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Abstract: The motive of this research paper is to establish the generalized Hermite and generalized Hermite-Appell polynomials

by combining the operational definitions and integral representations. The explicit summation formulae, determinant and recurrence

relations for the generalized Hermite-Appell polynomials are derived by applying the integral transforms and appropriate operational

rules. For the application purpose, we present the corresponding results for the generalized Hermite-Bernoulli, generalized Hermite-

Euler, and Hermite-Genocchi polynomials.
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1 Introduction and preliminaries

The class of the Appell polynomial sequence is one of the
significant classes of polynomial sequences [1,2,3]. The
set of Appell polynomial sequence is closed under the
operation of umbral composition of polynomial
sequences [4,5,6,7,8]. The Appell polynomial sequence
can be given by the following generating function

A(x, t) = A(t)ext =
∞

∑
n=0

An(x)
tn

n!
. (1)

The power series A(t) is given by

A(t) = A0 +
t

1!
A1 +

t2

2!
A2 + · · ·+ tn

n!
An, A0 6= 0, (2)

where Ai{i = 1,2,3, . . .} are real coefficients. It is easy to
see that for any A(t), the derivative of An(x) satisfies

A
′
n(x) = nAn−1(x). (3)

The Bernoulli polynomials and numbers [9,10] can be
defined by the generating function as follows

ext

(

t

et − 1

)

=
∞

∑
n=0

Bn(x)
tn

n!
, (|t|< 2π). (4)

On setting x = 0, then the Bernoulli numbers Bn(0) :=
Bn can be defined by

(

t

et − 1

)

=
∞

∑
n=0

Bn
tn

n!
, (|t|< 2π). (5)

The Euler polynomials and numbers [9,10] can be
defined by the generating function as follows

ext

(

2

et + 1

)

=
∞

∑
n=0

En(x)
tn

n!
, (|t|< π). (6)

On setting x = 0, then the Euler numbers En(0) := En

can be defined by
(

2

et + 1

)

=
∞

∑
n=0

En
tn

n!
, (|t|< π). (7)

The Genocchi polynomials and numbers can be
defined by the generating function as follows

ext

(

2t

et + 1

)

=
∞

∑
n=0

Gn(x)
tn

n!
, (|t|< π). (8)

On setting x = 0, then the Genocchi numbers Gn(0) :=
Gn can be defined by

(

2t

et + 1

)

=
∞

∑
n=0

Gn
tn

n!
, (|t|< π). (9)
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Remark. It should be noted that, the Genocchi
polynomials Gn(x) do not fulfill all requirements of
Appell polynomials, for instance, the degree of Gn(x) is
n − 1, though, the degree of Appell polynomials is n.
Therefore, we may put Gn(x) in the class of polynomial
sequences which are not considered Appell polynomials
in the strong sense [11,12].

In the past decades, mathematics has extensively
evaluated generalised and multi-variable special
functions. With the use of specific two-variable
polynomials, many differential equations in physical
problems can be addressed.

These polynomials play a role in a number of core
problems, including quantum physics and optics. They
are necessary when evaluating the integral involving
product of special functions.

The generating function of 2-variable Hermite
polynomials define by The 2-variable Hermite
polynomial can be presented by following formula

Hn(x,y) = n!

[ n
2 ]

∑
r=0

xn−2ryr

r!(n− 2r)!
, (10)

The differential equation and generating function for
the 2-variable Hermite polynomials Hn(x,y) [13, p. 149,
(1.10) and (1.14)] can be given as follows
(

2y
∂ 2

∂ 2x2
+ x

∂

∂x
− n

)

= 0, (11)

and

exp(xt + yt2) =
∞

∑
n=0

Hn(x,y)
tn

n!
, (12)

or

exp(xt)Jo(2t
√−y) =

∞

∑
n=0

Hn(x,y)
tn

n!
,

where Cn(x) (or Jn(x)) is the n-th order Tricomi (or Bessel)
function [14]

Cn(x) =
∞

∑
r=0

(−x)r

r!(n− r)!
= x

−n
2 Jn(2

√
x).

The operational definition of 2-variable Hermite
polynomials [15, (1.13)] is given as

Hn(x,y) = exp

(

y
∂ 2

∂y2

)

{x}n
, (13)

in the view of the equation Hn(x,0) = {x}n.

