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Abstract: In this work, the existence and uniqueness of a solution for the integro-differential equation that contains the Caputo-Fabrizio

fractional derivative and the q-integral of the Riemann Liouville type will be investigated. The continuous dependence of the solution is

studied. The Schauder fixed-point theorem is used to prove the existence of a solution to the addressed equation. In addition, we obtain

a numerical solution for the proposed problem using a merge of finite difference with trapezoidal methods and a merge of cubic-b

spline with trapezoidal methods. The definition of Caputo-Fabrizio fractional derivative and Riemann-Liouville q integral will be used.

The finite difference and cubic-b spline methods will be applied to the derivative part, and the trapezoidal method will be applied to the

integral part. Then, the problem will be converted into a system of algebraic equations that can be solved together to get the solution.

Finally, some examples are provided for comparing the numerical solutions obtained by using the proposed methods with the exact

solutions of those. It It has been shown that the method is effective and easy to implement..
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1 Introduction

In the last two decades, mathematicians and physicists
have become much more interested in fractional calculus
and quantum calculus (q-calculus), which offer an
effective way to describe a variety of real-world
dynamical phenomena that arise in engineering and
scientific fields like physics, biology, electrochemistry,
chemistry, economics, electromagnetic control theory,
and viscoelasticity. In view of the wide range of
applications of fractional calculus and q-calculus, it is
difficult for researchers to obtain direct solutions to most
fractional and q-fractional differential and
integro-differential equations. As a result, it is necessary
to discuss the existence and uniqueness of solutions to
various fractional integro-differential equations. Many
results have been obtained by researchers regarding the
existence and uniqueness of solutions to various
fractional integro-differential equations [1,2,3,4,5,6].
Also, many researchers interested in studying the

existence of solutions to q-fractional integro-differential
equations[7,8,9,10,11]. At the same time, a large number
of numerical solutions of various types of
integro-differential equations have been obtained [12,13,
14,15,16,17,18]. In 2020, the authors investigated the
analytical solution for a first-order nonlinear Fredholm
integro-differential equation:

u′(x) = f (x)+
∫ b

a
g(x, t,u′(t))dt, u(a) = α,

where u(x) is the unknown function and f (x) is the
known function. In addition, they study the numerical
solution using finite difference and Simpson’s methods
[19]. Also, in 2022 they investigated the existence and
uniqueness of the following Fredholm–Volterra
integro-differential equation:

u′′(x) = F

(

x,u(x),
∫ b

a
f (x, t,u′(t))dt,
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∫ x

a
g(x, t,u′(t))dt

)

with the nonlocal and boundary condition:

m

∑
k=0

aku(τk) = α0, u′(a) = β0.

In addition, they used the merge of finite difference with
trapezoidal methods to solve it numerically[20].

Now, we study the analytical and numerical solutions
for the following nonlocal fractional q integro-differential
equation:

u′′(t) = f

(

t,u(t),CF Dα u(t), Iβ
q g(t,u′(t))

)

, t ∈ (0,1],

(1)
with the q-nonlocal condition:

(1− q)τ
n

∑
i=0

qiu(qiτ) = α0, u′(0) = β0, τ ∈ (0,1] (2)

where CF Dα u(t) is the Caputo-Fabrizio fractional

derivative, I
β
q is the fractional q-integral of the Riemann

Liouville type of order β > 0, α0,β0 are constants, and
q,α ∈ (0,1). The definitions of the Caputo-Fabrizio
fractional derivative and q-integral of the Riemann
Liouville type will be applied to prove the existence and
uniqueness. Then, the finite difference method or the
cubic b-spline method will be applied to the derivative
part and the trapeziodal method will be applied to the
integral part to convert this equation into algebric
equations that can be solved together to obtain the
solution to the problem.

The rest of the paper is organised as follows: some
basic concepts of fractional calculus and q-calculus,
which will be needed in our paper, are introduced in
Section 2. Section 3 gives the integral representation of
the problem. In Section 4, we use the Schauder fixed
point theorem to discuss the existence of the solution.
Section 5 is devoted to discussing the solution’s
uniqueness, while the continuous dependence on the
constant α0 of the problem will be introduced in Section
6. Section 7 includes a summary of the numerical
techniques that will be used in our paper. In Section 8, we
apply the assumptions of the existence theorem to some
examples and solve them numerically by using
finite-trapezoidal and cubic-trapezoidal methods to
demonstrate their efficiency of them. Finally, the
conclusion section will be introduced.

2 Basic concepts

In this section, we introduce some important definitions
related to q-calculus and fractional calculus.

Definition 1.[21] For any number κ

[κ ]q =
1− qκ

1− q
,

where q ∈ (0,1).

Definition 2.[21] The q-derivative of u(t) can be defined

as follows:

(Dqu)(t) =
u(t)− u(qt)

t − qt
,

lim
q→1

Dqu(t) =
du(t)

dt
.

