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Abstract: In this article, authors have tried to implement a modified version of [1] estimator in a two-stage unequally clustered

population where the second stage units can be either of responding or non-responding type. We have utilized imputation technique to

tackle the non-response persisting even after second call in the situation of two-staged unequal cluster population which is completely

a new attempt. The purpose is to strengthen the new estimator by improving the ‘second call’ part of the estimator. Instead of taking a

simple weighted average of the responding part after ‘second call’ a difference type imputation (to deal with the non-responding part

yet after ‘second call’ in a different way) is deployed to extrapolate the average and thus, examine the performance of the proposed

strategy. Empirical studies carried over the data set of natural population. Suitable recommendations to the survey statistician are made.

Keywords: Two-stage Cluster Sampling, non-response, difference type imputation, sub sampling of the non-responding group

1 Introduction

Cluster sampling is a popular sampling technique where the entire population is divided into clusters and a random sample
of the selected clusters are first included in the sample as because sometimes it is not possible to draw a sample of ultimate
units of interest on the first occasion since such units is not readily accessible. However, a list of some suitably defined
bigger units or first stage units (FSU’s) is prepared from each of which a sample (SSU’s) may be selected. Instead of
completely enumerating all the SSU’s belonging to the selected FSU’s as in case of cluster sampling, one may select
sample of SSU’s from the list of all SSU’s belonging to the selected FSU’s . The sampling is therefore carried out in two
stages and therefore, it is called two stage sampling. If a non-sensitive question is asked there might be still some cases of
non-response due to system failure. A phone call may fail, the person may be out of station, e-mail sent may bounce for
some reason etc. Hansen and Hurwitz first came out with a model for a flat population where in the second attempt some
non-respondents changed to respondents and the simple weighted average of the mean value of study variable obtained
in this phase is added to the overall estimator. The [1] estimator for a population while non-response exists after both
attempts takes the form:

ȲHH =
n1

n
ȳ1 +

n2

n
ȳ′2 =

1

m

m

∑
j=1

y j (1)

where n2 units remains non-responding after first attempt and m = n2
k
(k > 1) is the integral faction who did respond

after second attempt.

As a real life example of random non-response we may think of the situation as follows:

Suppose a professional survey team is trying to assess the support base of a political party X in a target area (may be
a state or area under municipal corporation etc.). It is always convenient to list some zone wise residences address first
(FSUs) and then interact with the households leaving at those addresses (SSUs). A typical voter may not disclose his/her
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choice at first call over mail/questionnaire methods but at personal interaction (second call) he/she may speak out. Some
individual may never respond (due to fear or other reasons). Even some may change their choices during the process of
survey due to some very unexpected events took place in between influencing their thought process. In this paper, we
have taken an attempt to improve the second part in two ways. Firstly, instead of accepting the simple weighted average
we go through an imputation process to project the mean response of the finally non-responding part from the knowledge
of mean value of the responding part at second call. Moreover we have implemented it to a two stage clustered
population of unequal SSU sizes. Almost no work is done in this direction to the best of author’s knowledge. A
difference type imputation is chosen and an auxiliary variable x is considered whose mean value is known at all level.
The procedures and formulations for this are discussed in the sections.

The non-response of many respondents renders sample returned incomplete. To deal with missing values
systematically, [2,3] suggested imputation methods that make incomplete data sets structurally complete. Imputation can
also be carried out with the aid of an auxiliary variable. For example, [4] used the information on an available auxiliary
variable for imputation purpose. Further, [5] and [6] suggested several imputation based methods utilizing the available
auxiliary information to deal with the problems of non-response in sample surveys.

The core of the present work lies in utilizing the imputation method to extract the actual proportion of sensitive
character from the non-respondents even after second call in the situation of two-staged unequal cluster population. (in
practice there are hardly any real life population where number of SSU units are same in all FSU ’s e.g., the households as
FSU ’s and the number of members (the SSU ’s) in each household which may vary randomly. Such populations are often
studied for various socio-economic surveys). The new estimator is shown to be much superior after improving the ‘second
call’ part of the estimator. A simple weighted average (usually taken) of the responding part after ‘second call’ is replaced
by a robust difference type imputation. The conclusion in this paper can be summarized by saying that imputation is
giving always a better output than the conventional [1] version in two-stage clustered population with unequal SSU sizes.

