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Abstract: In this paper, the ongoing new coronavirus (COVID-19) epidemic is being investigated using a mathematical model. The

model depicts the dynamics of infection with several transmission pathways and general infection functions, plus it highlights the

significance of the environment as a reservoir for the disease’s propagation and dissemination. We have studied the qualitative behavior

of the proposed model representing a system of fractional differential equations. Under a set of conditions on the general functions

and the parameters, we have proven the global asymptotic stability of all steady states by using the Lyapunov method and LaSalle’s

invariance principle. We also carried some numerical results to confirm the analytical results we obtained.
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1 Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). In the beginning, it was isolated December 2019 in Wuhan, China from some people who have pneumonia
connected to the cluster of acute respiratory illness cases, and since then, it has spread over the world, culminating in the
pandemic of 2020. When an infected individual cough, sneezes or exhales, the virus that causes COVID-19 is mostly
transferred by droplets. These droplets are too heavy to float in the air and fall to the ground or other surfaces. COVID-19
affects different groups of people of different ages, but it is more prevalent in the less immune groups and those with
chronic diseases. Also, most of the infected people have mild to moderate symptoms and recover without going to the
hospital.

Because of thousands of confirmed infections and thousands of fatalities throughout the world, the COVID-19
pandemic is now regarded as the greatest global threat. In the weekly epidemiological update-8 December 2020 received
by World Health Organization from national authorities, COVID-19 cases have remained stable at over 4 million new
cases, but new fatalities have risen to around 73 000. Since the beginning of the pandemic, there have been about 65.8
million recorded illnesses and 1.5 million fatalities worldwide [1]. Many countries have followed China’s lead and
imposed curfews, closed borders, and halted all normal daily operations, such as school and workplace closures. The use
of mathematical models to study social distancing techniques has proved their efficiency in limiting the spread of
COVID-19 infection. Infectious disease transmission dynamics mathematical models are increasingly widely used.
Models like this are useful for quantifying potential infectious disease prevention and mitigation techniques. For
infectious diseases, there are a variety of models available, ranging from the very simple SIR model to more complicated
ideas. Many researchers in the scientific community have conducted multidisciplinary investigations using various
mathematical models to understand the virus spread pattern (see [2], [3], [4], [5]). However, a comprehensive approach
of mathematical instrumentalization models in the characterization of the COVID-19 growth curve and its containment
strategies are remaining drastically understudied in current literature.
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We supplement existing studies on the topic by extending SIR models and relying on conclusions gained from extant
studies using SIR model extensions [6], [7], [8], [9]. These models were only concerned with direct human-to-human
transmission [10], [11]. In addition, the role of the environment in COVID-19 transmission has been largely ignored in
contemporary clinical and theoretical investigations and is seldom studied in modeling and simulation. As a result, our
understanding of COVID-19 transmission mechanism and epidemiological features is still restricted. COVID-19 may be
transferred between humans through direct touch, and both symptomatic and asymptomatic persons can infect others
[12], [13], [14], [15]. Furthermore, the environment to human hosts indirect transmission is a highly likely method for
propagate of coronavirus. Coughing and sneezing of infected people released respiratory droplets containing the
coronavirus, and the majority of these droplets land on neighbouring surfaces and items. By contacting infected surfaces
or items and then touching their faces, other people might get the virus. Meanwhile, coronaviruses generated by sick
persons might float in the air as aerosols and be inhaled by those who pass by. Such environment-to-human transmission
channels, and the effectiveness of such a form of transmission, are primarily dependent on the coronavirus’s capacity to
live and remain in the environment. The viability and duration of SARS-CoV in the environment were verified in [12]
and [16]. New coronavirus (SARS-CoV-2) can stay alive and infectious in aerosols for hours and on surfaces for days,
according to experimental research published in March 2020, indicating a high likelihood and large danger of
environmental transmission. C. Yang and J. Wang [17] studied the effect of the environmental reservoirs by incorporating
it into a model represented by a system of ordinary differential equations, however using fractional derivative to model a
real process has piqued the interest of a number of authors from different fields (see e.g. [18], [19]) as fractional
derivative is an ideal tool for describing real-world phenomena with memory, such as most biological systems.

The manuscript is structured as follows: In Section 2, we introduce fractional order differential equations preliminaries.
In Section 3, a new fractional-order COVID-19 mathematical model is proposed and takes into account the influence
of environmental reservoirs with three general functions of the transition, which are susceptible-exposed, susceptible-
infected and susceptible-environmental transmissions, furthermore a qualitative analysis of the model is investigated in
Subsections 3.1 and 3.2, also in Subsection 3.3, we calculate the basic reproduction number R0 for the model. In Section
4, we study the local and global stability of both disease-free and endemic steady states. The effect of parameters on the
system is illustrated in Section 5 of numerical simulations, where we use real data. Section 6 brings us to a close with
conclusions and discussion.

2 Preliminaries

In this section, we introduce the basic definitions and lemma of fraction calculus which is an important tool in modeling
processes of biological systems, and has the ability to provide an exact description not only of the current state of the
disease but also of all its historical states.

Definition 2.1. Define a function f : [0,∞)−→ R then fractional integral of it of order α ∈ (0,1] given as follows:

Iα f (t) =
1

Γ (α)

t
∫

0

(t − x)α−1 f (x)dx,

where Γ (.) is the gamma function [20], and the Caputo fractional derivative of order α is given by:

Dα f (t) = In−α Dn f (t),

where n− 1 < α ≤ n and f (t) is a continuous function [21]. In particular, when 0 < α ≤ 1, one has

Dα f (t) =
1

Γ (1−α)

t
∫

0

f ′(x)

(t − x)α
dx.

For more properties of the fraction order derivatives (see e.g. [22] and [23] ).
Lemma 2.1. Consider a fraction order system

Dα(x) = f (x), x(0) = x0,

with 0 < α ≤ 1 and x ∈ {Rn}, evaluate the equilibrium points of the system by let Dα(x) = 0 then this points are locally
asymptotically stable if all eigenvalues λi of the Jacobian matrix of the system evaluated at the equilibrium points satisfy
the following conditions: [24]

|arg(λi)|> α
π

2
. (1)
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3 Proposed COVID-19 fractional-order model

We will institute new COVID-19 model as a system of fractional order differential equations that includes five elements
S, E , I, R and V represent the concentrations of the susceptible, exposed, infected and recovered individuals, respectively
and V is the concentration of the coronavirus in the environment as follows:

Dα S(t) = λ − µS−L1(S,V )−L2(S,E)−L3(S, I) (2)

Dα E(t) = L1(S,V )+L2(S,E)+L3(S, I)− (δ + µ)E (3)

Dα I(t) = δE − (ω + γ + µ)I (4)

Dα R(t) = γI − µR (5)

DαV (t) = ρ1E +ρ2I −σV. (6)

The parameter λ is the population influx, µ is the pace at which human hosts die naturally, δ−1 is the time between
infection and emergence of symptoms (incubation period), ω represents the death rate as a result of disease, γ symbolizes
the recovery from infection rate, ρ1 and ρ2 denote the contribution of exposed and infected individuals with coronavirus to
the environmental reservoir rates, respectively, and σ denote the pace at which the virus is removed from the environment.
The SEIRV model scheme are shown in Figure 1. The functions Lk, k = 1,2,3 are continuously differentiable and satisfy
the following conditions:
(C1) Lk(S,W )> 0 and Lk(S,0) = Lk(0,W ) = 0 for all S > 0,W > 0 where, k = 1,2,3.