Definition 3.[22] A q-analogue of the common

Pochhammer symbol which is called a q-shifted factorial

is defined by

(κ ;q)n =







1, n = 0,

∏n−1
i=0 (1−κqi), n ∈ N,

also,

(κ ;q)∞ =
∞

∏
i=0

(1−κqi), n ∈N.

Definition 4.[22] The q-gamma function is defined as

Γq(κ) =
(q;q)∞

(qκ ;q)∞
(1− q)1−κ,

and satisfies Γq(κ + 1) = [κ ]qΓq(κ), Γq(1) = 1.

Definition 5.[23] Let u(t) be a function defined on [0,1].
The fractional q-integral of the Riemann-Liouville type of

order β > 0 is given by

(Iβ
q u)(t) =

{

u(t), β = 0,
1

Γq(β )

∫ t
0(t − qs)β−1u(s)dqs. (3)

Lemma 1.[23] For β > 0, using q-integration by parts, we

have

(Iβ
q 1)(t) =

t(β )

Γq(β + 1)
. (4)

Definition 6.[24] (Caputo–Fabrizio fractional

derivative). Let α ∈ (0,1), the Caputo–Fabrizio fractional

derivative of order α of a function u(t) is defined by

CF Dα u(t) =
1

1−α

∫ t

0
e−

α
1−α (t−s)u′(s)ds. (5)

We can see in the original definition [25] there is a

normalization factor M(α) in the Caputo–Fabrizio

fractional derivative which satisfies M(0) = M(1) = 1.

This factor M(α) is chosen to be the identity in a later

paper [26].
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3 Integral representation

Consider the problem (1)-(2) with the following
assumptions:

1. f : [0,1]×R
3 → R satisfies Caratheodory condition i.

e., f is measurable in t for any u,φ ,µ ∈ R and
continuous for almost all t ∈ [0,1]. There exist a
function ν1(t) ∈ L1[0,1] and a positive constant
d1 > 0, such that

| f (t,u,φ ,µ)| ≤ ν1(t)+ d1|u|+ d1|φ |+ d1|µ |.

2.g : [0,1]×R → R satisfies Caratheodory condition.
There exist a function ν2(t) ∈ L1[0,1] and a positive
constant d2 > 0, such that

|g(t,v)| ≤ ν2(t)+ d2|v|.

3.

sup
t∈[0,1]

∫ t

0
ν1(θ )dθ ≤ M1,

sup
t∈[0,1]

∫ t

0
Iβ
q ν2(θ )dθ ≤ M2.

4.2d1 + d1

α−(α−1)

(

e
α

α−1 −1

)

α2 + d1d2

(β+1)Γq(β+1)
< 1.

Lemma 2.The solution to problem (1)-(2), if it exists, can

be represented by the following integral equation:

u(t) =
1

(1− q)τ ∑n
i=0 qi

[

α0

− (1− q)τ
n

∑
i=0

qi

∫ qiτ

0
v(θ )dθ

]

+

∫ t

0
v(θ )dθ ,

(6)

where,

v(t) =β0 +
∫ t

0
f

(

θ ,
1

(1− q)τ ∑n
i=0 qi

[

α0

− (1− q)τ
n

∑
i=0

qi

∫ qiτ

0
v(θ )dθ

]

+

∫ θ

0
v(s)ds,

1

1−α

∫ θ

0
e−

α
1−α (θ−s)v(s)ds, Iβ

q g(θ ,v(θ ))

)

dθ .

(7)

Proof.Integrating both sides of (1), we get

u′(t) = u′(0)+

∫ t

0
f

(

θ ,u(θ ),CF Dα u(θ ), Iβ
q g(θ ,

u′(θ ))

)

dθ , t ∈ (0,1].

(8)

Using (5), we obtain

u′(t) = u′(0)+
∫ t

0
f

(

θ ,u(θ ),

1

1−α

∫ θ

0
e−

α
1−α (θ−s)u′(s)ds, Iβ

q g(θ ,u′(θ ))

)

dθ ,

t ∈ (0,1].
(9)

Let u′(t) = v(t) in (9), we obtain

v(t) = β0 +

∫ t

0
f

(

θ ,u(θ ),

1

1−α

∫ θ

0
e−

α
1−α (θ−s)v(s)ds, Iβ

q g(θ ,v(θ ))

)

dθ ,

t ∈ (0,1],

(10)

where

u(t) = u(0)+
∫ t

0
v(s)ds, t ∈ (0,1], (11)

using the nonlocal condition (2), we get

(1− q)τ
n

∑
i=0

qiu(qiτ) = u(0)(1− q)τ
n

∑
i=0

qi

+(1− q)τ
n

∑
i=0

qi

∫ qiτ

0
v(θ )dθ ,

(12)

then,

u(0) =
1

(1− q)τ ∑n
i=0 qi

[

α0−

(1− q)τ
n

∑
i=0

qi

∫ qiτ

0
v(θ )dθ

]

,

(13)

we obtain (6) and (7) from (10), (11) and (13). This
complete the proof.

