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Abstract: In this paper, we establish, in a general case, the Volterra integral equation (VIE)from the initial value problems(IVPs). Also,

some analytical and numerical methods are used to obtain the solution of VIE with a continuous kernel. In the numerical applications,

the researcher based the Runge-Kutta and Trapezoid rules on the Simpson rule. This reference gives a fast convergence in the solution,

a convergent error, and less than the previous traditional methods. Many numerical examples using Maple 18 are considered, and the

estimated error, in each case, is computed.
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1 Introduction

Many problems in mathematical physics [1], theory of
elasticity [2,3,4], hydrodynamics [5], quantum
mechanics [6,7], and contact problems in the theory of
elasticity [8,9], take the form of IVPs or BVPs.

The theory of integral equations has close contact
with many different areas of different sciences. These
additional problems have led researchers to establish
other methods for solving integral equations of various
kinds.

In [10], Diego and Lima used collocation methods for
a class of weakly singular integral equations. In [11],
Mirzaee and Hoseini used the collocation method for
solving Volterra-Fredholm integral equations (V-FIEs)
with continuous kernels. In [12], Wang and Wang used
the Taylor polynomial method for solving mixedV-FIEs
of the second kind with continuous kernels. In [13],
Paripour and Kamyar used new bases function to obtain
the solution of nonlinear V-FIEs numerically with
continuous kernels. In [14,15], Abdou and collage
discussed the numerical solution of the quadratic integral
equation using Chebyshev polynomials. In [14], and they
discussed the behavior of the resolution of a mixed
integral equation in two-dimensional problems in [15]. In
[16], Ata and Sahin confirmed the BVP of the stokes flow
with hermit surfaces into an integral equation; then, they
used the iteration method to solve the integral equation. In

[17], Kuzmina and Marchevsky used the vertex method to
solve the investigated integral equation of the airfoil
surface line discretization of curvilinear panels. In [18],
Lienert and Tumulkastudied VIEfrom relativistic
quantum physics and discussed its solution numerically.
In [19], Matoog established an integral equation with a
generalized potential kernel from an axisymmetric
contact problem and discussed its solution using the
orthogonal polynomials method. In addition, Matoog [20]
addressed the resolution of the integral nuclear equation
in quantum physics problems. In [21], Alharbi and Abdou
established the BVP’s FIEof the second kind and
discussed its solution numerically. In [22], Nemati et al.
used the orthogonal polynomial method in the Legendre
form to discuss the numerical solution of a class of
two-dimensional nonlinear VIEs. In [23], Baksheesh used
the Galerkin approximation method for solving VIEs of
the first kind with a convolution kernel. In [24], Abdou
and Alharbi used the spectral relationships methods to
discuss the solution of FIE with a singular kernel. In [25],
Brezinski andZalglia used extrapolation methods to
obtain the numerical solution of nonlinear FIEs with the
continuous kernel. In [26], Hafez and Youssri used
spectral relationships in the form of Legendre-Chebyshev
to discuss the numerical solution of nonlinear VIE with a
stable kernel. In [27], Abdou and Awad used an
asymptotic method to solve FIEs in some domains. In
[28], Basseem and Alalyani used the Toeplitz matrix
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method to solve a quadratic integral equation. In [29],
Abdou et al. discussed the analytic solution of F-VIEs

with a phase-lag term in time.

The theory of ordinary differential equations is a
fruitful source of integral equations. In the quest for the
representation formula for the solution of a linear
differential equation in such a manner to include the
boundary conditions or initial conditions explicitly, one is
always led to an integral equation. Once the BVPs or the
IVPs have been formulated in terms of integral equations,
it becomes possible to solve this problem quickly.

In the remainder of this paper,we establish the VIEof
the second kind from the IVP. Section three discusses
various methods to analyze the VIEs with the continuous
kernel. Section four uses numerical methods to solve the
VIE with the continuous kernel, and the error in different
starting algorithms is computed.

2 Volterra Integral Equation and Initial

Value Problem

There is a fundamental relationship between the IVPs and
VIE. In general, let us consider the linear differential
equation of order n.

dny

dsn
+A1 (s)

dn−1y

dsn−1
+ · · ·+An−1 (s)

dy

ds
+An (s)y

= F (s,y(s))

(1)

with the initial conditions.

y(a) = q0, y′ (a) = q1, . . . , y(n−1) (a) = qn−1 (2)

where the functions A1, A2, . . . , An and F are defined and
continuous in a ≤ s ≤ b

Introduce the unknown function

dny

dsn
= g(s) . (3)

Hence, we get

dn−1y

dsn−1
=
∫ s

a
g(t)dt + qn−1

dn−2y

dsn−2
=

∫ s

a
(s− t)g(t)dt +(s− a)qn−1 + qn−2

...
...