2 Description of Population and Formulation of Sample Structure:

We shall implement here sub sampling of non-responding units adopted earlier by [1] in a two-stage unequal population.
For that we take a finite population U be partitioned into N first stage units (FSU) denoted by (U1,U2, · · · ,UN). The
number of second stage units (SSU) in ith FSU be Mi. (where Mi1 is the assumed population responding part and Mi2 the
non-responding in first call so that Mi = Mi1 +Mi2). Let be the values of the study and auxiliary variables respectively on
the jth SSU ( j = 1,2, ...,Mi) within the ith(i = 1,2, · · · ,N).Further, we also assume that the information on x is available
at all levels.

Further, we consider the occurrence of non-response situation in the following ways.

To estimate the overall population mean

(

Ȳ·· = 1
N

N

∑
i=1

(

1
Mi

Mi

∑
i=1

Yi j

))

of the study variable y, a sample S1(S1 ⊂ U) of

size n FSU ’s is drawn out of N FSU ’s by SRSWOR. Then a second stage sample (SSU) S2 of size mi(< Mi) is drawn
from the ith FSU and approached to answer the sensitive question(first call) in a quantitative way. Let mi1 responded and
mi2 did not (mi = mi1 +mi2,mi1 ≤ Mi1 and mi2 ≤ Mi2). Next a second approach is arranged (may be personal interaction
or anything alike) for the non-responding part mi2 and a subsample of integral size mi2r = mi2/k(k > 1,mi2r < mi2 < mi)
are found to response this time. The procedure is followed for each of n FSUs sampled.

It is to be noted that the sample for second call per FSU is drawn as a subsample of that drawn on first call. We mention
here that the [1] version of estimator for the ith FSU while non-response exists even after second call takes the form:

ȲiHH =
mi1

mi

ȳi.1 +
mi2

mi

ȳ′i.2 where ȳ′i.2 =
1

mi2r

mi2r

∑
j=1

yi j (2)

2.1 Notations Used to Formulate the Estimator and Its Variance

Hence onwards, we use the following notations for population and sample parameters:
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Fig. 1: Pictorial Representation of the Sampling Procedure

2.1.1 For the population

Y.. =
N

∑
i=1

(

N

∑
j=1

Yi j

)

: over all population total of the study variable y

X.. =
N

∑
i=1

(

N

∑
j=1

Xi j

)

: over all population total of the study variable x

M0 =
N

∑
i=1

Mi : total number of ssu units in population

M1 =
N

∑
i=1

Mi1,M2 =
N

∑
i=1

Mi2 : total responding SSUs units (assumed) in population (1st, 2nd call)

for equal SSU size Y.. =
N

∑
i=1

(

N

∑
j=1

Yi j

)

,X.. =
N

∑
i=1

(

N

∑
j=1

Xi j

)

(3)

Ȳ.. =
1

N

N

∑
1

(

1

Mi

1

Mi

Mi

∑
1

Yi j

)

=
1

N

N

∑
1

Ȳi : Overall population mean of y

X̄.. =
1

N

N

∑
1

(

1

Mi

1

Mi

Mi

∑
1

Xi j

)

=
1

N

N

∑
1

X̄i : Overall population mean of y

(4)
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Ȳi. =
1

Mi

Mi

∑
j=1

Yi j : population mean (y) for ith FSU

X̄i. =
1

Mi

Mi

∑
j=1

Xi j : population mean (x) for ith FSU

S
′2
yb =

1

N − 1
∑ iN(Ȳi.− Ȳ..)

2 : population variances (y) between FSU-means

S
′2
xb =

1

N − 1
∑ iN(X̄i.− X̄..)

2 : population variances (x) between FSU-means

(we shall replace S
′2
yb by S2

yb for equal SSU size case)

S
′2
ywi =

1

Mi − 1

Mi

∑
j=1

(Yi j − Ȳi.)
2 : population variances (y) within ith FSU

S
′2
xwi =

1

Mi − 1

Mi

∑
j=1

(Xi j − X̄i.)
2 : population variances (x) within ith FSU

S̄
′2
yw =

1

N

N

∑
1

S2
ywi, S̄

′2
xw =

1

N

N

∑
1

S2
xwi : mean population variances (y,x) within ith FSU

ρ2
yxwi = { 1

Mi − 1

Mi

∑
j=1

(Yi j − Ȳi.)(Xi j − X̄i.)}/
√

S
′2
xwiS

′2
ywi

ρ2
yxb = { 1

N − 1

N

∑
j=1

(Yi.− Ȳ..)(Xi.− X̄..)}/
√

S2
xBS2

yB

ρ2
yx2wi = { 1

Mi2 − 1

Mi2

∑
j=1

(Yi j − Ȳ2i.)(Xi j − X̄2i.)}/
√

S
′2
xw2iS

′2
yw2i

S
′2
yw2i =

1

Mi2 − 1

Mi2

∑
j=1

(Yi j − Ȳ2i.)
2

(5)

f1 =
n

N
, f2i =

mi

Mi

,Ȳ =
Y

N
,M0 =

N

∑
i=1

Mi = NM (for equal SSU size) (6)

W2 = avg. non-response ratio (
M2
M0

) after first call in population- kept same across homogeneous clusters.