4 Existence of solution

Theorem 1.Let the assumptions 1− 4 be satisfied. Then,

(7) has at least one solution v ∈C[0,1].

Proof.Define the operator H associated with the integral
equation (7) by

Hv(t) =β0 +

∫ t

0
f

(

θ ,
1

(1− q)τ ∑n
i=0 qi

[

α0

− (1− q)τ
n

∑
i=0

qi

∫ qiτ

0
v(θ )dθ

]

+

∫ θ

0
v(s)ds,

1

1−α

∫ θ

0
e−

α
1−α (θ−s)v(s)ds, Iβ

q g(θ ,v(θ ))

)

dθ .
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Let Qr = {v ∈ R : ‖v‖C ≤ r}, where

r =
|β0|+M1+

d1|α0 |

(1−q)τ ∑n
i=0

qi +d1M2

1−(2d1+d1

α−(α−1)

(

e
α

α−1 −1

)

α2 +
d1d2

(β+1)Γq(β+1)
)

.

Then, for v ∈ Qr, we have

‖Hv(t)‖C ≤

∣

∣

∣

∣

β0 +

∫ t

0
f

(

θ ,
1

(1− q)τ ∑n
i=0 qi

[

α0

−(1− q)τ
n

∑
i=0

qi

∫ qiτ

0
v(θ )dθ

]

+

∫ θ

0
v(s)ds,

1

1−α

∫ θ

0
e−

α
1−α (θ−s)v(s)ds, Iβ

q g(θ ,v(θ ))

)

dθ

∣

∣

∣

∣

≤ |β0|+

∫ t

0

∣

∣

∣

∣

f

(

θ ,
1

(1− q)τ ∑n
i=0 qi

[

α0 −

(1− q)τ
n

∑
i=0

qi

∫ qiτ

0
v(θ )dθ

]

+

∫ θ

0
v(s)ds,

1

1−α

∫ θ

0
e−

α
1−α (θ−s)v(s)ds, Iβ

q g(θ ,v(θ ))

)∣

∣

∣

∣

dθ

≤ |β0|+

∫ t

0

[

ν1(θ )+ d1

∣

∣

∣

∣

1

(1− q)τ ∑n
i=0 qi

[

α0 −

(1− q)τ
n

∑
i=0

qi

∫ qiτ

0
v(θ )dθ

]

+

∫ θ

0
v(s)ds

∣

∣

∣

∣

+
d1

1−α

∫ θ

0
|e−

α
1−α (θ−s)v(s)|ds

+d1Iβ
q |g(θ ,v(θ ))|

]

dθ

≤ |β0|+M1 +

∫ t

0

[

d1

(1− q)τ ∑n
i=0 qi

[

|α0|

+(1− q)τ
n

∑
i=0

qi

∫ qiτ

0
|v(θ )|dθ

]

+d1

∫ θ

0
|v(s)|ds+

d1

1−α

∫ θ

0
e−

α
1−α (θ−s)|v(s)|ds

+d1Iβ
q (ν2(θ )+ d2|v(θ )|)

]

dθ

≤ |β0|+M1 +

∫ t

0

[

d1

(1− q)τ ∑n
i=0 qi

|α0|

+d1‖v‖+ d1‖v‖+
d1‖v‖(1− e

αθ
α−1 )

α
+ d1M2

+d1d2‖v‖
θ β

Γq(β + 1)

]

dθ

≤ |β0|+M1 +
d1|α0|

(1− q)τ ∑n
i=0 qi

+ 2d1r

+d1r
α − (α − 1)

(

e
α

α−1 − 1
)

α2

+d1M2 +
d1d2r

(β + 1)Γq(β + 1)
= r.

This proves that H : Qr → Qr and the class of functions
{Hv(t)} is uniformly bounded in Qr.
Now, let t1, t2 ∈ [0,1] such that |t2 − t1|< δ ; then,

|Hv(t2)−Hv(t1)|=

∣

∣

∣

∣

β0

+
∫ t2

0
f

(

θ ,
1

(1− q)τ ∑n
i=0 qi

[

α0 −

(1− q)τ
n

∑
i=0

qi

∫ qiτ

0
v(θ )dθ

]

+

∫ θ

0
v(s)ds,

1

1−α

∫ θ

0
e−

α
1−α (θ−s)v(s)ds, Iβ

q g(θ ,v(θ ))

)

dθ

−β0 −
∫ t1

0
f

(

θ ,
1

(1− q)τ ∑n
i=0 qi

[

α0 −

(1− q)τ
n

∑
i=0

qi

∫ qiτ

0
v(θ )dθ

]

+

∫ θ

0
v(s)ds,

1

1−α

∫ θ

0
e−

α
1−α (θ−s)v(s)ds, Iβ

q g(θ ,v(θ ))