(C2)
∂Lk(S,W)

∂S
> 0, ∂Lk(S,W)

∂W
> 0, ∂Lk(S,W )

∂W
|W=0 > 0, and d

dS

(

∂Lk(S,W )
∂W

|W=0

)

> 0 for all S > 0,W > 0 where, k = 1,2,3.

(C3) ∂
∂V

(

L1(S,V )
V

)

≤ 0, ∂
∂E

(

L2(S,E)
E

)

≤ 0 and ∂
∂ I

(

L3(S,I)
I

)

≤ 0 for all S,E, I,V > 0.

Fig. 1: SEIRV model scheme.

3.1 Nonnegativity and boundedness

Proposition 3.1.1. Suppose that for system (2)-(6) the conditions (C1)- (C3) are satisfied. Then the compact set

Ψ = {(S,E, I,R,V) ∈ R5
≥0,0 ≤ S(t),E(t)≤ Γ1,0 ≤ I(t),R(t)≤ Γ2,0 ≤V (t)≤ Γ3}. (7)

is positively invariant.
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Proof. We have

Dα S(t)|S=0 = λ > 0,

Dα E(t)|E=0 = L1(S,V)+L3(S, I)≥ 0, for all S, I,V ≥ 0,

Dα I(t)|I=0 = δE ≥ 0, for E ≥ 0,

Dα R(t)|R=0 = γI ≥ 0, for I ≥ 0,

DαV (t)|V=0 = ρ1E +ρ2I ≥ 0, for E, I ≥ 0.

This proves the nonnegativity of the solutions corresponding to the proposed model (2)-(6).
To prove the boundedness of the state variables, we let

ϒ = S+E +
ρ2δ

ρ2δ +ρ1µ
I +

ρ2δ

ρ2δ +ρ1µ
R+

µδ

ρ2δ +ρ1µ
V. (8)

Let ρ2δ +ρ1µ = B, then

Dαϒ =Dα S+DαE +
ρ2δ

B
Dα I+

ρ2δ

B
Dα R+

µδ

B
DαV

=λ − µS− (δ + µ)E +
ρ2δ

B

[

δE − (ω + γ + µ)I
]

+
ρ2δ

B

[

γI − µR

]

+
µδ

B

[

ρ1E +ρ2I −σV

]

=λ − µS− δE − µE +
ρ2δ 2

B
E −

ρ2δ [ω + µ ]I

B
−

ρ2µδ

B
R+

ρ1µδ

B
E +

ρ2µδ

B
I−

µδσ

B
V

=λ − µS− µE−
ρ2δω

B
I−

ρ2µδ

B
R−

µδσ

B
V

=λ − τ

[

S+E +
ρ2δ

B
I +

ρ2δ

B
R+

µδ

B
V

]

=λ − τϒ ,

where, τ = min{ω ,µ ,σ}. Then

ϒ (t)≤ e−τt

(

ϒ (0)−
λ

τ

)

+
λ

τ
.

This yields, 0 ≤ϒ (t)≤ Γ1 for all t ≥ 0 if ϒ (0)≤ Γ1, where Γ1 =
λ
τ . It follows that 0 ≤ S(t),E(t)≤ Γ1,0 ≤ I(t),R(t)≤ Γ2

and 0 ≤ V (t) ≤ Γ3 for all t ≥ 0 if S(0)+ E(0) + ρ2δ
B

I(0) + ρ2δ
B

R(0)+ µδ
B

V (0) ≤ Γ1, where Γ2 = λ B
ρ2δτ , Γ3 = λ B

µδτ and

B = ρ2δ +ρ1µ . This proves the boundedness of S,E, I,R and V .�

3.2 Steady states

This section researches the steady states of model (2)-(6) and extract the criteria for its existence. It is the positive solutions
of the next equations.

0 = λ − µS−L1(S,V )−L2(S,E)−L3(S, I), (9)

0 = L1(S,V )+L2(S,E)+L3(S, I)− (δ + µ)E, (10)

0 = δE − (ω + γ + µ)I, (11)

0 = γI − µR, (12)

0 = ρ1E +ρ2I−σV. (13)

Model (2)-(6) has a disease-free steady state Q0 = (S0,0,0,0,0), which is always exist and S0 =
λ

µ
. The other positive

steady state is evaluated as follows:
From equation (9)-(13), we obtain

λ − µS = L1(S,V )+L2(S,E)+L3(S, I) = (δ + µ)E =
(δ + µ)A

δ
I =

µ(δ + µ)A

γδ
R =

σ(δ + µ)A

ρ2δ +ρ1A
V, (14)
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where, A = ω + γ + µ .

From the last equation, we get

V = h1(S), E = h2(S), I = h3(S), R = h4(S), (15)

where,

h1(S) =
(λ − µS)(ρ2δ +ρ1A)

σ(δ + µ)A
, h2(S) =

(λ − µS)

δ + µ
,

h3(S) =
δ (λ − µS)

(δ + µ)A
, h4(S) =

γδ (λ − µS)

µ(δ + µ)A
.

(16)

It is clear that, h j(S)> 0 for all S ∈ [0,S0) and h j(S0) = 0, j = 1,2,3,4. Define

F1(S) = L1

(

S,h1(S)
)

+L2

(

S,h2(S)
)

+L3

(

S,h3(S)
)

−
σ(δ + µ)A

ρ2δ +ρ1A
h1(S). (17)

From condition C1, we have

F1(0) =−
σ(δ + µ)A

ρ2δ +ρ1A
h1(0) =−λ < 0, F1(S0) = 0.

Moreover,

F
′

1(S) =
∂L1

∂S
+ h

′

1(S)
∂L1

∂V
+

∂L2

∂S
+ h

′

2(S)
∂L2

∂E
+

∂L3

∂S
+ h

′

3(S)
∂L3

∂ I
−

σ(δ + µ)A

ρ2δ +ρ1A
h
′

1(S),

F
′

1(S0) =
∂L1(S0,0)

∂S
+ h

′

1(S0)
∂L1(S0,0)

∂V
+

∂L2(S0,0)

∂S
+ h

′

2(S0)
∂L2(S0,0)

∂E
+

∂L3(S0,0)

∂S

+ h
′

3(S0)
∂L3(S0,0)

∂ I
−

σ(δ + µ)A

ρ2δ +ρ1A
h
′

1(S0).

Conditions C1 and C2 imply that
∂Lk(S0,0)

∂S
= 0, k = 1,2,3, then

F
′

1(S0) = h
′

1(S0)
∂L1(S0,0)

∂V
+ h

′

2(S0)
∂L2(S0,0)

∂E
+ h

′

3(S0)
∂L3(S0,0)

∂ I
−

σ(δ + µ)A

ρ2δ +ρ1A
h
′

1(S0).

From equation (16), we obtain

F
′

1(S0) =−µ

[

(ρ2δ +ρ1A)

σ(δ + µ)A

∂L1(S0,0)

∂V
+

1

δ + µ

∂L2(S0,0)

∂E
+

δ

(δ + µ)A

∂L3(S0,0)

∂ I
− 1

]

.