Value of W2 may be found from previous experience. Here taken 0.5 to 0.35 typically.
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2.1.2 For sample:

yi. =
1

mi

mi

∑
j=1

yi j : sample mean(y) on ith FSU

xi. =
1

mi

mi

∑
j=1

xi j : sample mean(x) on ith FSU

based on the respondent region in S1(R).

ȳi.1 =
1

mi1

mi1

∑
j=1

yi j1 : sample mean (y) of ith FSU after first call

ȳi.2r =
1

mi2r

mi2r

∑
j=1

yi j2r : sample mean (y) of ith FSU based on the respondents after 2nd call inS2(R
c)

ȳi(mi2−mi2/k) =
1

mi2 −mi2r

mi−mi2r

∑
j=1

yi j

s
′2
ywi =

1

mi − 1

mi

∑
1

(yi j − ȳi.)
2 : sample variance (y) within FSU

s
′2
xwi =

1

mi − 1

mi

∑
1

(xi j − x̄i.)
2 : sample variance (x) within FSU

s̄
′2
yw =

1

n

n

∑
1

s
′2
ywi, s̄

′2
xw =

1

n

n

∑
1

s
′2
xwi

s
′2
yb =

1

n− 1

n

∑
1

(ȳi.− ȳ..))
2,s

′2
xb =

1

n− 1

n

∑
1

(x̄i.− x̄..))
2 : sample variance between FSU- means

( we replaces
′2
yb by s2

yb for equal SSU size case)

ρ2
yxwi = { 1

mi − 1

mi

∑
j=1

(yi j − ȳi.)(xi j − x̄i.)}/s
′2
xwi correlation coefficients

ρ2
yxb = { 1

n− 1

n

∑
j=1

(yi.− ȳ..)(xi.− x̄..)}/
√

s
′2
xbs

′2
yb

ρ2
yx2b = { 1

n− 1

n

∑
i=1

(ȳ2i.− ȳ..)(x̄2i.− x̄..)}/
√

s
′2
x2bs

′2
y2b

(7)

The suffix b stands for ’between FSU mean’, W/w, ’within FSU population/ FSU sample and S/s stand for the
population/ sample variance. A ” ’ ” sign used for unequal SSU clusters.

3 Formulation of Proposed Estimator and Its Properties

We start with the basic Hansen Hurwitz mean estimator in a SRSWOR situation (i.e without considering cluster) which
has the following form:

ȲHH =
n1

n
ȳ1 +

n2

n
ȳ′2 (8)

Following (8), the one may modify [1] estimator to get its new version on the ith FSU while non-response exists even
after second call, takes the form:

ˆ̄YiHH =
mi1

mi
ȳi.1 +

mi2

mi
ȳ′i.2 where ȳ′i.2 =

1

mi2r

mi2r

∑
j=1

yi j (9)
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Finally, the [1] version of the estimator applicable for two-stage unequal size clusters takes the form:

THH =
1

n

n

∑
i=1

ˆ̄YiHH (10)

In order to improve the second part of (9) we now wish to consider a combination of actual response and projected
response from the final non-respondent ones through a difference type imputation procedure furnished below.

3.1 Description of Imputation Technique

The information on the second auxiliary variable x is readily available for all over the population U. Therefore,
motivated by the imputation techniques suggested by [5] and [6], we propose the following difference type imputation
method based on responding and non-responding units of the second stage sample S2after second call to estimate the
responded part in equation (9) as described below:

We use the known responded part after second call in a difference type imputation scheme given below to estimate
responded part ȳ′2 by an estimator based on subsample of size mi2 per ith FSU supposing information on x is available
including its population mean i.e. X̄·· and X̄i .The details of imputation procedure (difference type) adopted has been
shown below.

ti j =

{

mi2ȳi2r
mi2r

+ b(X̄i.− xi j) j ∈ R

b(X̄i.− xi j) j ∈ Rc
(11)

where b is real constant to be determined suitably from past experiences.

