+1)

) 1
γ+1

u
1

γ+1−1
du,

therefore,

µ
′

r =
ϑ

γ + 1

∞

∑
i=0

(−1)i(π/2)2i+2

(2i+ 1)!

(

γ + 1

2ϑ(i+ 1)

) r
γ+1+1 ∫ ∞

0
u

r
γ+1 e−udx

=
ϑ

γ + 1

∞

∑
i=0

(−1)i(π/2)2i+2

(2i+ 1)!

(

γ + 1

2ϑ(i+ 1)

) r
γ+1+1

Γ

(

r

γ + 1
+ 1

)

.

The mean and the variance of SS-PHD can be derived as follows

µ = µ
′

1 =
ϑ

γ + 1

∞

∑
i=0

(−1)i(π/2)2i+2

(2i+ 1)!

(

γ + 1

2ϑ(i+ 1)

) 1
γ+1 +1

Γ

(

1

γ + 1
+ 1

)

. (10)

and

µ
′

2 =
ϑ

γ + 1

∞

∑
i=0

(−1)i(π/2)2i+2

(2i+ 1)!

(

γ + 1

2ϑ(i+ 1)

) 2
γ+1 +1

Γ

(

2

γ + 1
+ 1

)

,

therefore,

Var(X) = µ
′

2 − µ
′

1

2

=
ϑ

γ + 1

∞

∑
i=0

(−1)i(π/2)2i+2

(2i+ 1)!

(

γ + 1

2ϑ(i+ 1)

) 2
γ+1+1

Γ

(

2

γ + 1
+ 1

)

−

[

ϑ

γ + 1

∞

∑
i=0

(−1)i(π/2)2i+2

(2i+ 1)!

(

γ + 1

2ϑ(i+ 1)

) 1
γ+1+1

Γ

(

1

γ + 1
+ 1

)

]2

. (11)

3.2 Skewness and kurtosis

To check the symmetry and flatness of any distribution, skewness and kurtosis are used. The different approaches are
available in the literature. One of them is the moments. The formulae for skewness and kurtosis are summarized in (12)
and (13) as follows

sk = E

[

(

X − µ

σ

)3
]

=
µ

′

3 − 3µ
′

2µ
′

1 + 2µ
′3

1

σ3/2
, (12)

ku = E

[

(

X − µ

σ

)4
]

=
µ

′

4 − 4µ
′

3µ
′

1 + 6µ
′

2µ
′2

1 − 3µ
′4

1

σ2
. (13)

Where µ
′

r is the rth moments about origin, see (9).

3.3 The quantiles

The qth quantiles of the SS-PHD can be obtained as follows

G(xq) = q,

from the (7), we have

xq =

[

−

(

γ + 1

ϑ

)

ln

(

2

π
cos−1(q)

)] 1
γ+1

. (14)

From (14), we can find the 1st quartile, q = 0.25, median when q = 0.50 and 3rd quartile when q = 0.75.
When q = 0.50, then the median m = x0.5 can be obtained as

m =

[

−

(

γ + 1

ϑ

)

ln

(

2

3

)] 1
γ+1

. (15)
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Assume U ∼ Uniform(0,1), then (14) can be used in simulation to generate random number of size n from SS-PH
distribution as given below:

xi =

[

−

(

γ + 1

ϑ

)

ln

(

2

π
cos−1(ui)

)] 1
γ+1

, i = 1,2, · · · ,n. (16)

3.4 The mode

The mode for the SS-PH distribution can be obtained by differentiating PDF and equating to zero.

d

dx
g(x) =

π

2
ϑxγ−1e

− ϑ
γ+1 xγ+1

[

γ sin
(π

2
e
− ϑ

γ+1 xγ+1
)

−ϑxγ+1 sin
(π

2
e
− ϑ

γ+1 xγ+1
)

−
π

2
ϑxγ+1e

− ϑ
γ+1 xγ+1

cos
(π

2
e
− ϑ

γ+1 xγ+1
)]

.