...

dy

ds
=

∫ s

a

(s− t)n−2

Γ(n− 1)
g(t)dt +

(s− a)n−2

Γ(n− 1)
qn−1

+
(s− a)n−3

Γ(n− 2)
qn−2 + · · ·+

(s− a)

Γ(2)
q2 + q1

y =

∫ s

a

(s− t)n−1

Γ(n)
g(t)dt +

(s− a)n−1

Γ(n)
qn−1

+
(s− a)n−2

Γ(n− 1)
qn−2 + · · ·+

(s− a)

Γ(2)
q1 + q0.

(4)

Now, if we multiply relation (3) and (4) by
1, A1 (s) , A2 (s) , . . . , An (s), and using the following
connection (Kanwal[30])

∫ s

a

∫ sn

a
· · ·

∫ s3

a

∫ s2

a
L(s1)ds1ds2 · · ·dsn−1dsn =

1

Γ(n)

∫ s

a
(s− t)n−1

L(t)dt

Γ(n) Is the gamma function, we find that the IVP (1)
and (2) reduce to the nonlinear VIE of thesecond kind.

g(s) = f (s)+

∫ s

a
k (s, t)g(t)dt , k (s, t)

=
n

∑
i=1

Ai (s)
(s− t)i−1

(i− 1)!

(5)

f (s) =F

(

s,

∫ s

a

(s− t)n−1

Γ(n)
g(t)dt +

(s− a)n−1

Γ(n)
qn−1

+
(s− a)n−2

Γ(n− 1)
qn−2 + · · ·+

s− a

Γ(2)
q1 + q0

)

− qn−1A1 (s)− ((s− a)qn−1 + qn−2)A2 (s)− . . .

−

(

(s− a)n−1

Γ(n)
qn−1 + · · ·+

s− a

Γ(2)
q1 + q0

)

An (s)

(6)

The VIE can be obtained from the integro-differential
equation as the following.

Example 1.Consider the nonlinear integro-differential
equation;

/0′(t)−λ

∫ t

0
k (t,s, /0(s))ds = f (t) , /0(0) = h0 (7)

We adapt (7) to take the form

Z (t)−λ

∫ t

0
k

(

t,s,

(

h0 +

∫ s

0
Z (u)du

))

ds

= f (t) ,
(

φ ′ (t) = Z (t)
)

.

(8)

Therefore, (8) is equivalent to a system of nonlinear
integral equation
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If in (7), we have the exact solutionF (t) = et , F (0) =
1. Hence, the free term becomes

f (t) = et −
1

4
t −

1

2
t2e2t +

1

4
te2t

.

For solving, numerically, the integral equation.

/0′ (t)−λ

∫ t

0
tsφ2 (s)ds = et −

1

4
t −

1

2
t2e2t +

1

4
te2t

, F (0) = 1.

We have the following results.
(1.1) If t = 0.2 , N = 2

Table 1: The relation between the exact and numerical solution

at N = 2

T φ φNum. Error

0 1 1 —

0.1 1.110725724 1.105170918 1× (10)−3

0.2 1.232873127 1.221402758 5× (10)−2

(1.2) If t = 0.2, N = 4

Table 2: The relation between the exact and numerical solution

at N = 4

T φ φ Num. Error

0 1 1 —

0.05 1.052626228 1.051271096 0.001355132

0.1 1.107988204 1.105170918 0.002817286

0.15 1.166174648 1.161834243 0.004340405

0.2 1.227246579 1.221402758 0.005843821

Example 2.Also, for the integro-differential equation of
the second order;

φ
′′
(t)+ b(t)φ (t)+λ

∫ t

0
k (s, t)φ (s)ds = g(t)

F (0) = a , F ′ (0) = b (9)

we can obtain a system of integral equations in the form;

φ (t)+λ

∫ t

0

∫ t

s

∫ τ

s
k (u,s)φ (s)dudτds = H (t)

H (t) = α +

∫ t

0

(

β +

∫ τ

0
(g(s)+ b(s)φ (s))ds

)

dτ.