)

dθ

∣

∣

∣

∣

≤
∫ t2

t1

∣

∣

∣

∣

f

(

θ ,
1

(1− q)τ ∑n
i=0 qi

[

α0 −

(1− q)τ
n

∑
i=0

qi

∫ qiτ

0
v(θ )dθ

]

+

∫ θ

0
v(s)ds,

1

1−α

∫ θ

0
e−

α
1−α (θ−s)v(s)ds, Iβ

q g(θ ,v(θ ))

)∣

∣

∣

∣

dθ

≤
∫ t2

t1

ν1(θ )dθ +
d1|α0|(t2 − t1)

(1− q)τ ∑n
i=0 qi

+2d1r(t2 − t1)+
d1r(1− e

αθ
α−1 )(t2 − t1)

α

+d1

∫ t2

t1

Iβ
q ν2(θ )dθ + d1d2r

∫ t2

t1

θ β

Γq(β + 1)
dθ .

This means that the class of functions {Hv(t)} is
equi-continuous in Qr.

Let vk(t) ∈ Qr, vk(t) → v(t)(k → ∞), then from the
continuity of the two functions f and g, we obtain
f (t,uk,φk,µk) → f (t,u,φ ,µ) and g(t,vk) → g(t,v) as
k → ∞. Also,

lim
k→∞

Hvk(t) = lim
k→∞

[

β0 +

∫ t

0
f

(

θ ,

1

(1− q)τ ∑n
i=0 qi

[

α0

− (1− q)τ
n

∑
i=0

qi

∫ qiτ

0
vk(θ )dθ

]

+

∫ θ

0
vk(s)ds,

1

1−α

∫ θ

0
e−

α
1−α (θ−s)vk(s)ds, Iβ

q g(θ ,vk(θ ))

)

dθ

]

.
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Using assumptions 1-2 and Lebesgue dominated
convergence Theorem [27], we obtain

lim
k→∞

Hvk(t) = β0 +
∫ t

0
lim
k→∞

f

(

θ ,

1

(1− q)τ ∑n
i=0 qi

[

α0−

(1− q)τ
n

∑
i=0

qi

∫ qiτ

0
vk(θ )dθ

]

+

∫ θ

0
vk(s)ds,

1

1−α

∫ θ

0
e−

α
1−α (θ−s)vk(s)ds,

Iβ
q g(θ ,vk(θ ))

)

dθ = Hv(t).

Then Hvk(t) → Hv(t) as k → ∞. This means that the
operator H is continuous in Qr. Then by Schauder fixed
point Theorem [28], there exist at least one solution
v ∈ C[0,1] of the integral equation(7). Thus, based on the
Lemma 2, the problem (1)–(2) possess a solution
u ∈C[0,1].

5 Uniqueness of the solution

Let f and g satisfy the following assumptions:

(i) f : [0,1]×R
3 →R is measurable in t for any u,φ ,µ ∈

R and satisfy the Lipschitz condition

| f (t,u,φ ,µ)− f (t,u1,φ1,µ1)| ≤ d1|u− u1|

+ d1|φ −φ1|+ d1|µ − µ1|,

(ii)g : [0,1]×R→R is measurable in t for any v ∈R and
satisfy the Lipschitz condition

|g(t,v)− g(t,w)| ≤ d2|v−w|.

Theorem 2.Let the assumptions (i)−(ii) be satisfied, then

(7), has a unique solution.

Proof.Let v(t),w(t) be two solutions of (7), then

|v(t)−w(t)| ≤

∫ t

0

∣

∣

∣

∣

f

(

θ ,
1

(1− q)τ ∑n
i=0 qi

[

α0

− (1− q)τ
n

∑
i=0

qi

∫ qiτ

0
v(θ )dθ

]

+

∫ θ

0
v(s)ds,

1

1−α

∫ θ

0
e−

α
1−α (θ−s)v(s)ds, Iβ

q g(θ ,v(θ ))

)

dθ

− f

(

θ ,
1

(1− q)τ ∑n
i=0 qi

[

α0−

(1− q)τ
n

∑
i=0

qi

∫ qiτ

0
w(θ )dθ

]

+

∫ θ

0
w(s)ds,

1

1−α

∫ θ

0
e−

α
1−α (θ−s)w(s)ds, Iβ

q g(θ ,w(θ ))

)

dθ

∣

∣

∣

∣

dθ

≤

∫ t

0

[

d1

∣

∣

∣

∣

1

(1− q)τ ∑n
i=0 qi

(1− q)τ
n

∑
i=0

qi

∫ qiτ

0
(w(θ )− v(θ ))dθ

+
∫ θ

0
(v(s)−w(s))ds

∣

∣

∣

∣

+ d1
1

1−α

∫ θ

0
e−

α
1−α (θ−s)|v(s)−w(s)|ds

+ d1Iβ
q |g(θ ,v(θ ))− g(θ ,w(θ ))|

]

dθ

≤ d1

∫ t

0

[

|w(θ )− v(θ )|+ |v(s)−w(s)|

+
d1(1− e

αθ
α−1 )

α
|v(s)−w(s)|ds

+
d2θ β

Γq(β + 1)
|v(θ )−w(θ )|

]

dθ

≤ 2d1‖w− v‖+ d1

α − (α − 1)
(

e
α

α−1 − 1
)

α2
‖v−w‖

+
d1d2

(β + 1)Γq(β + 1)
‖v−w‖

≤

(

2d1 + d1

α − (α − 1)
(

e
α

α−1 − 1
)

α2

+
d1d2

(β + 1)Γq(β + 1)

)

‖w− v‖.