The expression of estimator ti (per FSU) is obtained as follows:

ti2 =
1

mi2

(

∑
j∈S2

ti j

)

= 1
mi2

(

∑
j∈R

ti + ∑
j∈Rc

ti j

)

= 1
mi2

[

∑
j∈R

mi2 ȳi2r
mi2r

+ b(X̄i.− xi j)+ ∑
j∈Rc

b(X̄i.− xi j)

]

= 1
mi2

[

mi2 ȳi2r

r
+ ∑

j∈R
b(X̄i.− xi j)+ ∑

j∈Rc
b(X̄i.− xi j)

]

= 1
mi2

[

mi2ȳi2r + bmi2rX̄i.− ∑
j∈R

bxi j + b(mi2 −mi2r)X̄i.− ∑
j∈Rc

bxi j

]

= 1
mi2

[

mi2ȳi2r + bmi2rX̄i.− ∑
j∈R

bxi j − ∑
j∈Rc

bxi j

]

= 1
mi2

[

mi2ȳi2r + bmi2rX̄i.− b( ∑
j∈R

xi j + ∑
j∈Rc

bxi j)

]

= 1
mi2

[

mi2ȳi2r + bmi2rX̄i.− b ∑
j∈S2

xi j

]

= 1
mi2

[mi2ȳi.2r + bmi2X̄i.− bmi2x̄mi2
]

= ȳi.2r + b(X̄i.− x̄mi2
)

or ti2 = ȳi.2r + b(X̄i.− x̄mi2
) = ȳi.2r + b(X̄i.− x̄i.) (12)

We modify the second part
mi2
mi

ȳ′i.2 of the ith (i = 1,2,3, ·,N) cluster by replacing it with
mi2
mi

t̄i2 (i = 1,2,3, ·,N) using

imputation technique developed in equation (12) i.e., instead of taking a simple weighted average
mi2
mi

ȳ′i.2 of responded

part in second call we take a combination of actual response and projected response from the final non-respondents ones
through the imputation procedure described above (equations (11) and (12)).

Therefore, the final proposed estimator Tp to estimate Ȳ·· is defined as:

Tp =
1
n

n

∑
i=1

[

1
mi

mi

∑
i=1

yi j

]
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= 1
n

n

∑
i=1

[

1
mi

(

mi1

∑
i=1

yi j +
mi2

∑
i=1

yi j

)]

= 1
n

n

∑
i=1

[

mi1
mi

ȳi.1 +
mi2
mi

ȳ′i.2

]

= 1
n

n

∑
i=1

ˆ̄YHH

or Tp =
1

n

n

∑
i=1

[

mi1

mi

ȳi.1 +
mi2

mi

[ȳi.2r + b(X̄i.− x̄i.)]

]

(13)

We assume here X̄····, X̄i· and x̄i.2 are known at all levels.

4 Deriving the Expression of Variance from Proposed Estimator Structure

We have taken each FSU (of population size Mi where from a sample is drawn of size mi(i = 1,2,3, · · · ,N)) as a
dichotomous population in terms of respondents and non-respondents. Now we proceed to implement [1] estimator at
each FSU level.

Finally, to obtain the mean square error of the proposed estimator presented in equation (13) for aforesaid situation,
we proceed as follows.

It noted from equation (13) that

or Tp =
1

n

n

∑
i=1

[

mi1

mi

ȳi.1 +
mi2

mi

[ȳi.2r + b(X̄i.− x̄i.)]

]

We observe that

ȳi. =
mi1ȳi.1 +mi2ȳ′i.2

mi

(14)

ȳ′i.2 is the sample mean of mi2 sample shown non-response at 1st call.

mi1ȳi.1 = ȳi.mi −mi2ȳ′i.2 (15)

It is noted that ti2 = ȳi.2r + b(X̄i.− x̄i.1) from equation (12).

We replace mi1ȳi.1 in equation (14) by expression in equation (15) and thus the estimator (12) becomes

Tp =
1

n

n

∑
i=1

[

miȳi.−mi2ȳ′i.1 +mi2ti2

mi

]

Hence the MSE(Tp) becomes

E(Tp − Ȳ..)
2

= E

[

1
n

n

∑
i=1

mi ȳi.−mi2ȳ′i.2+mi2ti2
mi

− 1
n

n

∑
i=1

Ȳi.