(10)

Numerical results, if in example 2, we consider the
exact solution φ (t) = et , b(t) = t, and k (t,s) = ts.
Hence, we have φ (0) = φ ′ (0) = 1 and
g(t) = t + et + t2et .

(2.1): at t = 0 , 0.1 , 0.2 , N = 2

Table 3: The relation between the exact and numerical solution

at N = 2

T φ φ Num. Error

0 1 1 —

0.1 1.105170918 1.105170918 1× (10)−3

0.2 1.222553547 1.221402758 1× (10)−3

(2.2): at t = 0 , 0.1 , 0.2 , N = 4

Table 4: The relation between the exact and numerical solution

at N = 4

T φ φ Num. Error

0 1 1 —

0.1 1.105300703 1.105170918 1× (10)−4

0.2 1.222214053 1.221402758 8× (10)−4

(2.3): att = 0 , 0.1 , 0.2 , N = 8

Table 5: The relation between the exact and numerical solution

at N = 8

T φ φ Num. Error

0 1 1 —

0.1 1.10526470184721 1.105170918 9× (10)−5

0.2 1.22185497317221 1.221402758 4× (10)−4

(2.4) at t = 0 , 0.1 , 0.2 , N = 16

Table 6: The relation between the exact and numerical solution

at N = 16

T φ φ Num. Error

0 1 1 —

0.1 1.105223461 1.105170918 5× (10)−5

0.2 1.221631916 1.221402758 2× (10)−4
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(2.5): at t = 0 , 0.1 , 0.2 , N = 32

Table 7: The relation between the exact and numerical solution

at N = 32

T φ φ Num. Error

0 1 1 —

0.1 1.105197254 1.105170918 2× (10)−5

0.2 1.2215099014 1.221402758 1× (10)−4

3 Some Analyticalmethodsfor Solving

Volterra Equations

In this section, we discuss some analytic methods to solve
the second kind’s VIE.

3.1 Theresolving kernel method:

To use the method of resolving kernel, we assume the VIE

φ (x) = f (x)+λ

∫ x

0
k (x, t)φ (t)dt (11)

where k (x, t) is a continuous function for 0 ≤ x ≤ a , 0 ≤
t ≤ x and f (x) is continuous for 0 ≤ x ≤ a. We shall seek
the solution of (11) in the form of infinite power in seriesλ ;

φ (x) = φ0 (x)+λ φ1 (x)+ · · ·+λ nφn (x)+ . . . . (12)

Then, comparing coefficients of like powers of λ , and
by induction, we have

φ0 (x) = f (x)

φn (x) =

∫ x

0
kn (x, t) f (t)dt , kn+1 (x, t) =

∫ x

t
k (x,z)kn (z, t)dz.

(13)

The function kn (x, t) is called the iterated kernel. We
can write the exact solution of the formula (13) to take the
form.

φ (x) = f (x)+
∞

∑
υ=1

(

λ ν
∫ x

0
kν (x, t) f (t)dt

)

,

(

φ (x) = lim
n→∞

φn (x)
)

.

(14)

Define the resolving kernel R(t,s,λ ) such that

R(x, t,λ ) =
∞

∑
n=0

(λ nkn+1 (x, t)) (15)

Hence, we adapt (14) to take the form

φ (x) = f (x)+λ

∫ x

0
R(x, t,λ ) f (t)dt. (16)

The formula (16) represents a solution of VIE of
thesecond kind using a resolving kernel.

Example 3.Consider the VIE,

φ (x) = f (x)+λ

∫ x

0
(x− t)φ (t)dt.

Therefore, we have the following.

k2 (x, t) =
(x− t)2

2
,

k2 (x, t) =
(x− t)4

2.4
...

...
...

kn (x, t) =
(x− t)2n−2

2n−1.(n− 1)!

Thus by the definition of the resolving kernel, It is
clear that from the first information about the
mathematical shape of the kernel, it is possible to obtain
its final form of it. Thus, the analytical structure of this
kernel can be obtained, which is called the analytical
structure of the solution.

R(x, t,λ ) =
∞

∑
n=0

(λ nkn+1 (x, t))

=
∞

∑
n=0





(

λ (x− t)2
)n

2nn!





= e
λ(x−t)2

2 .

Hence, the solution of the integral equation (16)
becomes;

φ (t) = f (t)+λ

∫ x

0
e

λ(x−t)2

2 f (τ)dτ. (17)

For any values of a continuous given function f (t), the
formula (17) canbe calculated.