Hence,

[

1− (2d1+ d1

α − (α − 1)
(

e
α

α−1 − 1
)

α2

+
d1d2

(β + 1)Γq(β + 1)
)

]

‖w− v‖ ≤ 0.
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Since 2d1 + d1

α−(α−1)

(

e
α

α−1 −1

)

α2 + d1d2
(β+1)Γq(β+1)

< 1, then

w(t) = v(t) and the solution of the integral equation (7) is
unique. Thus, based on the Lemma 3.1, the proplem (1)-
(2) possess a unique solution u(t) ∈C[0,1].

6 Continuous dependence

Now, the continuous dependence of a solution on a
constant α0 is presented.

6.1 Continuous dependence on α0

Definition 7.The solution u(t) ∈C[0,1] of (1)-(2) depends

continuously on α0, if

∀ε > 0, ∃ δ0(ε) s.t |α0 −α∗
0 |< δ0 ⇒ ‖u− u∗‖< ε,

where u∗ is the solution of

u∗
′′(t) = f

(

t,u∗(t),CF Dα u∗(t), Iβ
q g(t,u∗′(t))

)

,

t ∈ (0,1],

(14)

with the q-nonlocal condition

(1− q)τ
n

∑
i=0

qiu∗(qiτ) = α∗
0 , u∗

′(0) = β0. (15)

Theorem 3.If the assumptions 1-4 of theorem (2) are

satisfied, then the solution of (1)-(2) is continuously

dependent on α0.

Proof.Let u(t), u∗(t) be two solutions of (1)-(2) and (14)-
(15) respectively. Then,

|v(t)− v∗(t)|=

∣

∣

∣

∣

∫ t

0

[

f

(

θ ,
1

(1− q)τ ∑n
i=0 qi

[

α0 −

(1− q)τ
n

∑
i=0

qi

∫ qiτ

0
v(θ )dθ

]

+

∫ θ

0
v(s)ds,

1

1−α

∫ θ

0
e−

α
1−α (θ−s)v(s)ds, Iβ

q g(θ ,v(θ ))

)

dθ

− f

(

θ ,
1

(1− q)τ ∑n
i=0 qi

[

α∗
0 −

(1− q)τ
n

∑
i=0

qi

∫ qiτ

0
v∗(θ )dθ

]

+

∫ θ

0
v∗(s)ds,

1

1−α

∫ θ

0
e−

α
1−α (θ−s)v∗(s)ds, Iβ

q g(θ ,v∗(θ ))

)

dθ

∣

∣

∣

∣

≤

∫ t

0

∣

∣

∣

∣

f

(

θ ,
1

(1− q)τ ∑n
i=0 qi

[

α0 −

(1− q)τ
n

∑
i=0

qi

∫ qiτ

0
v(θ )dθ

]

+

∫ θ

0
v(s)ds,

1

1−α

∫ θ

0
e−

α
1−α (θ−s)v(s)ds, Iβ

q g(θ ,v(θ ))

)

dθ

− f

(

θ ,
1

(1− q)τ ∑n
i=0 qi

[

α∗
0 −

(1− q)τ
n

∑
i=0

qi

∫ qiτ

0
v∗(θ )dθ

]

+

∫ θ

0
v∗(s)ds,

1

1−α

∫ θ

0
e−

α
1−α (θ−s)v∗(s)ds,

Iβ
q g(θ ,v∗(θ ))

)∣

∣

∣

∣

dθ

≤

∫ t

0

[

d1

(1− q)τ ∑n
i=0 qi

|α0 −α∗
0 |

+d1|v
∗(θ )− v(θ )|+ d1|v(s)− v∗(s)|

+d1

1

1−α

∫ θ

0
e−

α
1−α (θ−s)|v(s)− v∗(s)|ds

+d1Iβ
q |g(θ ,v(θ ))− g(θ ,v∗(θ ))|

]

dθ

≤

∫ t

0

[

d1

(1− q)τ ∑n
i=0 qi

|α0 −

α∗
0 |+ 2d1‖v− v∗‖+

d1(1− e
αθ

α−1 )

α
|v(s)− v∗(s)|ds

+d1d2
θ β

Γq(β + 1)
‖v− v∗‖

]

dθ

≤
d1

(1− q)τ ∑n
i=0 qi

|α0 −α∗
0 |

+2d1‖v− v∗‖+ d1

α − (α − 1)
(

e
α

α−1 − 1
)

α2
‖v− v∗‖

+
d1d2

(β + 1)Γq(β + 1)
‖v− v∗‖

≤
d1δ0

(1− q)τ ∑n
i=0 qi

+

(

2d1

+d1

α − (α − 1)
(

e
α

α−1 − 1
)

α2

+
d1d2

(β + 1)Γq(β + 1)

)

‖v− v∗‖.