Now, we recall the 2-variable Hermite-Appell
polynomials HAn(x,y) introduced by Khan et al. [15] in
2009. In this paper, the generating function of 2-variable
Hermite based appell polynomials is introduced as

A(t)exp(xt)J0(2t
√−y) =

∞

∑
n=0

HAn(x,y)
tn

n!
, (14)

and

A(t)exp(xt)exp(D−1
y t2) =

∞

∑
n=0

HAn(x,y)
tn

n!
, (15)

where D−1
x is the inverse derivative operator.

From equation (15)

∂ 2

∂x2 HAn(x,y) = n(n− 1)HAn−2(x,y)

and

∂

∂y
HAn(x,y) = n(n− 1)HAn−2(x,y) (16)

which consequently gives

∂

∂y
HAn(x,y) =

∂ 2

∂x2 HAn(x,y). (17)

From the generating function and An(x,0) = An(x), the
operational rule for the 2-variable Hermite-Appell
polynomials can be given as follows

HAn(x,y) = exp

(

y
∂ 2

∂x2

)

{An(x)}. (18)

Dattoli et al. in [16] used the Euler integral to obtain
and generalize the new special hybrid polynomials in wide
sense. The Euler integral [14,17,18] can be defined as

a−v =
1

Γ (v)

∫ ∞

o
e−attv−1dt, min{Re(v),Re(a)}> 0,(19)

which consequently yields the following [16]

(

α − ∂

∂x

)−v

f (x) =
1

Γ (v)

∫ ∞

o
e−attv−1et ∂

∂ x f (x)dt (20)

=
∫ ∞

0

1

Γ (v)

∫ ∞

o
e−attv−1 f (x+ t)dt.

For the 2nd order derivatives, we have

(

α − ∂ 2

∂x2

)−v

f (x) =
1

Γ (v)

∫ ∞

o
e−attv−1e

t ∂ 2

∂ x2 f (x)dt. (21)

2 Extended Hermite-Appell polynomials

First we derive the operational rule connecting the Appell
polynomials and the extended Hermite–Appell
polynomials [13,15,19].

Theorem 1.For the generalized Hermite polynomials

vHn(x,y;α), following operational rule holds true

(

α − y

(

∂ 2

∂x2

))−v

{xn}= vHn(x,y;α). (22)
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Proof.By taking a =
(

α − (y ∂ 2

∂x2 )
)

in integral and

operating the resultant equation on xn, we get

(

α − y

(

∂ 2

∂x2

))−v

{xn}

=
1

Γ (v)

∫ ∞

0
e−αttv−1exp

(

ty
∂ 2

∂x2

)

{xn}dt, (23)

(

α − y

(

∂ 2

∂x2

))−v

{xn}

=
1

Γ (v)

∫ ∞

0
e−αttv−1Hn(x,yt)dt. (24)

The right hand side of equation (24) represents a new
class of polynomials. This class of special polynomials is
known as extended Hermite polynomials, and denoted by

vHn(x,y;α) then we have

vHn(x,y;α) =
1

Γ (v)

∫ ∞

0
e−αttv−1Hn(x,yt)dt. (25)

On using the equations (24) and (25), we get (22).

Theorem 2.The generalized Hermite polynomials

vHn(x,y;α) satisfy following generating function

exp(xu)

(α − (D−1
y )u2)v

=
∞

∑
n=0

vHn(x,y;α)
un

n!
. (26)

Proof.By multiplying un

n!
both sides of (25) and summing

over n, we get

vHn(x,y;α)
un

n!
=

∞

∑
n=0

1

Γ (v)

∫ ∞

0
e−αttv−1Hn(x,yt)

un

n!
dt.(27)

Using the equation (12) in above equation (27), we get

vHn(x,y;α)
un

n!
=

exp(xu)

Γ (v)

∫ ∞

0
e−(α−D−1

y u2)tv−1dt. (28)

By using equation (19) in right hand side of the above
equation, we get (26).