(1) In (17), if λ = 0.03 , f (x) = x, we have

φ (x) = x+ 0.03e0.015x− 0.03e0.015x−0.5x2

(2) In (17), if λ = 0.03, f (x)= ln(x+ 1) , x∈ [0,0.3],
we have
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Table 8: Describe the numerical solution of equation (17)

x Φ(x)
0 0

0.05 0.04887633831

0.1 0.09564940844

0.15 0.1405125405

0.2 0.1836328096

0.25 0.2251552867

0.3 0.2652064744

3.2 The successive approximation method:

In (11), we assume that f (x) , k (x, t) are continuous in
[0,a] , 0 ≤ x ≤ a. Then, taking some function /00 (x)
continuous [0,a], then putting the function /00 (x) in the
rightside of (11) /0(x)to get a new /01 (x) which represents
the solution ofequation (11). Therefore, we can obtain a
sequence of functions

/0n (x) = { /00 (x) , /01 (x) , /02 (x) , . . . , /0n (x) , . . . }

where;

/0n (x) = f (x)+λ

∫ x

0
k (x, t)φn−1 (t)dt. (18)

The sequence φn (x) converges as n → ∞ to the
solution /0(x) of (11). A suitable choice of the ”zero”
approximation /00 (x) can lead to a rapid convergence of
the sequence /0n (x) to the resolution of the equation (11).

Example 4.For the VIE

/0(x) = x2 −

∫ x

0
(x− t) /0(t)dt , /00 (x) = 0.

We follow /01 (x) = x2. Then; the approximate solution
takes the form

/0n (x) =
n

∑
m=1

(−1)m−1 x2m

m(2m− 1)!
(19)

4 Some Numerical Methods

When closed-form solutions to many problems are
generally not available, much attention has been focused
on numerical methods such as the Galerkin method [31],
Runge – Kutta method [32] block, block method [33],
Nystrom method [34] and Toeplitz matrixes method [35].
The references [26,27,28,29,30,31,32,33,34,35,36,37,
38,39,40] contain extensive literature surveys on purely
numerical techniques. More information can be found in
Atkinson [41], Baker[42], Delves and Mohamed [43], and
Golberg [44] for numerical methods.

First, we consider the VIE (11);

/0(x) = f (x)+λ

∫ x

a
k (x, t)φ (t)dt, a ≤ x < b.

It has a unique solution over a finite interval [a,b]
where f (x) is a continuous function and k (x,y) satisfies
the condition |k (x,y)|< M.

4.1 Quadrature methods

We choose a regular mesh using the quadrature rule to
solve VIE (11) in x and y. For this, we set x = xi = a+ ih,
h = b−a

N
. Hence, (11) yields,

/0i = fi +λ h
i

∑
j=0

ωi jki jφ j +R ,
{

R = Ri.y (k (xi,y)φ (y))
}

.

(20)
Here ωi j is the weight function, Ri.y (k (xi,y)φ (y))

which represents the error term in the quadrature rule. If
we neglect Ri.y and assume

∥

∥1− hωi jki j

∥

∥ 6= 0 for any i,
we can solve the set of (20) for /0i.

This procedureis numerically very straightforward.
However, there remains the problem of choosing a
suitable weightωi j. Wenote that, for eachi, the set
{

ωi j, j = 0,1, . . . , i
}

represents the weight for (i+ 1) the
point’s quadrature rule of Neuton-Cates type, equally
spaced points, for the interval [0, ih]. For large i, there are
many possible choices of rule; for small i = 1,2,k, the
choice is somewhat limited, yet there seems little point in
choosing an accurate let us start by considering the most
straightforward possible rule, the repeated trapezoidal
rule. The power of degree 1 for each i, then the weight ωi j

is given by rule for large i, if we cannot choose an
equallyaccurate rule for small i, ωi0 = wii =

1
2
, ωi j = 1 ,

j = 1,2, . . . , i− 1. So, (20) reduces to

φ0 = f0

φi = fi+λ h
i

∑
j=0

ωi jki jφ j , (φ0 = f0; i = 1,2, . . . ,N) . (21)

Equation (21) can be solved successively for
i = 1,2, . . . ,N the cost ofthe solution is then O

(

h2
)

so
that the Volterra equations are more accessible.