If we have

1

(δ + µ)

[

(ρ2δ +ρ1A)

σA

∂L1(S0,0)

∂V
+

∂L2(S0,0)

∂E
+

δ

A

∂L3(S0,0)

∂ I

]

> 1. (18)

then, F
′

1(S0)< 0 and there exists S∗ ∈ (0,S0) such that F1(S
∗) = 0. From equations (15) and (16), we get

V ∗ =
(λ − µS∗)(ρ2δ +ρ1A)

σ(δ + µ)A
, E∗ =

(λ − µS∗)

δ + µ
, I∗ =

δ (λ − µS∗)

(δ + µ)A
, R∗ =

γδ (λ − µS∗)

µ(δ + µ)A
. (19)

It follows that system (2)-(6) has an endemic steady state Q1 = (S∗,E∗, I∗,R∗,V ∗) if condition (18) is satisfied.
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3.3 The basic reproduction number R0

Now, we compute the basic reproduction number R0 for system (2)-(6) by the using the next generation matrix method.
Let X = (E, I,V )T , then system (2)-(6) can be written as:

Dα X = ℵ(X)− h̄(X),

where,

ℵ(X) =





L1(S,V )+L2(S,E)+L3(S, I)
0
0



 , h̄(X) =





(δ + µ)E
−δE +(ω + γ + µ)I
−ρ1E −ρ2I +σV



 .

Jacobian matrices of ℵ and h̄ at the disease-free steady state Q0 are

F =





∂L2(S0,0)
∂E

∂L3(S0,0)
∂ I

∂L1(S0,0)
∂V

0 0 0
0 0 0



 , V =





(δ + µ) 0 0
−δ (ω + γ + µ) 0
−ρ1 −ρ2 σ



 .

Then, the next generation matrix is

FV
−1 =





a11 a12 a13

0 0 0
0 0 0



 ,

where,

a11 =
1

δ + µ

[

(ρ2δ +ρ1A)

σA

∂L1(S0,0)

∂V
+

∂L2(S0,0)

∂E
+

δ

A

∂L3(S0,0)

∂ I

]

a12 =
1

A

[

∂L3(S0,0)

∂ I
+

ρ2

σ

∂L1(S0,0)

∂V

]

a13 =
1

σ

∂L1(S0,0)

∂V
.

The basic reproduction number of system (2)-(6) is the spectral radius of (FV −1), which is given as follows:

R0 =
1

δ + µ

[

(ρ2δ +ρ1A)

σA

∂L1(S0,0)

∂V
+

∂L2(S0,0)

∂E
+

δ

A

∂L3(S0,0)

∂ I

]

=R01 +R02 +R03.

(20)

Based on the above review, we have the next outcome:

Lemma 3.3.1. Suppose that for system (2)-(6), the conditions C1-C3 are satisfied. Then there exists a positive threshold
parameter R0 such that
(i) if R0 ≤ 1; then there exists only one steady state Q0,
(ii) if R0 > 1; then there exist two steady states Q0 and Q1.

4 Stability of steady states

4.1 Local stability

This subsection discusses the local stability of the proposed model (2)-(6). Because the fourth equation of system (2)-
(6) is independent of the other system equations, we can simplify analysis by reducing system (2)-(6) to the following
sub-system.

Dα S(t) = λ − µS−L1(S,V )−L2(S,E)−L3(S, I) (21)

Dα E(t) = L1(S,V )+L2(S,E)+L3(S, I)− (δ + µ)E (22)

Dα I(t) = δE − (ω + γ + µ)I (23)

DαV (t) = ρ1E +ρ2I −σV. (24)
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The Jacobian matrix of system (21)-(24) at a point Q = (S,E, I,V) takes the following form:

J(Q) =









−µ −Z − ∂L2(S,E)
∂E

− ∂L3(S,I)
∂ I

− ∂L1(S,V )
∂V

Z
∂L2(S,E)

∂E
− (δ + µ)

∂L3(S,I)
∂ I

∂L1(S,V )
∂V

0 δ −A 0
0 ρ1 ρ2 −σ









, (25)

where,

Z =
∂L1(S,V )

∂S
+

∂L2(S,E)

∂S
+

∂L3(S, I)

∂S
. (26)

Theorem 4.1.1. If R0 < 1, then the disease-free steady state Q0 = (S0,0,0,0) of system (21)-(24) is locally asymptotically
stable if the condition A > σ holds.

Proof. The Jacobian matrix (25) at Q0 = (S0,0,0,0) is

J(Q0) =









−µ − ∂L2(S0,0)
∂E

− ∂L3(S0,0)
∂ I

− ∂L1(S0,0)
∂V

0
∂L2(S0,0)

∂E
− (δ + µ)

∂L3(S0,0)
∂ I

∂L1(S0,0)
∂V

0 δ −A 0
0 ρ1 ρ2 −σ









.

The disease-free steady state Q0 is locally asymptotically stable if all eigenvalues ξi, i = 1,2,3,4 of J(Q0) satisfy the
condition given in (1). These eigenvalues are the roots of the characteristic equation corresponding to J(Q0), which is
given from det(J(Q0)− ξ I4) = 0, where I4 is a square identity matrix of order 4, as follows:

|J(Q0)− ξ I|= (µ + ξ )

∣

∣

∣

∣

∣

∣

−c11 − ξ c12 c13

δ −A− ξ 0
ρ1 ρ2 −σ − ξ

∣

∣

∣

∣

∣

∣

= 0,

where,

c11 = (δ + µ)−
∂L2(S0,0)

∂E
> 0, i f R0 < 1,

c12 =
∂L3(S0,0)

∂ I
> 0,

c13 =
∂L1(S0,0)

∂V
> 0.

(27)

Hence,
det(J(Q0)− ξ I) := (ξ + µ)(ξ 3 +Fξ 2 +Gξ +H) = 0. (28)

Clearly, one of the roots of J(Q0) is −µ , which is a negative. The remaining roots of J(Q0) can be obtained from the
following equation:

Φ(ξ ) := ξ 3 +Fξ 2 +Gξ +H = 0, (29)

where,

F = σ +A+ c11,

G = A(c11 +σ)+σc11− δc12 −ρ1c13

= σA+σc11+
ρ2δ

σ
c13 +

ρ1

σ
c13(A−σ)+A(δ + µ)(1−R0),

H = σAc11 − δσc12 − c13(δρ2 +ρ1A)

= σA(δ + µ)(1−R0),

FG−H =
(

σ +A+ c11

)

(

σA+σc11 +
ρ2δ

σ
c13 +

ρ1

σ
c13(A−σ)+A(δ + µ)(1−R0)

)

−σA(δ + µ)(1−R0)

=
(

σ +A+ c11

)

(

σA+σc11 +
ρ2δ

σ
c13 +

ρ1

σ
c13(A−σ)

)

+A(δ + µ)
(

A+ c11

)

(1−R0).
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The discriminant D(Φ) of Φ(ξ ) given in (29) is:

D(Φ) =











1 F G H 0
0 1 F G H

3 2F G 0 0
0 3 2F G 0
0 0 3 2F G











= 18FGH +(FG)2 − 4H(F)3 − 4(G)3 − 27(H)2.