Theorem 3.For the extended Hermite based Appell

polynomials HAn(x,y;α), following operational rule

holds true

(

α − y

(

∂ 2

∂x2

))−v

{An(x)} = HAn(x,y,α). (29)

Proof.By taking a =
(

α − (y ∂ 2

∂x2 )
)

in integral and

operating the resultant equation on An(x), we get

(

α − y

(

∂ 2

∂x2

))−v

{An(x)}

=
1

Γ (v)

∫ ∞

0
e−αttv−1exp

(

ty
∂ 2

∂x2

)

{An(x)}dt,(30)

(

α − y

(

∂ 2

∂x2

))−v

{An(x)}

=
1

Γ (v)

∫ ∞

0
e−αttv−1

HAn(x,yt)dt. (31)

The right hand side of equation (31) represents a new
class of special polynomials. This class of special
polynomials denoted by HAn(x,y;α) and it is known as
extended Hermite polynomials, we have

HAn(x,y;α) =
1

Γ (v)

∫ ∞

0
e−αttv−1

HAn(x,yt)dt. (32)

On using the equations (31) and (32), we get (29).

Theorem 4.The generalized Hermite based Appell

polynomials HAn(x,y;α) satisfy following generating

function

A(u)
exp(xu)

(α − (D−1
y )u2)v

=
∞

∑
n=0

HAn(x,y;α)
un

n!
. (33)

Proof.By multiplying un

n!
both sides of (32) and summating

over n, we get

HAn(x,y;α)
un

n!
=

∞

∑
n=0

1

Γ (v)

∫ ∞

0
e−αttv−1

HAn(x,yt)
un

n!
dt.(34)

Using equation (15) in above equation, we have

HAn(x,y;α)
un

n!
=

exp(xu)

Γ (v)

∫ ∞

0
e−(α−D−1

y u2)tv−1dt. (35)

By using equation (19) in right hand side of above
equation, we get (33).

Here we notice that for α = v = 1 and y − D−1
y , the

generalized Hermite and generalized Hermite-Appell
polynomial reduce to Hermite and Hermite-Appell
polynomials respectively.

Next, we derive an explicit summation equation for the
extended Hermite-Appell polynomials.

Theorem 5.Following summation formula for the

generalized Hermite polynomials Hn(x,y;α) and Appell

polynomials An(y) satisfy the generalized Hermite based

Appell polynomials

vHAn(x,y;α) =
n

∑
k=0

n−k

∑
r=0

(

n

k

)(

n− k

r

)

(−1)k
qkAr(q)vHn−k−r(x,y;α). (36)

Proof.By the product of generating function (1) and (26)
in the subsequent form

A(t)e(qt)(α − (D−1
y )t2))−vexp(xt) =

∞

∑
n=0

∞

∑
r=0

Ar(q)vHn−k−r(x,y;α)
tn+r

n!r!
. (37)
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Now, we can take n = n − r in r.h.s of the above
equation and moving the first exponential to the r.h.s, it
gives that

A(t)
(

α − (D−1
y t2)

)−v
exp(xt)

=
∞

∑
n=0

∞

∑
k=0

n

∑
r=0

(

n

r

)

(−1)k
qkAr(q)vHn−r(x,y;α)

tn

n!
,

by replacing n by n− k

A(t)
(

α − (D−1
y t2)

)−v
exp(xt)

=
∞

∑
n=0

∞

∑
k=0

n−k

∑
r=0

(

n

k

)(

n− k

r

)

(−1)k
qkAr(q)vHn−k−r(x,y;α)

tn

n!
.

In the end, by the use of the generating function (33)
in the right hand side of equation (38) and after that
equating the coefficients of same powers of t in the
resultant equation, we get following the equation.

vHAn(x,y;α)

=
n

∑
k=0

n−k

∑
r=0

(

n

k

)(

n− k

r

)

(−1)k
qkAr(q)vHn−k−r(x,y;α).