4.2 Multistep method

Consider the integral formula;

φ (xi) = f (xi)+λ

∫ xi

0
k (xi,y)φ (y)dy,

i = 0,1, . . . ,N;(x,y) ∈ [a,b].
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Therefore, we have;

/0i = fi +λ
i

∑
j=0

hωi jk (xi,y j)φ j +R,

(

h =
b− a

n

)

, (22)

which represents an equal interval quadrature formula with
error R. If the quadrature formula is closed ωkk 6= 0 and
/00 , /01 , . . . , /0n−1 is assumed to be known, then we have
a linear equation to obtain the value /0n. Thiscan be solved
iteratively by straight forward substitution process when

h |ωnnk (nh,nh)φn|< 1. (23)

The inequality (23) will be satisfied for a small value
of h. When (22) is the Trapezoidal rulewith remainder as
above or for more accurate computation, we naturally
wish to use a higher order quadrature formula. In this case
φ1 , φ2 , . . . , φn−1, will be needed and aparticular starting
procedure is required. If the kernel is sufficiently regular,
it is possible to find a power series expansion for φ in the
neighborhood of the origin from which the necessary
starting values can be found by using starting method.

4.3 Starting method

The particular starting procedure method is required for
use with quadrature method applied to the solution of (22)
by the multistep process. Consider;

φi = fi +λ h
i

∑
j=0

ωi jki jφ j +R , i = k,k+ 1, . . . ,N, (24)

and assume the way is of order p, i.e.;

Riy (k (xi,y)φ (y))≈ Ahp+1
, A is constant (25)

Assuming that we try to achieve an overall accuracy
of O(hp), thenthe method in (24) should be the local
accuracy O

(

hp+1
)

.

If the kernel is sufficiently regular, it may be possible
to find a Taylor series expansion for x in the neighborhood
x = a from which the necessary starting values may be
located.

Let us carry out one stage of such a process for a linear
Volterra equation using the Trapezoidal rule using a step
length h, setting the lower limit a = 0, we have;

/0(0) = f (0)

/0(h) = f (h)+
λ

2
h(k (h,0)φ (0)+ k (h,h)φ (h))+O

(

h2
)

.

(26)

Alternatively, Rung-Kutta type rules can be used for
a fixed number of initial steps of the quadrature rule, for
example define;

Rk0 = hk

(

x 1
2
,x0, f0

)

Rk1 = hk (x1,x1, f1 +Rk0)

Rk2 = hk

(

x1,x 1
3
, f 1

3
+

1

9
Rk0 + 2Rk1

)

Then φ1 = f1 +
1
4
(Rk1 + 3Rk2), we have

φh = φi +O
(

h4
)

. (27)

This could be to provide a start for repeated Simpson’s
rule.

We start with third approximations of
φ (a+ h), φ (a+ 2h) , φ (a+ 3h);

φ11 = f1 + hk (h,0, f0)

φ12 = f1 +
h

2
(k (h,0, f0)+ k (h,h,φ11))

φ13 = f 1
2
+

h

4

(

k

(

h

2
,0, f0

)

+ k

(

h

2
,

h

2
,

f0

2
,

φ12

2

))

Then;

φ1 = f1+
h

6

(

k (h,0, f0)+ 4k

(

h,
h

2
,φ13

)

+ k (h0,h,φ12)

)

.

(28)

Next, let;

φ21 = f2 + 2hk (2h,h,φ1) (29)

Then;

φ2 = f2 +
h

3
(k (2h,0, f0)+ 4k (2h,h,φ1)+ k (2h,2h,φ21))

(30)

Finally with;

φ31 = f3 +
3

2
h(k (3h,h,φ2)+ k (3h,2h,φ2)) (31)

we obtain;

φ3 = f3 +
3h

8
(k (3h,0, f0)+ 3k (3h,h,φ1)

+ 3k (3h,2h,φ2)+ k (3h,3h,φ3))
(32)
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4.4 Repeated Simpson’s rule

A convenient and straightforward continuation of Day’s
starting procedure. Runge-Kutta and Trapezoid rule can be
based on Simpson’s power in the following manner; for
this only φ0 and φ1 is required when r is even, wecan use
repeated Simpson’s rule immediately to give;

φr = fr +λ
h

3

r

∑
j=0

ωi jk (rh, jh)φ j , r = 2 , 4 , 6 , . . .