It is clear that, F > 0. Also, we have G > 0, H > 0 and FG−H > 0 if R0 < 1 and A > σ . Following Ahmed et
al. [25], for the fractional Routh-Hurwitz conditions, the all the eigenvalues associated with J(Q0) have negative real
parts and therefore, Q0 is locally asymptotically stable if D(Φ) > 0 f or 0 < α ≤ 1. This ends the proof.�

Now, we are analysing the stability of the endemic steady state Q1 of the model (21)-(24). The Jacobian matrix (25),
calculated at the endemic steady state Q1, is shown as below.

J(Q1) =









−µ −B − ∂L2(S
∗,E∗)

∂E
− ∂L3(S

∗,I∗)
∂ I

− ∂L1(S
∗,V ∗)

∂V

B
∂L2(S

∗,E∗)
∂E

− (δ + µ) ∂L3(S
∗,I∗)

∂ I

∂L1(S
∗,V∗)

∂V
0 δ −A 0
0 ρ1 ρ2 −σ









,

where,

B =
∂L1(S

∗,V ∗)

∂S
+

∂L2(S
∗,E∗)

∂S
+

∂L3(S
∗, I∗)

∂S
.

Adding row 2 to row 1, we have

J(Q1)∼









−µ −(δ + µ) 0 0

B
∂L2(S

∗,E∗)
∂E

− (δ + µ) ∂L3(S
∗,I∗)

∂ I

∂L1(S
∗,V∗)

∂V
0 δ −A 0
0 ρ1 ρ2 −σ









.

Multiply row 1 by
B

µ
and add it to row 2 implies

J(Q1)∼







−µ −(δ + µ) 0 0
0 −d22 d23 d24

0 δ −A 0
0 ρ1 ρ2 −σ






,

where,

d22 =
(δ + µ

µ

) ∂

∂S

(

L1(S
∗,V ∗)+L2(S

∗,E∗)+L3(S
∗, I∗)

)

−
∂L2(S

∗,E∗)

∂E
+(δ + µ),

d23 =
∂L3(S

∗, I∗)

∂ I
, d24 =

∂L1(S
∗,V ∗)

∂V
.

(30)

Then the characteristic equation of J(Q1) is

(ξ + µ)(ξ 3 +Lξ 2 +Mξ +N) = 0. (31)

One of the roots is obviously negative, which is −µ . The remaining roots can be extracted from the next equation.

Ψ(ξ ) := ξ 3 +Lξ 2 +Mξ +N = 0, (32)

where,

L = σ +A+ d22,

M = σA+(σ +A)d22− δd23 −ρ1d24,

N = σAd22 −σδd23 − (δρ2 +ρ1A)d24.

(33)
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The discriminant D(Ψ ) of Ψ (ξ ) reads:

D(Ψ ) =











1 L M N 0
0 1 L M N

3 2L M 0 0
0 3 2L M 0
0 0 3 2L M











= 18LMN +(LM)2 − 4N(L)3 − 4(M)3 − 27(N)2.

Following Ahmed et al. [25], we have the following result.

Theorem 4.1.2. The endemic steady state Q1 is locally asymptotically stable if one of the following requirements is met:
(i) D(Ψ )> 0,L > 0,N > 0,LM > N;
(ii) D(Ψ )< 0,L ≥ 0,M ≥ 0,N > 0, f or α < 2/3;
(iii) D(Ψ )< 0,L > 0,M > 0,LM = N f or α ∈ (0,1).
Also, Q1 is unstable if D(Ψ)< 0,L < 0,M < 0,α > 2/3.

4.2 Global Stability

In this subsection, we develop Lyapunov functionals to demonstrate the global asymptotic stability of disease-free and
endemic steady states, define

G1(S) = lim
V→0+

L1(S,V )

V
, G2(S) = lim

E→0+

L2(S,E)

E
, G3(S) = lim

I→0+

L3(S, I)

I
. (34)

From condition C2, we obtain

G1(S) =
∂L1(S,0)

∂V
> 0, G2(S) =

∂L2(S,0)

∂E
> 0, G3(S) =

∂L3(S,0)

∂ I
> 0, for any S > 0. (35)

Moreover,

Ǵk(S)> 0 for all k = 1,2,3. (36)

Therefore, the basic reproduction number can be rewritten as

R0 =
(ρ2δ +ρ1A)G1(S0)

σ(δ + µ)A
+

δG2(S0)

(δ + µ)
+

δG3(S0)

(δ + µ)A
. (37)

The following condition is required to survey the next theorem [26]:

Condition (C4)

(i) The supremum of
G2(S)
G1(S)

is achieved at S = S0 for all S ∈ (0,S0],

(ii) The supremum of
G3(S)
G1(S)

is achieved at S = S0 for all S ∈ (0,S0].

Theorem 4.2.1. If R0 < 1 and constraints C1-C4 for system (2)-(6) are met, then Q0 is globally asymptotic stable.

Proof. Constructing a Lyapunov functional as follows:

P0 = S− S0 −

∫ S

S0

G1(S0)

G1(ζ )
dζ +E +

[ρ2G1(S0)+σG3(S0)]

Aσ
I+

G1(S0)

σ
V. (38)

We note that P0(S,E, I,V )> 0 for all S,E, I,V > 0 and P0(S0,0,0,0) = 0. We calculate Dα P0 along the system (2)-(6)
solutions as:

Dα P0 =
(

1−
G1(S0)

G1(S)

)

[

λ − µS(t)−L1(S,V )−L2(S,E)−L3(S, I)
]

+L1(S,V)+L2(S,E)+L3(S, I)

− (δ + µ)E +

[

ρ2G1(S0)+σG3(S0)
]

Aσ

[

δE −AI
]

+
G1(S0)

σ

[

ρ1E +ρ2I −σV
]

.

(39)
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From condition C3 and Equation (34), we get

L1(S,V )

V
≤ lim

V→0+

L1(S,V )

V
= G1(S),

L2(S,E)

E
≤ lim

E→0+

L2(S,E)

E
= G2(S),

L3(S, I)

I
≤ lim

I→0+

L3(S, I)

I
= G3(S).

Then Equation (39) can be rewritten as:

Dα P0 ≤
(

1−
G1(S0)

G1(S)

)

(λ − µS)− (δ + µ)E +
G1(S0)

G1(S)

[

G1(S)V +G2(S)E +G3(S)I
]

+
ρ2δ

Aσ
G1(S0)E

+
δ

A
G3(S0)E −

ρ2

σ
G1(S0)I−G3(S0)I+

ρ1

σ
G1(S0)E +

ρ2

σ
G1(S0)I−G1(S0)V.

From condition C4 and Equation (36), we find

G1(S0)G2(S)

G1(S)
≤ G1(S0)

G2(S0)

G1(S0)
= G2(S0),

G1(S0)G3(S)

G1(S)
≤ G1(S0)

G3(S0)

G1(S0)
= G3(S0), for 0 < S ≤ S0.