]2

= E

[

1
n
{

n

∑
i=1

mi(ȳi.−Ȳi.
mi

+
n

∑
i=1

mi2(ti2−ȳ′i.2)
mi

}
]2

= E

[

1
n

n

∑
i=1

(ȳi.− Ȳi.)+
n

∑
i=1

mi2
mi

(ti2 − ȳi.2)

]2

Expanding the above expression, we have the mean square error of the proposed estimator Tp as

V (Tp) =

(

1
n
− 1

N

)

S
′2
yb +

1
nN

N

∑
i=1

(

1
mi
− 1

Mi

)

S
′2
ywi

+W2(k− 1)

[

S
′2
y2b(1−ρ2

yx2b)
1
N

N

∑
i=1

1
mi

+ 1
nN

N

∑
i=1

1
mi

S
′2
y2wi(1−ρ2

iyx2w)

] (16)

where S
′2
yb =

1
N−1

n

∑
i=1

(Ȳi.− Ȳ..)
2,S

′2
wi =

1
Mi−1

mi

∑
j=1

(Yi j − Ȳi.)
2.
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S
′2
2yb has the same structure as S

′2
yb but for non-response part. Also ρ2

yx2b,ρ
2
yx2w and S

′2
2ywi is for non-resp. part and same

with S
′2
wi.

Similarly, from equation (10) the expression of variance of the [1] version of the estimator for two-stage unequal size
cluster derived as

V (THH) =

(

1

n
− 1

N

)

S
′2
yb +

1

nN

N

∑
i=1

(

1

mi

− 1

Mi

)

S
′2
ywi +W2(k− 1)

[

S
′2
y2b

1

N

N

∑
i=1

1

mi

+
1

nN

N

∑
i=1

1

mi

S
′2
y2wi

]

(17)

Remark 4.1: Readers are encouraged to see the demonstration given in Appendix about the procedures of obtaining
variance of sample mean under unequal size clusters in presence of non-response situations.

Remark 4.2: One may consider Mi = M, i = 1,2, · · · ,N;mi = m, i = 1,2, · · · ,n for equal size clusters and thus derived
the expressions for V (Tp) and V (THH) from equations (16) and (17) as:

V (Tp) =

(

1

n
− 1

N

)

S
′2
yb +

1

n(m−M)
S̄
′2
ywi +W2(k− 1)

[

S
′2
y2b(1−ρ2

yx2b)
1

m
+

1

nmN

N

∑
i=1

S
′2
y2wi(1−ρ2

iyx2w)

]

V (THH) =

(

1

n
− 1

N

)

S
′2
yb +

1

n(m−M)
S̄
′2
ywi +W2(k− 1)

[

S
′2
y2b

1

m
+

1

nm
S̄
′2
y2wi

]

(18)

5 Theoretical Analysis of Efficiency

The difference of V (THH) and V (Tp) from (16) and (17) as:

V (THH)−V(Tp) = ∆V

=
(

1
n
− 1

N

)

S
′2
yb +

1
nN

N

∑
i=1

(

1
mi

− 1
Mi

)

S
′2
ywi +W2(k− 1)

[

S
′2
y2b

1
N

N

∑
i=1

1
mi

+ 1
nN

N

∑
i=1

1
mi

S
′2
y2wi

]

−
(

1
n
− 1

N

)

S
′2
yb +

1
nN

N

∑
i=1

(

1
mi

− 1
Mi

)

S
′2
ywi +W2(k− 1)

[

S
′2
y2b(1−ρ2

yx2b)
1
N

N

∑
i=1

1
mi

+ 1
nN

N

∑
i=1

1
mi

S
′2
y2wi(1−ρ2

iyx2w)

]

=W2(k− 1)

[

S
′2
y2bρ2

yx2b
1
N

N

∑
i=1

1
mi

+ 1
nN

N

∑
i=1

1
mi

S
′2
y2wiρ

2
iyx2w

]

> 0 always

(19)

This shows the proposed estimator Tp is always more precise than the [1] version estimator THH applicable for
two-stage unequal size clusters in presence of non-response situation.

Remark 5.1: For equal SSU sizes at both population and sample level the difference (19) reduces to

∆Veq =
(

1
n
− 1

N

)

S
′2
yb +

1
n(m−M)

S̄
′2
ywi +W2(k− 1)

[

S
′2
y2b

1
m
+ 1

nm
S̄
′2
y2wi

]

−
(

1
n
− 1

N

)

S
′2
yb − 1

n(m−M)
S̄
′2
ywi −W2(k− 1)

[

S
′2
y2b(1−ρ2

yx2b)
1
m
+ 1

nmN

N

∑
i=1

S̄
′2
y2wi(1−ρ2

iyx2w)

]

= W2(k−1)
m

[

S
′2
y2bρ2

yxb +
1
n
S̄
′2
y2wρ̄2

yx2w

]

where 1
N ∑

1
NS

′2
y2wiρ

2
yxwi) = S̄

′2
y2wρ̄2

yx2w

(20)