Remark.By making A(u) =
(

u
eu−1

)

and An(u) = Bn(u) in
equations (29)(33), and in explicit summation of Hermite
based Appell polynomials, we find that for the generalized
Hermite-Appell polynomials vHBn(x,y,α)

(

α − y

(

∂ 2

∂x2

))−v

{Bn(x)}= vHBn(x,y,α), (38)

(

u

eu − 1

)

exp(xu)

(α − yu2)
v =

∞

∑
n=0

vHBn(x,y,α)
un

n!
, (39)

vHBn(x,y,α) =
n

∑
k=0

n−k

∑
r=0

(

n

k

)(

n− k

r

)

×(−1)kqkBr(q)vHn−k−r(x,y;α). (40)

Remark.By making A(u) =
(

2
eu+1

)

and An(u) = En(u) in
equations (29)(33), and in explicit summation of Hermite
based Appell polynomials, we find that for the generalized
Hermite-Appell polynomials vHEn(x,y,α)

(

α − y

(

∂ 2

∂x2

))−v

{En(x)}= vHEn(x,y,α), (41)

(

2

eu + 1

)

exp(xu)

(α − yu2)v =
∞

∑
n=0

vHEn(x,y,α)
un

n!
, (42)

vHEn(x,y,α) =
n

∑
k=0

n−k

∑
r=0

(

n

k

)(

n− k

r

)

×(−1)kqkEr(q)vHn−k−r(x,y;α). (43)

Remark.By making A(u) =
(

2u
eu+1

)

and An(u) = Gn(u) in
equations (29)(33),and in explicit summation of Hermite
based Appell polynomials we find that for the generalized
Hermite-Appell polynomials vHGn(x,y,α).

(

α − y

(

∂ 2

∂x2

))−v

{Gn(x)} = vHGn(x,y,α), (44)

(

2u

eu + 1

)

e(xu)

(α − yu2)
v =

∞

∑
n=0

vHGn(x,y,α)
un

n!
, (45)

vHGn(x,y,α) =
n

∑
k=0

n−k

∑
r=0

(

n

k

)(

n− k

r

)

×(−1)kqkGr(q)vHn−k−r(x,y;α). (46)

3 Determinant form and recurrence relations

Theorem 6.Following determinant form for generalized

Hermite-Appell polynomials holds true

vHA0(x,y;α) =
1

β0

, (47)

vHAn(x,y;α) =
(−1)n

(β0)n+1

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 vH1(x,y;α) vH2(x,y;α) . . . vHn−1(x,y;α) vHn(x,y;α)
β0 β1 β2 . . . βn−1 βn

0 β0

(

2
1

)

β1 . . .
(

n−1
1

)

βn−2

(

n
1

)

βn−1

0 0 β0 . . .
(

n−1
2

)

βn−3

(

n
2

)

βn−2

. . . . .

. . . . .

0 0 0 . . . β0

(

n
n−1

)

β1,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

where n = 1,2,3, .....;β0,β1, ....,βn and

βn =− 1

A0

(

n

∑
k=0

(

n

k

)

Akβn−k

)

,n = 1,2, ... (48)

Proof.We recall the following determinant definition for
the Appell polynomials [21]

A0(x) =
1

β0

, (49)
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An(x) =
(−1)n

(β0)n+1

∣

∣

∣

∣

∣

∣

∣

∣

1 y y2 ........ yn−1 yn

β0 β1 β2 ........ βn−1 βn

0 β0
(2
1

)

β1 .......
(n−1

1

)

βn−2
(n
1

)

βn−1

0 0 β0 ......
(n−1

2

)

βn−3
(n
2

)

βn−2
. . . . .

. . . . .

0 0 0 .... β0
( n
n−1

)

β1 .

∣

∣

∣

∣

∣

∣

∣

∣

(50)

Taking n = 0 in explicit summation formula of
generalized Hermite-Appell polynomials, and then using
equations (49) and (50), we get assertion (47).

After that expanding determinant (50) with respect to

the first row and then operating
(

α −
(

y ∂ 2

∂x2

))

on each

aspects of the resultant equation and using equation (22)
and (29), we get

vHAn(x,y;α) =
(−1)n

vH0(x,y;α)

(β0)n+1

×

∣

∣

∣

∣

∣

∣

∣

β1 β2 . . . βn−1 βn

β0
(2
1

)

β1 . . .
(n−1

1

)

βn−2
(n
1

)

βn−1

0 β0 . . .
(n−1

2

)

βn−3
(n
2

)

βn−2
. . . .

. . . .

0 0 .... β0
( n
n−1

)

β1,

∣

∣

∣

∣

∣

∣

∣

− (−1)n
vH1(x,y;α)

(β0)n+1

∣

∣

∣

∣

∣

∣

∣

β0 β2 . . . βn−1 βn

0
(2
1

)

β1 . . .
(n−1

1

)

βn−2
(n
1

)

βn−1

0 β0 . . .
(n−1

2

)

βn−3
(n
2

)

βn−2
. . . .