φr = fr +λ
r−1

∑
j=0

(

ω jk (xr,yi)φ j

1−λ ω jk (xr,yr)

)

ω0 =ωr =
h

3
, ω j =

(

3− (−1) j
) h

3
, 1≤ j ≤ r−1. (33)

However, when r is odd, a different strategy is
required and to maintain the local truncation error of
O
(

h5
)

Simpson’s three-eighth rule is used at the upper
end to give;

/0r = fr +
λ

3
h

r−3

∑
j=0

ωr−3k (rh, jh)φ j +
3λ

8
h(k (rh,rh)φr +A),

r = 3,5,7, . . .

A = 3k (rh,(r− 1)h)φr−1 + 3k (rh,(r− 1)h)φr−2

+ k (rh,(r− 3)h)φr−3.

(34)

Therefore, we have;

φr = B

(

fr +
λ h

3

r−3

∑
j=0

ωr−3k (rh, jh)φ j +
3

8
λ hA

)

, (35)

where; ωp0 = ωpp = 1 , ωp j = 3− (−1) j
, 1 ≤ j ≤ p− 1

and

B−1 =

(

1−
3λ h

8
k (rh,rh,φr)

)

This means that φ1 it can be calculated by one of three
starting algorithms, if r ≥ 2;r it is even, we use Simpson’s
one-third formula, and if r ≥ 2;r it is odd, we use
Simpson’s three eight formula. This method has the
advantage that, given a suitable starting value /0, all
approximatesolution values may be calculated with the
same accuracy order.

4.5 The error in starting algorithm

Here, some examples will be solved using Simpson’s
method N = 32 to study the effect of starting algorithm
on the solution.

Example 5.

/0(x) = 2x+3−

∫ x

0
(3+2(x− y) /0(y))dy ,

(

/0(x) = e−x
(

4e−x −1
))

Example 6.

/0(x) = x−1+ e−2x
(

1+ x2
)

∫ x

0

(

x2e−xy /0(y)
)

dy , ( /0(x) = x) /

Example 7.

/0(x) = 1+ x−

∫ x

0
( /0(y))dy , ( /0(x) = 1)

Example 8.

/0(x) = x+1− cosx −

∫ x

0
(cos(x− y) /0(y))dy , ( /0(x) = x)

Example 9.

/0(x) = sinx +
∫ x

0
(sin(x− y) /0(y))dy ,

(

/0(x) =
1

2
sinx + sinhx

)

Example 10.

/0(x) = x+

∫ x

0
(sin(x− y) /0(y))dy ,

(

/0(x) = x+
x3

3

)

Example 11.

/0(x) = x+

∫ x

0
((x− y) /0(y))dy , ( /0(x) = sinx )

Table 9: Max errors in different starting Algorithm

Runge - Kutta Day’s Algorithm Trapezoid

8.75×10−2 8.75×10−2 8.75×10−2

5.13×10−4 5.13×10−4 5.13×10−4

9.02×10−2 9.02×10−2 9.02×10−2

9.97×10−4 9.97×10−4 9.97×10−4

3.60×10−9 3.61×10−9 5.09×10−6

8.11×10−10 8.11×10−10 5.09×10−6

1.62×10−8 1.62×10−8 5.09×10−6

We note that the first four examples have the same
error value with different starting algorithms. While for
the last three examples, a difference is found between the
starting algorithms. Rung-Kutta’s starting algorithm and
Day’s algorithm have the same error, which is smaller
than the error in Trapezoid’s algorithm. The difference
depends on the shape of the approximated kernel
function.

5 Conclusions

From the above work, we can deduce the following:

–The initial value problem in ordinary differential
equations leads to the second kind Volterra integral
equation
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–The well-known analytic methods for solving VIE are
resolving kernel, successive approximation method,
and Laplace transformation method.

–The resolving kernel method is based on obtaining the
nth approximation of the shape of the kernel. Then
write the integral equation with the general structure
of the kernel (structure resolving kernel). And then
the solution can be found.

–The successive approximation method assumes that
the solution function is a sequence of consecutive
solutions. The weak point of this method is that the
solution is chosen when the zero approximation is
zero, so an approximate solution can be obtained.

–When the researcher fails to find an analytical
solution, he resorts to finding the answer by
approximate methods. Among the most famous of
these methods for the continuous kernel
areQuadrature Method,Multistep method,Starting
method,Simpson’s rule, Collection method,Galerkin
Method, Runge – Kutta method,and block by the
block method.

If the integral equation has a discontinuous kernel, we
use the following numerical methods: the Nystrom method
and the Toeplitz matrixes method.
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