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Abstract: This paper in concerned with studying fractional differential problems involving two different derivatives. The first problem

which involves the derivatives of Caputo is studied in its exisence and uniqueness of solutions. Then, an example is discussed to show

the applicability of the result. In the second part, we use Khalil derivatives and the tanh numerical method to discuss traveling waves

phenomena for a generalised partial differential equation. Some applications on beam equations are studied.
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1 Introduction

The study of nonlinear partial differential equations for
nonlinear phenomena is an important tool in modeling
real word. As applications, we are interested to the beam
problems. The nonlinear beam equations can be seen as
deflection physical models, and the well known
Euler-Bernoulli beam theory is a simplification of the
theory of elasticity which provides a tool for calculating
the deflection characteristics of beams. In fact, the
Euler-Bernoulli beam theory is well established in such a
way that engineers are very confident with the
determination of the stress field or deflections of the
elastic beam. In the field of modern science and
engineering, the Euler-Bernoulli beam equation plays an
important role in engineering. It is written in the form [1]:

∂ 2

∂x2

(

EI
∂ 2u

∂x2

)

+ρA
∂ 2u

∂ t2
= f (u), (1.1)

For more information, one can see the above reference.
In case of a beam made of homogeneous material, (1.1)
can be reduced to:

EI
∂ 4u

∂x4
+ρA

∂ 2u

∂ t2
= f (u). (1.2)

There is now a substantial literature on traveling waves
in nonlinearly supported beams, see McKenna and Walter

in [2] to study travelling wave solutions for another type
of beam equations:

utt + uxxxx = f (u), (1.3)

where u = u(x, t) is the deflection of the roadbed, the
x-axis points are in the direction along the bridge and t is
time.
In recent years, the fractional differential equations arise
in many scientific disciplines, such as physics, chemistry,
control theory, signal processing and biophysics. For
more details, we refer the reader to [3,4,5,6,7,8]. The
theory on existence and uniqueness of solutions of
nonlinear fractional differential equations has attracted
the attention of many authors. Fixed point theorems
contribute with a substantial and great role in the study of
the uniqueness and existence. For some recent results, we
refer the interested reader to [9,10].
We need now to note that elastic beams are an essential
element which is needed in structural problems; like for
instance: aircraft, ships, bridges, and buildings, see [11,
12]. In the sense of mathematical analysis, the
deformation and the deflexion of the beam can be
analyzed using the ODE [13]:

{

u(4)(τ) = g(τ,u(τ),u′′(τ)) , τ ∈ (0,1)
u(0) = u(1) = u′′(0) = u′′(1) = 0,

(1.4)
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In this sense, in 2020, the two authors of the paper [14]
have been concerned with investigating of the following
Riemann-Liouville beam equation:

{

Dα
(

Dβ u
)

(t) = h
(

t,u(t),Dβ u(t)
)

, 0 < t < 1

u(0) = u(1) = Dβ u(0) = Dβ u(1) = 0,
(1.5)

where α,β ∈ (1,2], Dα and Dβ are the Riemann?Liouville
derivatives.

Recently, in [15], the author has investigated the
following classes of beam problem







∂ 2α u
∂ t2α +A(x, t) ∂ 4u

∂x4 = f (x, t,u,ut ,ux,uxx,uxxx) ,
u(x,0) = f (x),
ut(x,0) = g(x),a ≤ x ≤ b.