Applying disease-free steady state condition λ = µS0, we obtain

Dα P0 ≤µ
(

1−
G1(S0)

G1(S)

)

(S0 − S)+
[

G2(S0)+
ρ2δ

Aσ
G1(S0)+

δ

A
G3(S0)+

ρ1

σ
G1(S0)− (δ + µ)

]

E

=µ
(

1−
G1(S0)

G1(S)

)

(S0 − S)+ (δ + µ)(R0 − 1)E.

Conditions C1 and C2 imply that
(

1− G1(S0)
G1(S)

)(

1− S
S0

)

≤ 0. Clearly, if R0 < 1 then Dα P0 ≤ 0 for all S,E, I,V > 0.

Moreover, Dα P0 = 0 if and only if S(t) = S0 and E(t) = 0. Let F0 = {(S,E, I,R,V) : Dα P0 = 0} and F́0 be the largest

invariant subset of F0. Therefore, the solutions of model (2)-(6) tend to F́0. For each element in F́0 we set S(t) = S0

and E(t) = 0. Thus Equation (4) yields: Dα I = 0 = δE(t)− AI(t), hence I(t) = 0. From Equation (5), we have

Dα R(t) = 0 = γI(t)− µR(t), then R(t) = 0. Also from Equation (6), we conclude that V (t) = 0. It follows that F́0

contains a single point which is (S0,0,0,0,0). LaSalle’s invariance principle (LIP) implies that Q0 is globally asymptotic
stable when R0 < 1.�

Remark 4.2.1. From conditions C1- C3, we obtain

(

L1(S,V )−L1(S,V
∗)
)

(

L1(S,V )

V
−

L1(S,V
∗)

V ∗

)

≤ 0, S,V,V ∗ > 0,

and this leads to
(

1−
L1(S,V

∗)

L1(S,V)

)(

L1(S,V)

L1(S,V ∗)
−

V

V ∗

)

≤ 0, S,V,V ∗ > 0. (40)

Define the next functions [5]:

HE(S,E) =
L2(S,E)

L1(S,V ∗)
, HI(S, I) =

L3(S, I)

L1(S,V ∗)
. (41)
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We state the following condition:
Condition(C5)

(i)
(

HE(S,E)−HE(S
∗,E∗)

)

(

HE(S,E)

E
−

HE(S
∗,E∗)

E∗

)

≤ 0,

(ii)
(

HI(S, I)−HI(S
∗, I∗)

)

(

HI(S, I)

I
−

HI(S
∗, I∗)

I∗

)

≤ 0,

for all E,E∗, I, I∗ > 0 and S ∈ (0,S0). Hence, we get the following remark:

Remark 4.2.2.
(

1−
HE(S

∗,E∗)

HE(S,E)

)(

HE(S,E)

HE(S∗,E∗)
−

E

E∗

)

≤ 0, E,E∗ > 0,S ∈ (0,S0],

(

1−
HI(S

∗, I∗)

HI(S, I)

)(

HI(S, I)

HI(S∗, I∗)
−

I

I∗

)

≤ 0, I, I∗ > 0,S ∈ (0,S0].

(42)

Theorem 4.2.2. For model (2)-(6) if the endemic steady state Q1 exists, then it is globally asymptotic stable if the
conditions C1-C3 and C5 are hold.

Proof. Constructing a Lyapunov function P1(S,E, I,V) as:

P1 =

(

S− S∗−

S
∫

S∗

L1(S
∗,V ∗)

L1(ζ ,V ∗)
dζ

)

+

(

E −E∗−E∗ ln
( E

E∗

)

)

+

(

L3(S
∗, I∗)

δE∗
+

ρ2L1(S
∗,V ∗)

(ρ1A+ρ2δ )E∗

)

×

(

I− I∗− I∗ ln
( I

I∗

)

)

+
AL1(S

∗,V ∗)

(ρ1A+ρ2δ )E∗

(

V −V ∗−V ∗ ln
( V

V ∗

)

)

.

It is clear that, P1(S,E, I,V )> 0 for all S,E, I,V > 0 and P1(S
∗,E∗, I∗,V ∗) = 0. Moreover,

Dα P1 =

(

1−
L1(S

∗,V ∗)

L1(S,V ∗)

)

[

λ − µS−L1(S,V )−L2(S,E)−L3(S, I)
]

+

(

1−
E∗

E

)

[

L1(S,V)+L2(S,E)+L3(S, I)− (δ + µ)E
]

+

(

L3(S
∗, I∗)

δE∗
+

ρ2L1(S
∗,V ∗)

(ρ1A+ρ2δ )E∗

)

(

1−
I∗

I

)

[

δE −AI

]

+
AL1(S

∗,V ∗)

(ρ1A+ρ2δ )E∗

(

1−
V ∗

V

)

[

ρ1E +ρ2I−σV
]

=

(

1−
L1(S

∗,V ∗)

L1(S,V ∗)

)

[

λ − µS
]

+
L1(S

∗,V ∗)

L1(S,V ∗)

[

L1(S,V )+L2(S,E)+L3(S, I)
]

− (δ + µ)E −
E∗

E

[

L1(S,V)+L2(S,E)+L3(S, I)
]

+(δ + µ)E∗

+

(

L3(S
∗, I∗)

δE∗
+

ρ2L1(S
∗,V ∗)

(ρ1A+ρ2δ )E∗

)

(

1−
I∗

I

)

[

δE −AI

]

+
AL1(S

∗,V ∗)

(ρ1A+ρ2δ )E∗

(

1−
V ∗

V

)

[

ρ1E +ρ2I−σV
]

.

Applying the equilibrium conditions for the endemic steady state Q1, we obtain that

λ =µS∗+L1(S
∗,V ∗)+L2(S

∗,E∗)+L3(S
∗, I∗),

(δ + µ)E∗ =L1(S
∗,V ∗)+L2(S

∗,E∗)+L3(S
∗, I∗),

δE∗ =AI∗,

σV ∗ =ρ1E∗+ρ2I∗.
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Then, we get

Dα P1 =µS∗
(

1−
L1(S

∗,V ∗)

L1(S,V ∗)

)(

1−
S

S∗

)

+ 2L1(S
∗,V ∗)+ 2L2(S

∗,E∗)+ 2L3(S
∗, I∗)

−
L1(S

∗,V ∗)

L1(S,V ∗)

[

L1(S
∗,V ∗)+L2(S

∗,E∗)+L3(S
∗, I∗)

]

+
L1(S

∗,V ∗)

L1(S,V ∗)

[

L1(S,V )+L2(S,E)+L3(S, I)

]

−
E

E∗

[

L1(S
∗,V ∗)+L2(S

∗,E∗)+L3(S
∗, I∗)

]

−
E∗

E

[

L1(S,V )+L2(S,E)+L3(S, I)

]

+ δE∗

(

L3(S
∗, I∗)

δE∗
+

ρ2L1(S
∗,V ∗)

(ρ1A+ρ2δ )E∗

)

(

1+
E

E∗
−

I

I∗
−

I∗E

IE∗

)

+
AL1(S

∗,V ∗)

(ρ1A+ρ2δ )E∗

[

ρ1E +ρ2I −
V

V ∗

(

ρ1E∗+
ρ2δE∗

A

)

−ρ1E
V ∗

V
−ρ2I

V ∗

V
+ρ1E∗+

ρ2δE∗

A

]

.