Hence,

‖v− v∗‖ ≤

d1δ0

(1−q)τ ∑n
i=0 qi

1− (2d1+ d1

α−(α−1)

(

e
α

α−1 −1

)

α2 + d1d2

(β+1)Γq(β+1)
)

.
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Therefore,

|u(t)− u∗(t)|=

∣

∣

∣

∣

1

(1− q)τ ∑n
i=0 qi

[

α0 −

(1− q)τ
n

∑
i=0

qi

∫ qiτ

0
v(θ )dθ

]

+

∫ t

0
v(θ )dθ

−
1

(1− q)τ ∑n
i=0 qi

[

α∗
0 −

(1− q)τ
n

∑
i=0

qi

∫ qiτ

0
v∗(θ )dθ

]

+

∫ t

0
v∗(θ )dθ

∣

∣

∣

∣

≤
1

(1− q)τ ∑m
i=0 qi

|α0 −α∗
0 |+ 2‖v− v∗‖.

Hence,

‖u− u∗‖ ≤
δ0

(1− q)τ ∑n
i=0 qi

+

2d1δ0

(1−q)τ ∑n
i=0 qi

1− (2d1+ d1

α−(α−1)

(

e
α

α−1 −1

)

α2 + d1d2
(β+1)Γq(β+1))

= ε.

From the above results, the solution of (1)-(2) is
continually dependent on α0.

7 Methodology of Numerical Technique.

Now, we want to get the numerical solution of (1)-(2) using
the combination of finite difference with trapezoidal and
cubic b-spline with trapezoidal methods. To begin with,
we can write the problem (1)-(2) as follows:

u′′(t)− d1ϕ1(u(t)) =

ν1(t)+ d1
CF Dα u(t)+ d1Iβ

q g(t,u′(t)),
(16)

(1− q)τ
n

∑
i=0

qiu(qiτ) = α0, u′(0) = β0,

where g(t,u′(t)) = (ν2(t)+d2ϕ2(u
′(t)). Then, by using (3)

and (5), we can write (16) as follows:

u′′(t)− d1ϕ1(u(t)) = ν1(t)

+ d1
1

1−α

∫ t

0
e
−α(t−s)

1−α u′(s)ds

+ d1
1

Γq(β )

∫ t

0
(t − qs)β−1(ν2(s)+ d2ϕ2(u

′(s)))dqs,

(17)

where ϕ1(u(t)),ϕ2(u
′(t))) are nonlinear terms for the

unknown function. Now, the interval of integration [0, t]
of equation (17) is divided into m equal subintervals of
width h = (tm −0)/m,m > 1, where tm is the end point we
choose for t [29]. By taking u′′i = u′′(ti),u

′
j = u′(s j),

ϕ1(ui) = ϕ1(u(ti)),
ϕ2(u

′
j) = ϕ2(u

′(s j)),ν1(ti) = ν1i,ν2(s j) = ν2 j, let

ki j = (ti − qs j)
β−1, Ki j = e

−α(ti−s j )

1−α . Then, (17) can be
written as follows:

u′′i − d1ϕ1(ui) = γi +
d1

1−α

∫ ti

0
Ki ju

′
jds

+
d1d2

Γq(β )

∫ ti

0
ki jϕ2(u

′
j)dqs,

(18)

where γi = γ(ti) = ν1i +
d1

Γq(β )

∫ ti
0 ki j(ν2 j)dqs. Clearly ki j =

Ki j = 0 for j > i.

7.1 A summary of the finite

difference-trapezoidal method.

Now, we use the central finite difference method to
approximate the differential part of (18), and we
approximate the integral part using the trapezoidal
method[20] as follows:

1.The derivative part of (18) can be approximated using
the central difference as follows

u′′i ≈
ui+1 − 2ui+ ui−1

h2
,

u′i ≈
ui+1 − ui−1

2h
.

(19)

2.The integral part of (18) can be approximated using the
trapezoidal rule as

∫ ti

0
Ki ju

′
jdqs ≈

h

2

[

Ki0u′0

+ 2
n−1

∑
j=1

Ki ju
′
j +Kimu′m

]

,

∫ ti

0
ki jϕ2(u

′
j)dqs ≈

h

2

[

ki0ϕ2(u
′
0)

+ 2
n−1

∑
j=1

ki jϕ2(u
′
j)+ kimϕ2(u

′
m)

]

,

i = 0,1,2,3, . . .m.