Clearly ∆Veq > 0 also always

6 Empirical Investigation

As a mandatory step to test the efficacy of a proposed estimator, we have chosen two natural populations (described in Sec.
6.1.1 & 6.1.2) and an artificially generated one (Sec.6.2) and applied our estimator there. For examination of performance
of the proposed strategy, we have examined the Percentage Relative Efficiency (PRE) of the estimator Tp with respect to
the estimator THH as:

PRE =
V (THH)

V (Tp)
× 100 (21)

The results are discussed below.
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Table 1: (basic parameters computed based on data)

Ȳ1. Ȳ2. Ȳ3. Ȳ4. Ȳ5. X̄1. X̄2. X̄3.

102.36 107.63 90.11 89.40 108.63 885.93 552.46 564.18

X̄4. X̄5. Ȳ.. X̄.. S
′2
yb S

′2
yw ρ2

yxB S
′2
xb

737.49 652.81 99.62 678.57 69.51 7326.99 0.00 15224.40

Table 2: PREs of TP over THH for different choices of k

k V (Tp) V (THH) PRE

SSU units: m1 = 6,m2 = 4,m3 = 4,m4 = 9,m5 = 4

3 323.37 784.51 242.60

2 293.77 524.34 178.48

SSU units: m1 = 5,m2 = 3,m3 = 3,m4 = 7,m5 = 3

3 498.58 1097.53 220

2 459.44 758.92 165

Table 3: Formation of 5 different clusters (zone wise) out of 51 states of United States and corresponding parametric values (N=5, n=3

taken)

Zones (FSU s) Constituent States(SSU s) Statistical Parameters

FSU 1

Wyoming, Missouri, Mississippi, Kentucky, Oklahoma,

M1 = 14,m1 = 8, X̄1. = 6.551,Ȳ1. = 6.59Arkansas, Indiana, Nebraska, South Carolina, Wisconsin, Utah,

South Dakota, Idaho, West Virginia

FSU 2

Alaska, Montana, New Hampshire, Minnesota, Vermont ,

M2 = 13,m2 = 8, X̄2. = 15.031,Ȳ2. = 15.11Ohio,Arizona,New Mexico,North Dakota, Maine, Michigan,

Massachusetts, Washington

FSU 3

Kansas, Virginia, North Carolina, Oregon, Pennsylvania,

M3 = 12,m3 = 6, X̄3. = 15.031,Ȳ3. = 15.11Texas, Louisiana, Colorado, Tennessee, Iowa, Alabama,

Georgia

FSU 4
Hawaii, Rhode, Island, Connecticut, Nevada, Florida,

M4 = 7,m4 = 5, X̄4. = 24.562,Ȳ4. = 24.48California,, Illinois

FSU 5
Maryland, District of Columbia, New Jersey, New York,

M5 = 5,m5 = 3, X̄5. = 33.528,Ȳ5. = 33.55Delaware

6.1 Natural population

6.1.1 Study Using Natural Data Set 1:

We have adopted the medical data (source Table 174. Community Hospitals–States: 2000 and 2009). For definition of
community hospitals see footnote 2, Table 168]. The number of hospitals is taken as primary study variable Y and
patients admitted (in 1000) as X. The data is clustered. The states are divided in 5 FSU s and within each FSU the
hospitals are considered as SSU’s.

We have taken N = 5,n = 3,(1/n− 1/N) = 0.13,LetW2 = .5,k = 3,2(giving W2(k− 1) = 1,0.5) for all cluster since
they are homogeneous across. The parameters calculated based on data shown in Table 3.

Finally we calculate the Variances and PRE (as per definition (21) ) under different values of k(= 3,2) taking W2 = 0.5
as furnished in Table 4.

6.1.2 Study Using Natural Data Set 2:

We have chosen another natural population datasets on abortion rates form Statistical Abstract of the United States: 2011
to elucidate the performance of our proposed estimator. The variables y and x denote number of abortions rates reported
in the state of US during the years 2008 and 2007 respectively. Details about the parametric values illustrated in Table 5.
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Table 4: Population mean squares and correlation coefficients of the respective variables

S
′2
ywi S

′2
xwi ρxywi

FSU 1 4.56 4.51 0.9784

FSU 2 6.21 6.33 0.9013

FSU 3 5.87 5.66 0.9777

FSU 4 31.42 37.22 0.9885

FSU 5 19.31 29.03 0.9751

X̄ Ȳ S
′2
yb S

′2
yw S

′2
xw ρyxb

18.94 18.97 23.25 13.47 16.45 0.04

Table 5: Variance and PRE of the proposed Estimator Tp with respect to THH obtained for Data Set 2 (taking W2 = .5, k=3 and 2) and

using PRE definition (21).