Rearranging the last equation and add same terms, we obtain

Dα P1 =µS∗
(

1−
L1(S

∗,V ∗)

L1(S,V ∗)

)(

1−
S

S∗

)

+L1(S
∗,V ∗)

[

3−
V

V ∗
−

E

E∗
−

L1(S
∗,V ∗)

L1(S,V ∗)
+

L1(S,V )

L1(S,V ∗)
−

E∗L1(S,V )

EL1(S∗,V ∗)

]

+L2(S
∗,E∗)

[

2−
E

E∗
−

L1(S
∗,V ∗)

L1(S,V ∗)
−

E∗L2(S,E)

EL2(S∗,E∗)
+

L1(S
∗,V ∗)L2(S,E)

L1(S,V ∗)L2(S∗,E∗)

]

+L3(S
∗, I∗)

[

2−
E

E∗
−

L1(S
∗,V ∗)

L1(S,V ∗)
−

E∗L3(S, I)

EL3(S∗, I∗)
+

L1(S
∗,V ∗)L3(S, I)

L1(S,V ∗)L3(S∗, I∗)

]

+L3(S
∗, I∗)

[

1+
E

E∗
−

I

I∗
−

EI∗

E∗I

]

+
ρ2δL1(S

∗,V ∗)

(ρ1A+ρ2δ )

[

1+
E

E∗
−

I

I∗
−

EI∗

E∗I

]

+
ρ1AL1(S

∗,V ∗)

(ρ1A+ρ2δ )

E

E∗
+

ρ2δL1(S
∗,V ∗)

(ρ1A+ρ2δ )

I

I∗
−

ρ1AL1(S
∗,V ∗)

(ρ1A+ρ2δ )

EV ∗

E∗V
−

ρ2δL1(S
∗,V ∗)

(ρ1A+ρ2δ )

IV ∗

I∗V
.

The last Equation can be simplified as:

Dα P1 =µS∗
(

1−
L1(S

∗,V ∗)

L1(S,V ∗)

)(

1−
S

S∗

)

+
ρ1AL1(S

∗,V ∗)

ρ1A+ρ2δ

[

3−
V

V ∗
−

E

E∗
−

L1(S
∗,V ∗)

L1(S,V ∗)
+

L1(S,V )

L1(S,V ∗)

−
E∗L1(S,V)

EL1(S∗,V ∗)

]

+
ρ2δL1(S

∗,V ∗)

ρ1A+ρ2δ

[

4−
V

V ∗
−

L1(S
∗,V ∗)

L1(S,V ∗)
+

L1(S,V)

L1(S,V ∗)
−

EI∗

E∗I
−

IV ∗

I∗V
−

E∗L1(S,V )

EL1(S∗,V ∗)

]

+L2(S
∗,E∗)

[

3−
L1(S

∗,V ∗)

L1(S,V ∗)
−

E∗L2(S,E)

EL2(S∗,E∗)
−

EL2(S
∗,V ∗)L1(S,V

∗)

E∗L2(S,E)L1(S∗,V ∗)

]

+L3(S
∗, I∗)

[

4−
L1(S

∗,V ∗)

L1(S,V ∗)
−

EI∗

E∗I
−

IL1(S,V
∗)L3(S

∗, I∗)

I∗L1(S∗,V ∗)L3(S, I)
−

E∗L3(S, I)

EL3(S∗, I∗)

]

+L2(S
∗,E∗)

[

− 1−
E

E∗
+

L1(S
∗,V ∗)L2(S,E)

L1(S,V ∗)L2(S∗,E∗)
+

EL2(S
∗,V ∗)L1(S,V

∗

E∗L2(S,E)L1(S∗,V ∗)

]

+L3(S
∗, I∗)

[

− 1+
L1(S

∗,V ∗)L3(S, I)

L1(S,V ∗)L3(S∗, I∗)
−

I

I∗
+

IL1(S,V
∗)L3(S

∗, I∗)

I∗L1(S∗,V ∗)L3(S, I)

]

.
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Adding and subtracting terms, it follows that

Dα P1 =µS∗
(

1−
L1(S

∗,V ∗)

L1(S,V ∗)

)(

1−
S

S∗

)

+
ρ1AL1(S

∗,V ∗)

ρ1A+ρ2δ

[

4−
EV ∗

E∗V
−

L1(S
∗,V ∗)

L1(S,V ∗)
−

E∗L1(S,V )

EL1(S∗,V ∗)

−
VL1(S,V

∗)

V ∗L1(S,V )

]

+
ρ1AL1(S

∗,V ∗)

ρ1A+ρ2δ

(

1−
L1(S,V

∗)

L1(S,V )

)(

L1(S,V)

L1(S,V ∗)
−

V

V ∗

)

+
ρ2δL1(S

∗,V ∗)

ρ1A+ρ2δ

[

5−
EI∗

E∗I
−

L1(S
∗,V ∗)

L1(S,V ∗)
−

IV ∗

I∗V
−

E∗L1(S,V )

EL1(S∗,V ∗)
−

VL1(S,V
∗)

V ∗L1(S,V )

]

+
ρ2δL1(S

∗,V ∗)

ρ1A+ρ2δ

(

1−
L1(S,V

∗)

L1(S,V )

)(

L1(S,V )

L1(S,V ∗)
−

V

V ∗

)

+L2(S
∗,E∗)

[

3−
L1(S

∗,V ∗)

L1(S,V ∗)
−

E∗L2(S,E)

EL2(S∗,E∗)
−

EL2(S
∗,V ∗)L1(S,V

∗)

E∗L2(S,E)L1(S∗,V ∗)

]

+L3(S
∗, I∗)

[

4−
L1(S

∗,V ∗)

L1(S,V ∗)
−

EI∗

E∗I
−

E∗L3(S, I)

EL3(S∗, I∗)
−

IL1(S,V
∗)L3(S

∗, I∗)

I∗L1(S∗,V ∗)L3(S, I)

]

+L2(S
∗,E∗)

(

1−
L1(S,V

∗)L2(S
∗,E∗)

L1(S∗,V ∗)L2(S,E)

)(

L1(S
∗,V ∗)L2(S,E)

L1(S,V ∗)L2(S∗,E∗)
−

E

E∗

)

+L3(S
∗, I∗)

(

1−
L1(S,V

∗)L3(S
∗, I∗)

L1(S∗,V ∗)L3(S, I)

)(

L1(S
∗,V ∗)L3(S, I)

L1(S,V ∗)L3(S∗, I∗)
−

I

I∗

)

.