. . . .

0 0 . . . β0
( n
n−1

)

β1 ,

∣

∣

∣

∣

∣

∣

∣

+
(−1)n

vH2(x,y;α)

(β0)n+1

∣

∣

∣

∣

∣

∣

∣

β0 β1 . . . βn−1 βn

0 β0 . . .
(n−1

1

)

βn−2
(n
1

)

βn−1

0 0 . . .
(n−1

2

)

βn−3
(n
2

)

βn−2
. . . .

. . . .

0 0 . . . β0
( n
n−1

)

β1 ,

∣

∣

∣

∣

∣

∣

∣

+ . . .

+
(−1)n

vHn−1(x,y;α)

(β0)n+1

∣

∣

∣

∣

∣

∣

β0 β1 β2 . . . βn

0 β0
(2
1

)

β1 . . . βn−1
0 0 β0 . . .

(n
2

)

βn−2
. . . . .

. . . . .

0 0 0 . . .
( n
n−1

)

β1 ,

∣

∣

∣

∣

∣

∣

+
(−1)n

vHn(x,y;α)

(β0)n+1

∣

∣

∣

∣

∣

∣

∣

β0 β1 β2 . . . βn−1

0 β0
(2
1

)

β1 . . .
(n−1

1

)

βn−2

0 0 β0 . . .
(n−1

2

)

βn−3
. . . . .

. . . . .

0 0 0 . . .
( n
n−1

)

β1 .

∣

∣

∣

∣

∣

∣

∣

Combining the terms of r.h.s of the above equation, we get
the assertion (48).

Remark.For the determinant form of generalized
Hermite-Bernoulli polynomials we take β0 = 1,
βi =

1
i+1

(i = 1,2, . . . ,n) ( the determinant form of Appell

polynomials reduce to Bernoulli polynomials Bn(y) [20,
21]) in equations (47) and (48).

Remark.For the determinant form of generalized
Hermite-Euler polynomials we take β0 = 1 and
βi =

1
2
(i = 1,2, . . . ,n) (the determinant form of the Appell

polynomials An(y) reduce to the Euler polynomials En(y)
[20,21,22]) in equations (47) and (48).

Remark.For the determinant form of generalized
Hermite-Euler polynomials we take β0 = 1 and
βi =

1
2(i+1)(i = 1,2, ...,n) ( the determinant form of the

Appell polynomials An(y) reduce to the Bernoulli
polynomials Gn(y) [20,21,22]) in equations (47) and
(48).

Then, we determine the recurrence relations for the
extended Hermite-Appell polynomials HAn,v(x,y;α) by
their generating function.

Differentiating the generating function, w.r.t x, y, and
α we get the following differential recurrence relations of
the extended Hermite–Appell polynomials.

∂

∂x
vHAn(x,y;α) = nvHAn(x,y;α), (51)

∂

∂y
vHAn(x,y;α) = vn(n− 1)v+1HAn(x,y;α), (52)

∂

∂α
vHAn(x,y;α) =−vv+1HAn(x,y;α), (53)

consequently,

∂

∂y
(vHAn(x,y;α)) =

∂ 3

∂x2∂α
vHAn(x,y;α). (54)

The consolidated utilization of integral transforms and
special polynomials gives a amazing apparatus to manage
fractional operators [16]. The generating function,
summation formula, and recurrence relations for the
extended Hermite–Appell polynomials are determine
here. These results may be useful in the investigation of
other useful properties of these polynomials and may
have applications in different engineering sciences.

In the following segment, we consider the extended
types of the Hermite–Bernoulli, Hermite–Euler
polynomials as members of the extended Hermite–Appell
family.