Put d
dx

g(x) = 0, we get

π

2
ϑxγ−1e

− ϑ
γ+1 xγ+1

[

(γ −ϑxγ+1) tan
(π

2
e
− ϑ

γ+1 xγ+1
)

−
π

2
ϑxγ+1e

− ϑ
γ+1 xγ+1

]

= 0.

Therefore, x = 0, or

(γ −ϑxγ+1) tan
(π

2
e
− ϑ

γ+1 xγ+1
)

−
π

2
ϑxγ+1e

− ϑ
γ+1 xγ+1

= 0. (17)

This equation has no closed form, so some numerical program technique can be used.

Table 1: Some Statistical measures of SS-PHD for ϑ = 0.6 and γ ∈ (−0.5,3.0).

γ Mean Median Variance C.V. Sk Ku

-0.5 0.407 0.114 0.715 2.07758 6.102 75.036

0.0 0.928 0.676 0.767 0.94373 1.846 8.128

0.5 1.135 1.009 0.536 0.64504 0.964 4.099

1.0 1.22 1.163 0.369 0.49791 0.539 3.116

1.5 1.255 1.233 0.263 0.40863 0.273 2.805

2.0 1.268 1.266 0.194 0.34736 0.086 2.726

2.5 1.271 1.279 0.148 0.30268 -0.055 2.743

3.0 1.268 1.282 0.116 0.26860 -0.166 2.804

From Table 1, we can conclude that:

–For γ ≥ 0, the mean, median is increasing, while variance is decreasing.
–For all values of γ ≤ 2, skewness is positive and negative for γ > 2.
–The coefficient of variance is decreasing when γ is increasing.
–For γ ≤ 2, the kurtosis is decreasing and increasing for γ > 2.
–For γ > 1.0, the kurtosis is less than normal distribution.

4 Order Statistics

Suppose X1:n ≤ X2:n ≤ ·· · ≤ Xn:n are ordered statistics of a random sample X1,X2, · · · ,Xn drawn from SS-PH distribution,
then the PDF of Xk:n is

fk:n(x) =
1

B(k,n− k+ 1)
[GX (x)]

k−1 [1−GX(x)]
n−k

gX(x), k = 1,2, · · · ,n. (18)

The PDF of kth order statistics for (6) is as follows:

fk:n(x) =
πϑxγe

− ϑ
γ+1 xγ+1

2B(k,n− k+ 1)

n−k

∑
i=0

(

n− k

i

)

(−1)i
[

cos
(π

2
e
− ϑ

γ+1 xγ+1
)]k+i−1

sin
(π

2
e
− ϑ

γ+1 xγ+1
)

, (19)

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1260 A. Mustafa, M. I. Khan: A New Extension of Power Hazard Distribution with Applications

The first order statistic (minimum) is,

f1:n(x) =
π

2
nϑxγe

− ϑ
γ+1 xγ+1

n−1

∑
i=0

(

n− 1

i

)

(−1)i
[

cos
(π

2
e
− ϑ

γ+1 xγ+1
)]i

sin
(π

2
e
− ϑ

γ+1 xγ+1
)

, (20)

The largest order statistic (maximum) is

fn:n(x) =
π

2
nϑxγe

− ϑ
γ+1 xγ+1

[

cos
(π

2
e
− ϑ

γ+1 xγ+1
)]n−1

sin
(π

2
e
− ϑ

γ+1 xγ+1
)

, (21)

5 The Inequality Measures

To measure income inequality, Bonferroni and Lorenz curves are applied. These curves have been not applications in
economics (to study income and poverty), reliability, finance, and insurance but also in population studies.

Theorem 1. The r.v. X ∼ SS−PHD, then the Bonferroni curve (BC(q)) and Lorenz curve (LC(q)) are given, respectively,
by

BC(q) =
ϑ

qµ

∞

∑
i=0

∞

∑
k=0

(−1)i+k

(2i+ 1)!k!