We can rewrite as:

Dα P1 =µS∗
(

1−
L1(S

∗,V ∗)

L1(S,V ∗)

)(

1−
S

S∗

)

+
ρ1AL1(S

∗,V ∗)

ρ1A+ρ2δ

[

4−
L1(S

∗,V ∗)

L1(S,V ∗)
−

EV ∗

E∗V
−

E∗L1(S,V )

EL1(S∗,V ∗)

−
VL1(S,V

∗)

V ∗L1(S,V )

]

+L1(S
∗,V ∗)

(

1−
L1(S,V

∗)

L1(S,V )

)(

L1(S,V )

L1(S,V ∗)
−

V

V ∗

)

+
ρ2δL1(S

∗,V ∗)

ρ1A+ρ2δ

[

5−
L1(S

∗,V ∗)

L1(S,V ∗)
−

EI∗

E∗I
−

IV ∗

I∗V
−

E∗L1(S,V )

EL1(S∗,V ∗)
−

VL1(S,V
∗)

V ∗L1(S,V )

]

+L2(S
∗,E∗)

[

3−
L1(S

∗,V ∗)

L1(S,V ∗)
−

E∗L2(S,E)

EL2(S∗,E∗)
−

EL2(S
∗,V ∗)L1(S,V

∗)

E∗L2(S,E)L1(S∗,V ∗)

]

+L3(S
∗, I∗)

[

4−
L1(S

∗,V ∗)

L1(S,V ∗)
−

EI∗

E∗I
−

E∗L3(S, I)

EL3(S∗, I∗)
−

IL1(S,V
∗)L3(S

∗, I∗)

I∗L1(S∗,V ∗)L3(S, I)

]

+L2(S
∗,E∗)

(

1−
L1(S,V

∗)L2(S
∗,E∗)

L1(S∗,V ∗)L2(S,E)

)(

L1(S
∗,V ∗)L2(S,E)

L1(S,V ∗)L2(S∗,E∗)
−

E

E∗

)

+L3(S
∗, I∗)

(

1−
L1(S,V

∗)L3(S
∗, I∗)

L1(S∗,V ∗)L3(S, I)

)(

L1(S
∗,V ∗)L3(S, I)

L1(S,V ∗)L3(S∗, I∗)
−

I

I∗

)

.

Using the geometrical and arithmetical means relationship, we obtain

4 ≤
L1(S

∗,V ∗)

L1(S,V ∗)
+

EV ∗

E∗V
+

E∗L1(S,V )

EL1(S∗,V ∗)
+

VL1(S,V
∗)

V ∗L1(S,V )
,

5 ≤
L1(S

∗,V ∗)

L1(S,V ∗)
+

EI∗

E∗I
+

IV ∗

I∗V
+

E∗L1(S,V )

EL1(S∗,V ∗)
+

VL1(S,V
∗)

V ∗L1(S,V )
,

3 ≤
L1(S

∗,V ∗)

L1(S,V ∗)
+

E∗L2(S,E)

EL2(S∗,E∗)
+

EL2(S
∗,V ∗)L1(S,V

∗)

E∗L2(S,E)L1(S∗,V ∗)
,

4 ≤
L1(S

∗,V ∗)

L1(S,V ∗)
+

EI∗

E∗I
+

E∗L3(S, I)

EL3(S∗, I∗)
+

IL1(S,V
∗)L3(S

∗, I∗)

I∗L1(S∗,V ∗)L3(S, I)
.
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Also, from condition C5, we have

0 ≥

(

1−
L1(S,V

∗)L2(S
∗,E∗)

L1(S∗,V ∗)L2(S,E)

)(

L1(S
∗,V ∗)L2(S,E)

L1(S,V ∗)L2(S∗,E∗)
−

E

E∗

)

0 ≥

(

1−
L1(S,V

∗)L3(S
∗, I∗)

L1(S∗,V ∗)L3(S, I)

)(

L1(S
∗,V ∗)L3(S, I)

L1(S,V ∗)L3(S∗, I∗)
−

I

I∗

)

.

We conclude that Dα P1(t) ≤ 0 and DαP1(t) = 0 at the point Q1 = (S∗,E∗, I∗,R∗,V ∗). Let F́1 be the largest invariant

subset of the set {(S,E, I,R,V ) : Dα P1(t) = 0}. Thus, the solutions of the model tend to F́1 . It is clear that F́1 contains
unique point, which is Q1. The globally asymptotically stable of Q1 follows from LaSalle’s invariance principle (LIP).�

5 Numerical Simulations

In this section, we introduce the following COVID-19 model example as a special case of system (2)-(6):

Dα S(t) = λ − µS−
S

1+ εS

(

β1V

1+κ1V
+

β2E

1+κ2E
+

β3I

1+κ3I

)

,

Dα E(t) =
S

1+ εS

(

β1V

1+κ1V
+

β2E

1+κ2E
+

β3I

1+κ3I

)

− (δ + µ)E,

Dα I(t) = δE − (ω + γ + µ)I,

Dα R(t) = γI − µR,

DαV (t) = ρ1E +ρ2I−σV.

(43)

The three functions for the transmission rates of infection are given by:

L1(S,V ) =
β1SV

(1+ εS)(1+κ1V )
, L2(S,E) =

β2SE

(1+ εS)(1+κ2E)
, L3(S, I) =

β3SI

(1+ εS)(1+κ3I)
. (44)

The parameters β j indicate maximum transmission rates and κ j allow transmission speeds to be adjusted and are all
positive constants, where j = 1,2,3. The parameters λ ,µ ,ε,δ ,ω ,γ,ρ1,ρ2 and σ are positive constants.

Checking the conditions C1-C5
(C1) Obviously,

L1(S,V )> 0, L2(S,E)> 0, L3(S, I)> 0 f or all S,E, I,V > 0,

L1(S,0) = L2(S,0) = L3(S,0) = 0 f or S > 0,

L1(0,V ) = L2(0,E) = L3(0, I) = 0 f or all E, I,V > 0.

(C2)

∂L1(S,V )

∂S
=

β1V

(1+ εS)2(1+κ1V )
> 0,

∂L2(S,E)

∂S
=

β2E

(1+ εS)2(1+κ2E)
> 0

∂L3(S, I)

∂S
=

β3I

(1+ εS)2(1+κ3I)
> 0,

∂L1(S,V )

∂V
=

β1S

(1+ εS)(1+κ1V )2
> 0,

∂L2(S,E)

∂E
=

β2S

(1+ εS)(1+κ2E)2
> 0,

∂L3(S, I)

∂ I
=

β3S

(1+ εS)(1+κ3I)2
> 0,

∂L1(S,0)

∂V
=

β1S

(1+ εS)
> 0,

∂L2(S,0)

∂E
=

β2S

(1+ εS)
> 0,

∂L3(S,0)

∂ I
=

β3S

(1+ εS)
> 0, f or all S,E, I,V > 0,

furthermore,

d

dS

(

∂L1(S,0)

∂V

)

=
β1

(1+ εS)2
> 0,

d

dS

(

∂L2(S,0)

∂E

)

=
β2

(1+ εS)2
> 0,

d

dS

(

∂L3(S,0)

∂ I

)

=
β3

(1+ εS)2
> 0, f or all S,E, I,V > 0.
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(C3)

∂

∂V

(L1(S,V )

V

)

=
∂

∂V

( β1S

(1+ εS)(1+κ1V )

)

=
−κ1β1S

(1+ εS)(1+κ1V )2
≤ 0,

∂

∂E

(L2(S,E)

E

)

=
∂

∂E

( β2S

(1+ εS)(1+κ2E)

)

=
−κ2β2S

(1+ εS)(1+κ2E)2
≤ 0,

∂

∂ I

(L3(S, I)

I

)

=
∂

∂ I

( β3S

(1+ εS)(1+κ3I)

)

=
−κ3β3S

(1+ εS)(1+κ3I)2
≤ 0, f or all S,E, I,V > 0.