(o) operating (α − y δ 2

δx2 )
−v on each aspects of a given

relation.
First, we consider the following results for the Appell
polynomials An(x) [21]:

An(x) =
1

β0

(

xn −
n−1

∑
k=0

(

n

k

)

βn−kAk(x)

)

, (55)

xn =
n−1

∑
k=0

(

n

k

)

βn−kAk(x), (56)

n = 1,2, ... Performing operation (O) on each sides of the
above equations after that by the use of operational
definitions (22) and (29), we obtained

vHAn(x,y;α) =
1

β0
(

vHn(x,y;α)−
n−1

∑
k=0

(

n

k

)

βn−kvHAk(x,y;α)

)

.(57)

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


32 A. Goswami et al.: Study of extended Hermite-Appell polynomial...

Next, we define the functional equations for Bernoulli
polynomials Bn(x) [9,14,18]

Bn(x+ 1)−Bn(x) = nxn−1
, (58)

n−1

∑
m=0

(

n

m

)

Bm(x) = nxn−1
, (59)

Bm(mx) = mn−1
m−1

∑
k=0

Bn

(

x+
k

m

)

, (60)

n = 0,1.2, ...,m = 1,2,3, ...
Again, performing operation (O) on each sides of the

above equations and then using operational definitions
(22) and (38), the following identities related to
generalized Hermite-Bernoulli polynomials are obtained.

vHBn(x+ 1,y;α)− vHBn(x,y;α) = nvHn−1(x,y;α), (61)

n−1

∑
m=0

(

n

m

)

vHBm(x,y;α) = nvHn−1(x,y;α), (62)

vHBm(mx,my;α) = mn−1
m−1

∑
k=0

vHBn

(

x,y+
k

m
;α

)

, (63)

n = 0,1.2, ...,m = 1,2, ...
Further, performing operation (O) with use of

operational rules (22), (38)and (41) on the following
functional equations involving Euler polynomials En(y)
[9,14,18] and Genocchi polynomials Gn(y) [14,18,23]

En(x+ 1)+En(x) = 2xn
, (64)

En(mx) = mn
m−1

∑
k=0

(−1)kEn

(

x+
k

m

)

(65)

Gn+1(x)+Gn(x) = 2nxn−1
, (66)

n = 0,1,2, ...;m being odd yields the following identities
related to the generalized Hermite-Euler polynomials and
generalized Hermite-Genocchi polynomials

vHEn(x+ 1,y;α)+ vHEn(x,y;α) = 2vHn(x,y;α), (67)

vHEn(mx,my;α) = mn
m−1

∑
k=0

(−1)k
vHEn

(

x,y+
k

m
;α

)

(68)

vHGn+1(x,y;α)+ vHGn(x) = 2vHn−1(x,y;α). (69)

n = 0,1,2, ..;m being odd.
Finally, considering the following connection formulae

involving the Bernoulli and Euler polynomials [9,24]:

Bn(x) = 2−n
n

∑
m=0

(

n

m

)

Bn−mEm(2x), (70)

En(x) =
2n+1

n+ 1
[Bn+1

x+ 1

2
−Bn+1

x

2
], (71)

En(mx) =− 2m

n+ 1

m−1

∑
k=0

(−1)kBn+1(
x+ k

m
), (72)

n = 0,1,2, ...;m being even. which on performing
operation (O) after that by the use of operational
definitions yields the following connection formulae
related to the generalized Hermite-Bernoulli and
Hermite-Euler polynomials

vHBn(x,y;α) = 2−n
n

∑
m=0

(

n

m

)

Bn−mvHEm(2x,2y;α), (73)

vHEn(x,y;α)

=
2n+1

n+ 1
[vHEn+1(

x+ 1

2
,

y

2
;α)− vHEn+1(

x

2
,

y

2
;α)], (74)

vHEn(mx,my;α)

=− 2mn

n+ 1

m−1

∑
k=0

(−1)k
vHBn+1(

x+ k

m
,

y

m
;α), (75)

n = 0,1,2, ....m being even.

4 Conclusion and observation:

We derived generalized Hermite and generalized
Hermite-Appell polynomials by combining the
operational definitions and integral representations. We
also discusses their explicit summation formulae,
determinant and recurrence relations for the generalized
Hermite-Appell polynomials. For the application purpose,
we presented the corresponding results for the
generalized Hermite-Bernoulli, generalized
Hermite-Euler, and Hermite-Genocchi polynomials.
Recently, some new families of 3-variables related to
Hermite polynomials are introduced. This approach can
be extended to derive many new vital identities for
3-variables families involving hybrid polynomials.
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