k V (Tp) V (THH) PRE

SSU units: m1 = 6,m2 = 4,m3 = 4,m4 = 9,m5 = 4

3 16.52 19.31 116.88

2 15.05 18.04 119.17

SSU units: m1 = 5,m2 = 3,m3 = 3,m4 = 7,m5 = 3

3 18.67 20.71 110.90

2 16.27 17.01 104.54

The computed values of population mean squares and correlation coefficients of the respective variables based on the
ith FSU (i = 1,2, · · · ,5) are shown in Table 6:

To measure the performance of the proposed estimator Tp, we have computed the PREs of Tp with respect to THH . The
findings are displayed in Table 5.

6.2 Study Using Artificially Generated Data Set Through Simulation:

Efficiency comparison through artificial population generation technique helps in concluding whether a newly developed
technique is better than the existing ones (see for instance the work of [7]). In the context of statistical simulation is a
computer driven program to create pseudo-random sampling data. A key strength of simulation study is the ability to
analyze the behavior of statistical methods (i.e. forming and testing a new estimator etc.) from some parameter(s) of
interest that can be reliably generated from the simulation process.

In what follows we have rigorously investigated the efficacy of our estimator by simulating a normal population of
moderately large sample size. We have largely adopted the techniques followed [8,11,9,10,7].

6.2.1 Population Generated by Simulation Using Standard Normal Distribution

Probability density function is X . (continuous) We have generated three sets of independent random numbers of size N
(N = 100) namely x1[k],y1[k](k = 1,2, · · · ,N) from a standard normal distribution as presented below.

The following algorithm is used to generate the population artificially:

1.Generate two random variables which are normally distributed with mean 0, S.D. =1 and are of size 100; (Note: are
temporary variables).

2.Define N =100
3.Define rx1y1 = 0.5

Define correlation coefficient (rx1y1 = 0.5 ) and standard deviations of the variables y1 and x1 as SX1 =
√

50, SY1 =√
40 and their mean as mx1 = 20,my1 = 25 respectively.

4.a=sy1*sy1*(1-(rx1y1ˆ2))
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Table 6: PRE of the proposed Estimator with respect to estimator obtained for Artificially Generated Population Data Set 1 (taking

W2 = .5,k = 3,2,n = 3 and mi = 10,13,15) and using PRE definition (21).

V (Tp) V (THH) PRE(TP wrt THH)
Correlation(x, y) = 0.5, n= 3, mi= 10for all i

3 155.94 162.23 104.03

2 148.02 154.76 104.55

Correlation(x, y) = 0.5, n=3, mi = 13 for all i

3 157.55 159.48 101.23

2 149.97 151.09 100.75

Correlation(x, y) = 0.5, n= 3, mi = 15 for all i

3 171.25 192.19 112.23

2 166.34 176.56 106.75

Correlation(x, y) = 0.75, n= 3, mi = 10 for all i

3 145.24 149.94 103.23

2 136.98 143.02 104.41

Correlation(x, y) = 0.75, n= 3, mi = 13 for all i

3 147.24 155.91 105.89

2 134.55 149.68 111.25

Correlation(x, y) = 0.75, n= 3, mi = 15 for all i

3 151.74 164.18 108.20

2 145.64 174.49 119.81

5.for(j in 1:N)
{
x[j]= +(sx1x1[j])
y[j]= +(

√
a)y1[j])+(rx1y1*sy1x1[j])

}
6.Take output of the variables x and y.
7.Repeat the steps 1 to 6 with different values of rx1y1 (step 3) which will generate different population for different

values of the correlation coefficients.

After generating the population artificially, we have taken 3 (i.e., n = 3) out of 5 clusters each of equal size of 10
(Mi = 20,mi = 10, i = 1,2,3) from a total of 100 sequentially and computed the PRE of the proposed estimator Tp with
respect to THH for different values of correlation coefficient ryx. The findings are displayed in Table 6.

7 Conclusion

Following outcomes may be observed from the above study:

1.From equation (16), (17) and (18) it is found theoretically that in case of equal or unequal size clusters, our suggested
methodology of utilizing imputation instead of taking simply weighted average of responded part after second call
always gives an edge.