(1.6)

To rely the two part of our work and to motivate the
second part, we note that travelling waves are observed in
many areas of sciences and applications. The phenomena
of waves can be observed in interaction and convection
and also in some natural propagation.
There are many methods to find solutions of travelling
waves type, we cite for instance: the first integral method
[16,17], the exp-function method [18,19,20,21,22], the
(G’/G) expansion method [23,24], and also the tanh
method [25,26].
The tanh method is one of most direct method for finding
solutions of nonlinear diffusion equations. This method
has been presented by Malfliet [27,28] and by also by
Wazwaz [29,30] for the computation of exact traveling
wave solutions. Its ida is to express the solution of the
nonlinear differential equation as a polynomial and it is
based on ”the balance principle”.
We end the historical part of the present paper by citing
the work in [31], where M. Rakah et al. have studied the
uniqueness of solutions for the following problem:



































































Dα Dβ Dγ u(t) =
a1 f (t,u(t),Dγ u(t))

K(u(t))

+
a2g(t,Dγu(t),DγDρ u(t))+ a3h(t,u(t))

K(u(t))
,

u(0)+ u(1) =
∫ η

0 bu(s)ds,0 < η < 1,

Dγ u(0)+Dγu(1) = 0,

DµDµu(0)+DµDµu(1) = 0,

t ∈ [0,1],0 < α,β ,γ,ρ ,µ ≤ 1,

a1,a2,a3 ∈ R.

(1.7)

The aim of the first part of this paper to ”extend in a
certain sense” the above cited work and to study the

following differential problem:



























































Dα Dβ Dγ u(t) =
η1 f (t,u(t),Dγ u(t))

S(t,u(t),Dγu(t))

+
η2g(t,u(t),Dρ u(t))+η3h(t,u(t))

S(t,u(t),Dγu(t))
,

u(0) = A0,

u(1) = A1,

Dγu(0) =
∫ θ

0 u(s)ds,0 < θ < 1,

t ∈ J,

(1.8)

where J = [0,1], 0 < α,β ,γ,ρ ≤ 1,
α + β /∈]0,1),β + γ /∈]0,1),γ + ρ /∈]0,1), the functions
f ,g : I ×R

2 → R , h : J ×R → R , and S : R2 → R
∗
+ are

continuous, the operators Dα ,Dβ ,Dγ ,Dρ are the
derivatives in the sense of Caputo, and the constants
η1,η1,η1 are reals.
We prove an existence and uniqueness result, then we
discuss an illustrative example.
In the second part of our paper, we will use the tanh
method to find new traveling wave solutions of the
following problem:

T 2α
t u+Tx(G(u)T

3β
x u)+Tx(H(u)T

β
x u) = F(u), (1.9)

where T
β

x ,T α
t are the conformable fractional

derivatives, with 0 < α,β ≤ 1 and f ,G,H are given
functions.
We think it is important for the reader to know that the
above considered problem generalises the work in [31]
since the function S is more general than the function K

which depends only on the unknown function u(t). On
the other hand, it is clear that the second part of the
present work is concerned with new travelling wave
solutions that have applications in physics; the interested
reader is invited to see the two examples of applications
that are studied in the present work. New traveling waves
are obtained using Khalil derivatives. For more
information on Tanh method and Khalil approach, one
can consult the paper [32].

2 Preliminaries

We need to introduce the Caputo derivatives. For more
details, we refer to the reference, see [33,34]:

Definition 2.1. Let α > 0, and f : J 7−→R be a continuous
function. The Riemann-Liouville integral of order α > 0
is defined by:

Iα f (t) =
1

Γ (α)

∫ t

0
(t − τ)α−1 f (τ)dτ,

where Γ (α) =
∫ ∞

0 e−uuα−1du.
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Definition 2.2. For a function f ∈ Cn(J,R) and n− 1 <
α ≤ n, the Caputo fractional derivative is defined by:

Dα f (t) = In−α dn

dtn
( f (t))

=
1

Γ (n−α)

∫ t

0
(t − s)n−α−1 f (n)(s)ds.

The following lemmas are also important to be cited.

Lemma 2.1. Given n ∈N
∗ and n−1< α < n, then the set

of solutions of Dα y(t) = 0 is given by

y(t) =
n−1

∑
i=0

kit
i,ki ∈ R.

Lemma 2.2. Taking n ∈ N
∗ and n− 1 < α < n, then, we

have

Iα Dα y(t) = y(t)+ k0+ k1t + ...+ kntn,ki ∈ R.

The following result gives us a relation between the
integral form and the differential problem given in (1.8).