Clearly Ki j = ki j = 0 for j > i.
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3.Then, (18) can be written as follows:

ui+1 − 2ui+ ui−1

h2
− d1ϕ1(ui) = γi

+
d1

1−α

h

2

[

Ki0(
u1 − u−1

2h
)

+ 2
n−1

∑
j=1

Ki j(
u j+1 − u j−1

2h
)

+Kim(
um+1 − um−1

2h
)

]

+
d1d2

Γq(β )

h

2

[

ki0ϕ2(
u1 − u−1

2h
)

+ 2
n−1

∑
j=1

ki jϕ2(
u j+1 − u j−1

2h
)

+ kimϕ2(
um+1 − um−1

2h
)

]

,

i = 0,1, . . .m.

(20)

7.2 A summary of the cubic b-spline-trapezoidal

method.

The interpolation function of the continuous function u(t)
on a set of points 0 = t0 ≤ t1 ≤ t2 · · · ≤ tm = 1 based on
cubic b-spline basis functions is defined as follows:

u(ti) = ui =
m+1

∑
i=−1

CiB
3
i (t), t ∈ [0,1], (21)

where Ci ’s are constants which to be determined and
B3

i (t) forms a basis that was defined in[18]. Now, we get
the numerical solution of (18) by using a combination of
cubic b-spline with the trapezoidal method as follows:

1.We use the cubic b-spline method to approximate the
solution u(t) and its derivative as follows:

ui ≈Ci−1 + 4Ci+Ci+1,

u′i ≈
3

h
(Ci+1 −Ci−1),

u′′i ≈
6

h2
(Ci−1 − 2Ci +Ci+1).

2.We approximate the integral part of (18) using the
trapezoidal method.

3.As a result, we can write (18) as follows:

6

h2
(Ci−1 − 2Ci+Ci+1)

− d1ϕ1(Ci−1 + 4Ci+Ci+1)

= γi +
d1

1−α

h

2

[

Ki0
C1 −C−1

3h

+ 2
n−1

∑
j=1

Ki j

C j+1 −C j−1

3h
+Kim

Cm+1 −Cm−1

3h

]

+
d1d2

Γq(β )

h

2

[

ki0ϕ2(
C1 −C−1

3h
)

+ 2
n−1

∑
j=1

ki jϕ2(
C j+1 −C j−1

3h
)

+ kimϕ2(
Cm+1 −Cm−1

3h
)

]

, i = 0,1, . . . ,m.

8 Test problems

Now, we introduce some numerical examples by using the
following two methods:

1.Finite difference-trapezoidal method,
2.cubic b-spline-trapezoidal method.

Test problem 1: In (17), we take
ν1(t) = −0.0595238t2 + 0.142857e−1.t −
1.14286sin(t) − 0.142857cos(t) + 0.0813492cos(2t) −
0.0396825t sin(t)cos(t) − 0.0813492,ν2(t) =
cos2(t),d1 = 1

7
,d2 = 1

9
,α = 0.5,β = 2,q = 0.5,τ =

0.2,n = 2,ϕ1(u(t)) = u2(t),ϕ2(u
′(t)) = u′2(t),α0 =

0.026108,β0 = 1. Clearly

2d1 + d1

α−(α−1)

(

e
α

α−1 −1

)

α2 + d1d2
(β+1)Γq(β+1) < 1. The exact

solution of this problem is u(t) = sin(t).

As a result, the assumptions of the theorem (1) are
clearly satisfied, and therefore the given problem has a
continuous solution. Now, we take m = 20 to find the
numerical solution of this problem using finite
difference-trapezoidal and cubic-trapezoidal approaches.

Table 1: The exact and numerical solutions to test
problem 1.

ti Exact
solut-
ions

Finite-
trap.

Abs.
error
(Finite-
trap)

cubic-
trap.

Abs.
error
(cubic-
trap)

0.1 0.0998 0.0997 3.850E-5 0.0998 1.803E-5

0.2 0.1986 0.1987 3.854E-5 0.1986 1.799E-5

0.4 0.3894 0.3896 1.909E-4 0.3895 9.207E-5

0.5 0.4794 0.4796 2.660E-4 0.4795 1.307E-4

0.6 0.5646 0.5649 3.402E-4 0.5648 1.708E-4

0.8 0.7173 0.7178 4.866E-4 0.7176 2.566E-4

0.9 0.7833 0.7838 5.590E-4 0.7836 3.030E-4
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Fig. 1: Comparison between the numerical and exact solutions of

test problem 1

Table 1 shows the comparison between the numerical
solutions using finite-trapezoidal and cubic-trapezoidal
methods with the exact solutions. The results show that
both numerical methods are valid and effective. In
addition, Figure 1 shows the comparison between the
exact solution of test problem 1 and the numerical
solution using the cubic b-spline-trapezoidal method and
the finite-trapezoidal method. Through our observation of
Figure 1, the exact and numerical solutions are very close,
indicating that the numerical solutions are good.
Furthermore, we study the continuous dependence on α0

using the cubic b-spline-trapezoidal method. If we take
|α0 −α∗

0 |= 10−5 ⇒ |u(0.6)−u∗(0.6)|= 5.77108×10−5.
Therfore, u(t) is continuous dependence on α0.
Test problem 2: In (17), we take ν1(t) =
e−0.428571t(0.777778e1.42857t +
e5.42857t(0.0818919Γ (1.3,5.t) −0.0818919Γ(1.3,4.t))
+0.111111),ν2(t) = exp(t),d1 =