2.From tables 4 and 7 corresponding to the natural population data set 1 and 2 respectively, it is observed that the
efficiency is increased with larger SSU sizes (mis). It is also found that, we have more efficiency for our proposed
strategy even when the sub sampling fractions (i.e., k) is larger for which we require to sample only smaller number
of units at second calls. This establishes that that imputation is definitely having some positive effect on the survey
and also reduces the cost of the surveys. It may be noted that natural population data set is heterogeneous because the
parameters vary significantly from cluster to cluster. Hence, it is established that our proposed methodology performs
profoundly in practical surveys where population is often heterogeneous as well as cluster sizes may vary.

3.From table 8 corresponding to the data set in artificially generated population through simulation studies, it may be
seen that for increasing choices of correlation coefficients, we have better performance from our proposed
methodology. These findings lead us in choosing the suitable population where our suggested strategy may be
applicable. It also noted that artificially generated population is homogeneous because parametric values do not vary
significantly from cluster to clusters and our suggested strategy performs effectively there in comparison to the
conventional approach.
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4.From tables 4, 7 and 8, it is found that for different choices of sample SSUs from each cluster (for example, mi for ith
cluster), our proposed estimator produces more efficiency than the conventional approach.

Therefore, the proposed methodology may be found effective in comparison with the contemporary ones as it unifies
several merits in one structure. Hence, looking on the encouraging outcomes, we are happy to recommend our proposed
strategy to the survey statisticians in practice.
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Appendix:

Deriving variance expression for total and mean in 2-Stage unequal cluster population

Ŷ = N
n

n

∑
i=1

Miȳi. (estimates FSU total)

ˆ̄Y = 1
n

n

∑
i=1

ȳi. (estimates FSU mean)

which are unbiased. M0 =
N

∑
i]1

Mi = total SSU units.

for equal SSU size these are Ŷ = MN

[

1
n

n

∑
i=1

ȳi.

]

ˆ̄Yf su =
M
n

n

∑
i=1

ȳi. and ˆ̄Y.. =
Ŷ

M0
= Ŷ/N

M
=

ˆ̄Yf su

M
where M0 = MN ( ˆ̄Y actually estimates Ȳi j)

V (Ŷ ) =V1E2(Ŷ )+E1V2(Ŷ ) The first term is for variance between FSU’s and the 2nd term is for within SSU per FSU
(E1,V1 stand for expectation, variance for all possible selections of FSU and E2,V2 stand for expectation, variance for all
possible selections of SSU within a FSU).

Then

E1V2(Ŷ ) = E1

(

N2

n2

n

∑
i=1

M2
i V2(ȳi.)

)

;V2(ȳi.) is the sample variance of ith FSU
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= E1

(

N2

n2

n

∑
i=1

M2
i

mi
(1− f2i)s

2
i.

)

=

(

N2

n2
n
N

n

∑
i=1

M2
i

mi
(1− f2i)S

2
i.

)

where f2i =
mi
Mi

and S2
i. =

mi

∑
i=1

Yi j−Ȳ 2
i.

Mi−1

Similarly

V1E2(Ŷ ) =V1E2(
N
n

n

∑
i=1

Miȳi.) =V1(
N
n

n

∑
i=1

Yi.) =
N2

n2

n

∑
i=1

V1(Yi.); since MiȲi. = Yi (FSU total)

= N2

n2

n(1− 1
n )

N−1

N

∑
i=1

(Yi.− Ȳi.)
2 = N2

n
(1− f1)M̄

2S
′2
b = N2

n
(1− f1)S

′2
B

where S
′2
B =

N

∑
i=1

(
MiYi

M̄
−Ȳ)2

N−1
, population variance between FSU total.

Thus the population total estimator V (Ŷ ) = N2

n2
n
N

N

∑
i=1

M2
i

mi
(1− f2i)S

2
i.+

N2

n
(1− f1)S

′2
B

Similarly we obtain the population mean estimator as follows

E1V2(
ˆ̄Y = E1

(

1
n2

n

∑
i=1

V2(ȳi.)

)

= 1
n2

n
N

N

∑
i=1

1
mi
(1− f2i)S

2
i. =

1
nN

N

∑
i=1

1
mi
(1− f2i)S

2
i.

V1E2(
ˆ̄Y ) 1

n2

n

∑
i=1

V1(Yi.) =
1
n
(1− f1)S

′2
b , f1 =

n
N

S
′2
b is the population variance between FSU mean.

Hence finally

V ( ˆ̄Y ) = 1
nN

N

∑
i=1

1
mi
(1− f2i)S

2
i.+

1
n
(1− f1)S

′2
b where S

′2
b =

N

∑
i=1

(
MiȲi.

M̄
−Ȳ 2

.. )
2

N−1
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