(π

2

)2(i+1)
[

2ϑ(i+ 1)

γ + 1

]k
[

x
(k+1)(γ+1)+1
q

(k+ 1)(γ + 1)+ 1

]

, (22)

and

LC(q) =
ϑ

µ

∞

∑
i=0

∞

∑
k=0

(−1)i+k

(2i+ 1)!k!

(π

2

)2(i+1)
[

2ϑ(i+ 1)

γ + 1

]k
[

x
(k+1)(γ+1)+1
q

(k+ 1)(γ + 1)+ 1

]

, (23)

where, xq is the qth quantiles (14).

Proof. From equation (9) and (6), when r = 1, then the Bonferroni curve is given by

BC(q) =
1

qµ

∫ xq

0
xg(x)dx =

ϑπ

2pµ

∫ xq

0
xγ+1e

− ϑ
γ+1 xγ+1

sin
(π

2
e
− ϑ

γ+1 xγ+1
)

dx

=
ϑ

qµ

∞

∑
i=0

(−1)i

(2i+ 1)!

(π

2

)2i+2
∫ xq

0
xγ+1e

−
2ϑ(i+1)

γ+1 xγ+1

dx

=
ϑ

qµ

∞

∑
i=0

∞

∑
k=0

(−1)i+k

(2i+ 1)!k!

(π

2

)2(i+1)
[

2ϑ(i+ 1)

γ + 1

]k ∫ xq

0
x(k+1)(γ+1)dx

=
ϑ

qµ

∞

∑
i=0

∞

∑
k=0

(−1)i+k

(2i+ 1)!k!

(π

2

)2(i+1)
[

2ϑ(i+ 1)

γ + 1

]k
[

x
(k+1)(γ+1)+1
q

(k+ 1)(γ + 1)+ 1

]

.

The LC(q) is given by

L(q) =
1

µ

∫ xq

0
xg(x)dx =

ϑ

µ

∞

∑
i=0

∞

∑
k=0

(−1)i+k

(2i+ 1)!k!

(π

2

)2(i+1)
[

2ϑ(i+ 1)

γ + 1

]k
[

x
(k+1)(γ+1)+1
q

(k+ 1)(γ + 1)+ 1

]

.

6 Estimation of Parameters

This section considers the estimation of SS-PH distribution via maximum likelihood approach.

6.1 Maximum Likelihood Estimation

Let x1,x2, · · · ,xn denote a random sample of complete data from the SS-PH distribution. The likelihood function (LF) is
given as

L(ϑ ,γ) =
n

∏
i=1

g(xi,ϑ ,γ) =
n

∏
i=1

[

π

2
ϑx

γ
i e

− ϑ
γ+1 x

γ+1
i sin

(

π

2
e
− ϑ

γ+1 x
γ+1
i

)]

. (24)
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The log-LF is

logL(ϑ ,γ) = n ln
(π

2

)

+ n ln(ϑ)+ γ
n

∑
i=1

ln(xi)−
ϑ

γ + 1

n

∑
i=1

x
γ+1
i +

n

∑
i=1

ln

[

sin

(

π

2
e
− ϑ

γ+1 x
γ+1
i

)]

. (25)

The partial derivatives of (25) are as follows

∂

∂ϑ
logL(ϑ ,γ) =

n

ϑ
−

1

γ + 1

n

∑
i=1

x
γ+1
i −

π

2(γ + 1)

n

∑
i=1

[

x
γ+1
i e

− ϑ
γ+1 x

γ+1
i cot

(

π

2
e
− ϑ

γ+1 x
γ+1
i

)]

,

∂

∂γ
logL(ϑ ,γ) =

n

∑
i=1

ln(xi)+
ϑ

γ + 1)2

n

∑
i=1

x
γ+1
i −

ϑ

γ + 1

n

∑
i=1

x
γ+1
i ln(xi)+

πϑ

2(γ + 1)2
×

n

∑
i=1

[1− (γ + 1) ln(xi)]x
γ+1
i e

− ϑ
γ+1 x

γ+1
i cot

(

π

2
e
− ϑ

γ+1 x
γ+1
i

)

.