1
9
,d2 =

1
7
,α = 0.3,β =

1.3,q = 0.2,τ = 0.5,n = 1,ϕ1(u(t)) = u(t),ϕ2(u
′(t)) =

u′(t),α0 = 0.747902,β0 = 1. Clearly

2d1 + d1

α−(α−1)

(

e
α

α−1 −1

)

α2 + d1d2
(β+1)Γq(β+1) < 1. The exact

solution of this problem is u(t) = exp(t).
As a result, the assumptions of the theorem (1) are clearly
satisfied, and therefore the given problem has a
continuous solution. Now, we take m=20 to find the
numerical solution of this problem using finite
difference-trapezoidal and cubic-trapezoidal approaches.

Table 2: The exact and numerical solutions to test
problem 2.

ti Exact
solutions

Finite-
trap.

Abs.
error
(Finite-
trap)

cubic-
trap.

Abs.
error
(cubic-
trap)

0.2 1.221 1.221 4.342E-5 1.221 9.554E-5

0.4 1.491 1.491 4.765E-6 1.491 2.257E-5

0.6 1.822 1.822 3.004E-5 1.822 7.903E-5

0.8 2.225 2.225 6.500E-5 2.225 2.114E-4

Table 2 shows the comparison between the numerical
solutions using finite-trapezoidal and cubic-trapezoidal

* * * * * * * *
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Fig. 2: Comparison between the numerical and exact solutions of

test problem 2

methods with the exact solutions. The results show that
both numerical methods are valid and effective. In
addition, Figure 2 shows the comparison between the
exact solution of test problem 2 and the numerical
solution using the cubic b-spline-trapezoidal method and
the finite-trapezoidal method. Through our observation of
Figure 2, the exact and numerical solutions are very close,
indicating that the numerical solutions are good.
Test problem 3: In (17), we take
ν1(t) = −0.0374139t3.5 + 0.0655534t1.5 +

0.15625e−4.t − et

8
− 0.15625,ν2(t) = t2 − 1,d1 = 1

8
,d2 =

1
6
,α = 0.8,β = 3

2
,q = 0.4,τ = 0.5,n = 1,ϕ1(u(t)) =

eu(t),ϕ2(u
′(t)) = eu′(t),α0 = 0.174,β0 = 1. Clearly

2d1 + d1

α−(α−1)

(

e
α

α−1 −1

)

α2 + d1d2

(β+1)Γq(β+1)
< 1. The exact

solution of this problem is u(t) = t.

As a result, the assumptions of the theorem (1) are
clearly satisfied, then the given problem has a continuous
solution. Now, we take m=20 to find the numerical
solution of this problem using the finite
difference-trapezoidal and cubic-trapezoidal approaches.

Table 3: The exact and numerical solutions to test
problem 3.

ti Exact
solut-
ions

Finite-
Trap.

Abs.
error
(Finite-
Trap)

cubic-
Trap.

Abs.
error
(cubic-
Trap)

0.2 0.2 0.199 7.376E-4 0.199 7.422E-4

0.4 0.4 0.399 2.172E-4 0.399 2.174E-4

0.6 0.6 0.601 1.041E-3 0.601 1.045E-3

0.8 0.8 0.803 3.406E-3 0.803 3.412E-3

Table 3 shows the comparison between the numerical
solutions using finite-trapezoidal and cubic-trapezoidal
methods with the exact solutions. The results show that
both numerical methods are valid and effective. In
addition, Figure 3 shows the comparison between the
exact solution of test problem 3 and the numerical
solution using the cubic b-spline-trapezoidal method and
the finite-trapezoidal method. Through our observation of
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Fig. 3: Comparison between the numerical and exact solutions of

test problem 3

Figure 3, the exact and numerical solutions are very close,
indicating that the numerical solutions are good.

9 Conclusion

In this paper, by using the Schauder fixed-point theorem,
we have established the existence and uniqueness of
solution for a nonlocal fractional q integro differential
equation. The continuous dependence of the solution on
α0 has been studied. The finite difference-trapezoidal and
cubic b-spline-trapezoidal methods has introduced to get
the numerical solution to the proposed problem. We
applied the assumptions of the existence theorem on three
exampes and solved them numerically to demonstrate the
accuracy of the two methods used. In the future study, we
plan to discuss more general equation to the q fractional
integro differential equation with the mixed cindition.
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