(C4) We have

G1(S) =
∂L1(S,0)

∂V
=

β1S

(1+ εS)
, G2(S) =

∂L2(S,0)

∂E
=

β2S

(1+ εS)
,

G3(S) =
∂L3(S,0)

∂ I
=

β3S

(1+ εS)
.

Thus,
G2(S)

G1(S)
=

β2

β1

and
G3(S)

G1(S)
=

β3

β1

.

(C5)

HE(S,E) =
L2(S,E)

L1(S,V ∗)
=

β2(1+κ1V
∗)E

β1(1+κ2E)V ∗
, HE(S

∗,E∗) =
L2(S

∗,E∗)

L1(S∗,V ∗)
=

β2(1+κ1V
∗)E∗

β1(1+κ2E∗)V ∗
,

HI(S, I) =
L3(S, I)

L1(S,V ∗)
=

β3(1+κ1V
∗)I

β1(1+κ3I)V ∗
, HI(S

∗, I∗) =
L3(S

∗, I∗)

L1(S∗,V ∗)
=

β3(1+κ1V
∗)I∗

β1(1+κ3I∗)V ∗
,

(

HE(S,E)−HE(S
∗,E∗)

)

(

HE(S,E)

E
−

HE(S
∗,E∗)

E∗

)

=−
κ2β 2

2 (1+κ1V
∗)2(E −E∗)2

β 2
1 (V

∗)2(1+κ2E∗)2(1+κ2E)2
≤ 0,

(

HI(S, I)−HI(S
∗, I∗)

)

(

HI(S, I)

I
−

HI(S
∗, I∗)

I∗

)

=−
κ3β 2

3 (1+κ1V
∗)2(I − I∗)2

β 2
1 (V

∗)2(1+κ3I∗)2(1+κ3I)2
≤ 0,

for all E, I > 0, S ∈ (0,S0).
As a result, the validity of the conditions C1-C5 ensures that the results of global stability shown in Theorems 4.2.1

and 4.2.2 are true in this example. Therefore, the basic reproduction number of model (43) is:

R0 =
S0

σA(δ + µ)(1+ εS0)

(

(ρ2δ +ρ1A)β1 +σAβ2+σδβ3

)

=R01 +R02 +R03.

(45)

Specifically,

R01 =
β1(ρ2δ +ρ1A)S0

σA(δ + µ)(1+ εS0)
, R02 =

β2S0

(δ + µ)(1+ εS0)
, R03 =

β3δS0

A(δ + µ)(1+ εS0)
. (46)

Case (I): In this case, we run computational simulations for real-world data beginning from June 5, 2021 to September
11, 2021. We assume that the global influx and death rates in 2021 are 18.077 and 7.612 per 1000 people, respectively as
the same as 2020 [27], [28]. On June 5, 2021, the total population of the world was N = 7794798739. So, λ = 18.077×N

1000×365
=

3.8605×105 and µ = 7.612
1000×365

= 2.0855×10−5. According to [1], the initial condition is set as I(0) = 13032161, R(0) =

157029051 and we assume E(0) = 3.3×107 then from S(0)+E(0)+ I(0)+R(0) = N(0), we have S(0) = 7.59174×109.
Figure 2 depicts the fitted curve and the reported global cumulative number of COVID-19 from June 5 to September
11 2021. A comparison is also provided in Figure 3 between the integer-order one when α = 1, fractional order model
with α = 0.95, and the actual active infected cases with COVID-19 in the world at the same period. The achieved results
show that the response of the fractional-order model matches real data and show the benefit of using the derivative of the
fractional-order instead of the integer-order in conjunction with the results of Table 1.
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Table 1: Worldwide approximate parameters for the COVID-19 model (43).

Parameter Value Source Parameter Value Source

β1 1×10−11 [17],[27] ρ1 0.2 Assumed

β2 3×10−11 [17],[27] ρ2 2 Assumed

β3 1×10−11 [17],[27] κ1 1×10−9 fitting by data

ω 0.0003 fitting by data κ2 2.2×10−10 fitting by data

δ 0.0000435 fitting by data κ3 5×10−11 fitting by data

γ 0.009 fitting by data ε 0.00064 fitting by data

σ 1 [17]
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Fig. 2: The fitted curve and the reported COVID-19 cases in the world from June 5 to September 11, 2021.

Case (II): To study the effect of environmental reservoirs on the COVID-19 transmissions, we will assume new set of
initial conditions as I(0) = 24545, R(0) = 907 and S(0) = 7.6100× 109 [27] and a set of parameters in Table 2. We can
calculate the basic reproduction number R0 = 5.3837 using the parameter values from Table 2. We find, in particular, that
R01 = 1.5558, R02 = 2.5304, R03 = 1.2974.

The largest of these three components R02 comes from exposed-to-susceptible transmission, since exposed persons
display no symptoms and can transmit the disease to others easily in close proximity, even without their awareness. In the
meantime, if we suppose that the infected to susceptible transmission rate is equal to transmission rate from environmental
factors to susceptible persons, we find that the rate of impact of transmission from the environment is greater than its effect
from infected persons on basic reproduction number, likely as a result of the symptomatic infected persons being isolated.
Furthermore, this indicating that the environmental reservoir plays a significant role in the overall risk for infection.

6 Conclusion and discussion

In this paper, a mathematical model has been introduced to examine the ongoing novel coronavirus pandemic. We have
proposed a fractional-order SEIRV epidemic model that uses general infection rates and incorporates the environmental
reservoir into the dynamics of disease transmission that alter with the epidemiological state and environmental factors.
We started by applying the Caputo derivative to create a general SEIRV model that is appropriate for initial-value
problems. We have shown the system’s feasibility area and calculated its steady states. The basic reproduction number
R0 is obtained using the next generation technique, and it is made up of three components that represent the three
different mechanisms of infection, namely, exposed people, infected people, and environmental reservoirs, to susceptible
people. Based on characteristic equations and suitable Lyapunov functions, we examined local and global stability
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Fig. 3: Comparison between the results of the fractional-order derivative α = 0.9 and the integer-order derivative α = 1 and with real

data.

Table 2: Approximate parameters for the COVID-19 model (43).

Parameter Value Parameter Value

λ 3.7690×105 ρ1 2.3
µ 2.0855×10−5 ρ2 0.2
β1 1.012×10−11 κ1 1.01×10−4

β2 2.11×10−11 κ2 1.01×10−4

β3 0.82×10−11 κ3 1.01×10−4

δ 1/7 ε 0.00064

ω 0.034 σ 2

γ 1/15

analyzes of equilibrium points in detail. In the disease-free case, the underlying model is locally and globally
asymptotically stable when R0 < 1, when R0 > 1, the positive endemic steady state is both locally and globally
asymptotically stable. Based on real-world data, numerical simulations of an example with general infection functions
have been presented. The results of our simulations show that our model can be applied to the COVID-19 outbreak in the
world as it fits the supplied data really well. We can estimate the fundamental reproduction number using data fitting.
Moreover, the environmental reservoir is important in shaping the outbreak risk. In the numerical portion, we also looked
at the benefits of applying the fractional-order instead of the integer-order by comparing the results of our model with
real data and integer-order and fractional-order, we obtained that the fractional-order has the better result that depends on
the historical states of the disease and increases the stability region of the solution.
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improved this paper.
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