The MLEs of ϑ and γ can be obtained as follows

n

ϑ
−

1

γ + 1

n

∑
i=1

x
γ+1
i −

π

2(γ + 1)

n

∑
i=1

[

x
γ+1
i e

− ϑ
γ+1 x

γ+1
i cot

(

π

2
e
− ϑ

γ+1 x
γ+1
i

)]

= 0, (26)

n

∑
i=1

ln(xi)+
ϑ

γ + 1)2

n

∑
i=1

x
γ+1
i −

ϑ

γ + 1

n

∑
i=1

x
γ+1
i ln(xi)+

πϑ

2(γ + 1)2

n

∑
i=1

[1− (γ + 1) ln(xi)]x
γ+1
i e

− ϑ
γ+1 x

γ+1
i cot

(

π

2
e
− ϑ

γ+1 x
γ+1
i

)

= 0.

(27)

This system of non-linear equations has no closed form solution in ϑ and γ , so we shall use a numerical program system
to find its solution with respect to ϑ and γ .

6.2 Asymptotic confidence bounds

Since the MLEs of unknown parameters are not in closed form, so, we derive asymptotic confidence intervals (C.I.) of
these parameters by using variance covariance (Var-Cov) matrix VVV , see [23].

The ML estimators are asymptotically normally distributed with multivariate normal distribution given by [23].

(ϑ̂ , γ̂)∼ N2(Θ ,VVV ),

where Θ = (ϑ ,γ) and VVV is given as follows

VVV =





− ∂ 2LogL

∂ϑ 2 − ∂ 2LogL
∂ϑ∂γ

− ∂ 2LogL
∂ϑ∂γ − ∂ 2LogL

∂γ2





−1

Θ→Θ̂

,

where,

∂ 2

∂ϑ 2
LogL(ϑ ,γ) = −

n

ϑ 2
+

π

2(γ + 1)2

n

∑
i=1

[

x
2(γ+1)
i e

− ϑ
γ+1 x

γ+1
i cot

(

π

2
e
− ϑ

γ+1 x
γ+1
i

)]

−
π2

4(γ + 1)2

n

∑
i=1

[

x
2(γ+1)
i e

− ϑ
γ+1 x

γ+1
i csc2

(

π

2
e
− ϑ

γ+1 x
γ+1
i

)]

, (28)

∂ 2

∂ϑ∂γ
LogL(ϑ ,γ) =

1

(γ + 1)2

n

∑
i=1

[1− (γ + 1) ln(xi)]x
γ+1
i +

π

2(γ + 1)3

n

∑
i=1

[1− (γ + 1) ln(xi)]
[

(γ + 1)−ϑx
γ+1
i

]

x
γ+1
i e

− ϑ
γ+1 x

γ+1
i cot

(

π

2
e
− ϑ

γ+1 x
γ+1
i

)

+
ϑπ2

4(γ + 1)3

n

∑
i=1

[1− (γ + 1) ln(xi)]x
2(γ+1)
i e

− ϑ
γ+1 x

γ+1
i csc2

(

π

2
e
− ϑ

γ+1 x
γ+1
i

)

, (29)
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∂ 2

∂γ2
LogL(ϑ ,γ) = −

ϑ

(γ + 1)3

n

∑
i=1

[

2− 2(γ + 1) ln(xi)+ (γ + 1)2 ln(xi)
2
]

x
γ+1
i −

ϑπ

2(γ + 1)3
×

n

∑
i=1

[

2− 2(γ + 1) ln(xi)+ (γ + 1)2 ln(xi)
2
]
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. (30)

A 100(1−α)% confidence interval for Θ = (ϑ ,γ), can be approximated by

ϑ̂ ± z α
2

√

var(ϑ̂ , and γ̂ ± z α
2

√

var(γ̂,

where z α
2

is the upper 100 α
2

-th percentile of N(0,1), and var(Θ̂i) is the diagonal i-th element in VVV .

7 Applications

We will analysis some real data using our proposed model and compare it with some other models. For comparison
some criteria such as, Kolmogorov Smirnov (K-S) statistic, Akaike information criterion (AIC), [24], Akaike information
criterion with correction (AICC), Bayesian information criterion (BIC) and Hannan-Quinn information criterion (HQIC)
can be used.

K − S = supx |Fm(x)− F̂(x)|, AIC = 2k− 2ℓ,

AAIC = AIC+ 2k(k+1)
m−k+1

, BIC = k ln(m)− 2ℓ,

where k and m are the number of parameters and observed data, ℓ = LogL(ϑ̂ , γ̂), F̂(x) is estimated CDF and Fm(x) is the
empirical CDF,

F̄(x) =
1

m

m

∑
i=1

F̂(xi), Fm(x) =
1

m

m

∑
i=1

I
(

x(i) ≤ x
)

,

and

I
(

x(i) ≤ x
)

=

{

1, if x(i) ≤ x

0, otherwise
.

If the data have a smaller value of AIC, AAIC, BIC and K-S, it indicates that proposed model can be taken as a best fit.

Example 7.1: Bladder Cancer Patients Data.
The data set listed below provided by [25], it consists of remission times (in months) of 128 patients.

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 3.52 4.98
6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09 9.22 13.80 25.74 0.50
2.46 3.64 5.09 7.26 9.47 14.24 25.82 0.51 2.54 3.70 5.17 7.28
9.74 14.76 26.31 0.81 2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64
3.88 5.32 7.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66

15.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01 1.19 2.75
4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33 5.49 7.66 11.25 17.14

79.05 1.35 2.87 5.62 7.87 11.64 17.36 1.40 3.02 4.34 5.71 7.93
1.46 18.10 11.79 4.40 5.85 8.26 11.98 19.13 1.76 3.25 4.50 6.25
8.37 12.02 2.02 13.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 12.07
6.76 21.73 2.07 3.36 6.93 8.65 12.63 22.69
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Table 2: MLEs of the parameters and K-S.

Models ϑ̂ γ̂ λ̂ θ̂ K-S

SS-PHD 0.06 -0.003 – – 0.068559

SS-Exp(θ ) – – – 0.059 0.068684

TIWD 0.833 – -0.855 1.720 0.119000

TIRD – – 0.954 0.748 0.676000

TIED – – 0.859 1.688 0.155000

IWD 0.75 – – 3.288 0.131000

Table 3: The LogL , AIC, AICC, BIC and HQIC

Models LogL AIC AICC BIC HQIC

SS-PHD -415.313 834.625 834.721 840.329 836.943

SS-Exp -415.314 832.628 832.659 835.48 833.786

TIWD -438.481 882.963 883.157 891.519 886.439

TIRD -714.278 1433.00 1433.00 1438.00 1435.00

TIED -444.835 893.67 893.766 899.374 895.987

IWD -445.794 895.589 895.685 901.293 897.906

We have extracted the values of MLEs of parameters, K-S test values, log likelihood, AIC, AICC, BIC, and HQIC for
SS-PHD, TIWD, TIRD, TIED and IWD for the above considered data and present their values in the Tables 2-3. It has
been noticed that SS-PH distribution provides a better fit than the other lifetime distributions for the above data.

where, TIWD: Transmuted inverse Weibull distribution, TIRD: Transmuted inverse Rayleigh distribution, TIED:
Transmuted inverted exponential distribution, IWD: Inverse Weibull distribution.

The Var-Cov matrix is given as

VVV =

(

6.935× 10−5 −4.377× 10−4

−4.337× 10−4 0.004

)

.

Then the 95% C.I. for ϑ and γ for SS-PH distribution are (0.043, 0.076) and (-0.132, 0.125), respectively. It is shown that
the LF has a unique solution by Figure 3.

Fig. 3: The profile of the log-LF of ϑ and γ .

Some measures of the SS-PHD (For ϑ̂ = 0.06 and γ̂ =−0.003) are displayed in Table 4.

Table 4: Some statistical measures for SS-PHD.

Mean Median Variance C.V. Sk Ku

9.325 6.776 77.944 0.946 1.854 8.181
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SS-PH model is right skewed heavy-tailed distribution.

A comparison of the SS-PH model and some of its sub-models is shown in Tables 5-6.

Table 5: MLEs of the parameters, K-S, and p-value

Models ϑ̂ γ̂ ν̂ K-S p-value

SS-PHD 0.06 -0.003 – 0.068559 0.586012

SS-EX(ϑ ) 0.059 – – 0.068684 0.583388

SS-WD (ϑ ,1) 0.23 – – 0.787518 0.00

SS-RD (ν) – – 13.607 0.374310 0.00

Table 6: The LogL , AIC, AICC, BIC, RMSE and R2.

Models LogL AIC AICC BIC HQIC RMSE R2

SS-PHD -415.313 834.625 834.721 840.329 836.943 0.032621922 0.98545

SS-EX(ϑ ) -415.314 832.628 832.659 835.48 833.786 0.034535464 0.983713

SS-WD (ϑ ,1) -644.852 1292 1292 1295 1293 0.491078676 0.012209

SS-RD (ν) -502.815 1008 1008 101 1009 0.253353552 0.601041

On comparing both Tables 5 and 6, we come across SS-PHD gives better fit to the data over its sub model.

Example 7.2: The following data

4.571 7.201 3.606 8.479 11.410 8.961 10.919 10.908 6.503 18.474 11.010
16.561 13.226 15.137 8.697 15.787 13.333 11.822 14.242 11.273 14.330 16.046
10.282 11.775 10.138 9.037 12.396 10.644 8.646 8.905 8.906 7.407 7.445
6.194 4.640 5.452 5.073 4.416 4.859 4.408 4.639 3.148 4.040 4.253
3.564 3.827 3.134 2.780 2.881 3.341 2.686 2.814 2.508 2.450 1.518
17.337 11.950 7.214 4.011

belongs to Italy COVID-19 mortality rates for 59 days. It is noted from (Feb. 27 to Apr. 27, 2020), see [26]. Tables 7-8
reports the comparison criteria,

Table 7: MLEs of the parameters and the K-S, and p-value.

Models ϑ̂ γ̂ ν̂ K-S p-value

SS-PHD 0.018 0.826 – 0.1230440 0.3156159

SS-EX(ϑ ) 0.07 – – 0.2275707 0.0036147

SS-WD (ϑ ,1) 0.232 – – 0.8796020 0.000

SS-RD (ν) – – 8.869 0.1563720 0.1013753

Table 8: The LogL, AIC, AICC, BIC, RMSE and R2.

Models LogL AIC AICC BIC HQIC RMSE R2

SS-PHD -167.933 339.865 340.079 344.02 341.487 0.049283319 0.975105

SS-EX(ϑ ) -180.612 363.224 363.294 365.301 364.035 0.106196991 0.799626

SS-WD (ϑ ,1) -307.616 617.233 617.303 619.31 618.044 0.508417667 0.002451

SS-RD (ν) -168.317 338.634 338.704 340.712 339.445 0.142698112 0.834532
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On comparing both Tables 7 and 8, we come across SS-PHD gives better fit to the data over its sub models. The Var-Cov
matrix is

VVV =

(

4.794× 10−5 −0.001
−0.001 0.037

)

.

Then the 95% C.I. for ϑ and γ for SS-PHD are (0.004, 0.031) and (0.448, 1.204), respectively. The LF has a unique
solution, see Figure 4.

Fig. 4: The profile of the log-LF of ϑ and γ .

Table 9 reports some statistical measures of SS-PHD ( ϑ̂ = 0.018 and γ̂ = 0.826).

Table 9: Some statistical measures for SS-PHD.

Mean Median Variance C.V. Sk Ku

8.174 7.656 19.487 0.540 0.661 3.338

We notice that SS-PHD is right skewed heavy-tailed distribution.

Example 7.3: The following data is the COVID-19 mortality rate for Mexico during 108 days, (from 4 March to 20 July
2020), see [26].

8.826 6.105 10.383 7.267 13.220 6.015 10.855 6.122 10.685 10.035 5.242 7.630
14.604 7.903 6.327 9.391 14.962 4.730 3.215 16.498 11.665 9.284 12.878 6.656
3.440 5.854 8.813 10.043 7.260 5.985 4.424 4.344 5.143 9.935 7.840 9.550
6.968 6.370 3.537 3.286 10.158 8.108 6.697 7.151 6.560 2.988 3.336 6.814
8.325 7.854 8.551 3.228 3.499 3.751 7.486 6.625 6.140 4.909 4.661 1.867
2.838 5.392 12.042 8.696 6.412 3.395 1.815 3.327 5.406 6.182 4.949 4.089
3.359 2.070 3.298 5.317 5.442 4.557 4.292 2.500 6.535 4.648 4.697 5.459
4.120 3.922 3.219 1.402 2.438 3.257 3.632 3.233 3.027 2.352 1.205 2.077
3.778 3.218 2.926 2.601 2.065 1.041 1.800 3.029 2.058 2.326 2.506 1.923

The comparison criterion is given in Tables 10-11.
On comparing both Tables 10 and 11, we come across SS-PHD gives better fit to the data over PHD. The Var-Cov

matrix is given as

VVV =

(

6.489× 10−5 −9.799× 10−4

−9.799× 10−4 0.018

)

.

The 95% C.I. for ϑ and γ for SS-PH distribution are (0.02, 0.051) and (0.532, 1.053), respectively. The LF has a
unique solution can be shown by Figure 5.

For ϑ̂ = 0.035 and γ̂ = 0.792, Some measures of the SS-PHD are displayed in Table 12.
We notice that SS-PHD is right skewed heavy-tailed distribution
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Table 10: MLEs of the parameters and the K-S, and p-value.

Models ϑ̂ γ̂ ν̂ K-S p-value

SS-PHD 0.035 0.792 – 0.077275 0.53489546

SS-EX(ϑ ) 0.099 – – 0.2253037 0.00002705

SS-WD (ϑ ,1) 0.276 – – 0.857184 0.00

SS-RD (ν) – – 6.279 0.114144 0.112552065

Table 11: The LogL , AIC, AICC, BIC, RMSE and R2.

Models LogL AIC AICC BIC HQIC RMSE R2

SS-PHD -269.465 542.931 543.045 548.295 545.106 0.035547008 0.984713

SS-EX(ϑ ) -292.866 587.731 587.769 590.414 588.819 0.117324507 0.741391

SS-WD (ϑ ,1) -507.622 1017 1017 1019 1018 0.508414595 0.003227

SS-RD (ν) -270.622 543.245 543.282 545.927 544.332 0.107930853 0.885457

Fig. 5: The profile of the log-LF of ϑ and γ .

Table 12: Some statistical measures for SS-PHD.

Mean Median Variance C.V. Sk Ku

5.825 7.656 10.234 0.5491 0.688 3.392

8 Concluding remarks

In this paper, we presented a new generalization of power hazard distribution using the sine function. The proposed
distribution is named SS-PH distribution. Some statistical properties of SS-PHD have been studied. The estimators of
SS-PHD are also attained. A comparison was conducted with three real data sets of COVID-19 mortality rates. These data
showed that SS-PHD provides the most suitable model with compared to the other competing models.
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