Lemma 2.3. Let H a continuous function over J. Then, the
problem















Dα Dβ Dγ u(t) = H(t),
u(0) = A0,
u(1) = A1,

Dγu(0) =
∫ θ

0 u(s)ds,0 < θ < 1.

(2.1)

is equivalent to the following integral representation:

u(t) = Jα+β+γH(t)+
[E5tγ −E1tβ+γ

Γ (α +β + γ)

]

×
∫ 1

0
(1− s)α+β+γ−1H(s)ds

+
[ E2tβ+γ −E2tγ

Γ (α +β + γ + 1)

]

∫ θ

0
(1− s)α+β+γH(s)ds

+ tγ [A0E6 +A1E7]− tβ+γ[A0E3 +A1E4]+A0,

(2.2)

where, we put

φ1 = Γ (β + γ + 1),

φ2 = Γ (γ + 1),

φ3 =
Γ (γ + 2)

θ γ+1 −Γ (γ + 2)
,

φ4 =
θ β+γ+1

Γ (β + γ + 2)
,

F1 =
φ2

φ1 +φ2 −φ4

,

E1 = 1− φ1F1φ4

φ2

,

E2 =
F1φ3

φ2

,

E3 =
φ2 −φ1F1θ +φ1F1φ4

φ1φ2

,

E4 =
φ1F1θ −φ2

φ1φ2

,

E5 =
φ1F1φ4

φ2

,

E6 =
F1θ −F1φ4

φ2

,

E7 =
F1φ1

φ2

.

Proof. Using Lemma 4, we write

Dβ Dγ u(t) = JαH(t)− c0,

and

Dγ u(t) = Jα+β H(t)− c0Jβ (1)− c1,

are valid.
Hence,

u(t) = Jα+β+γH(t)− c0
tβ+γ

Γ (β + γ + 1)

− c1
tγ

Γ (γ + 1)
− c2.

(2.3)

Therefore,























































−c2 = A0,

Jα+β+γH(1)− c0

Γ (β + γ + 1)
− c1

Γ (γ + 1)
− c2 = A1,

−c1 = Jα+β+γ+1H(θ )− c0

θ β+γ+1

Γ (β + γ + 2)

− c1
θ γ+1

Γ (γ + 2)
− c2θ .

By solving the above system, we get
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c2 =−A0,

c1 = F1φ3Jα+β+γ+1H(θ )−F1φ4φ1Jα+β+γH(1)

+F1A0(θ −φ4)+F1φ1A1,

c0 = (φ1 −
φ2

1 F1φ4

φ2

)Jα+β+γH(1)− φ1F1φ3

φ2

× Jα+β+γ+1H(θ )−A0(
φ2 −φ1F1θ +φ1F1φ4

φ2

)

+A1(
φ1F1θ −φ2

φ2

).

Inserting the values of c0, c1 and c2 in (2.3), we
achieve the proof.

Let us now consider the following notions:

X := {x ∈C(J,R),Dγ x ∈C(J,R),Dρ x ∈C(J,R)},
and

‖x‖X = ‖x‖∞ + ‖Dγx‖∞ + ‖Dρx‖∞,

where,

‖x‖∞ = sup
t∈I

|x(t)|,

‖Dγx‖∞ = sup
t∈I

|Dγx(t)|,

‖Dρ x‖∞ = sup
t∈I

|Dρ x(t)|.

Then, we consider the nonlinear operator T : X → X

Tu(t) =
1

Γ (α +β + γ)

∫ t

0
(1− s)α+β+γ−1Hu(s)ds

+
[E5tγ −E1tβ+γ ]

Γ (α +β + γ)

∫ 1

0
(1− s)α+β+γ−1Hu(s)ds

+
[E2tβ+γ −E2tγ ]

Γ (α +β + γ + 1)

∫ θ

0
(1− s)α+β+γHu(s)ds

+tγ [A0E6 +A1E7]− tβ+γ[A0E3 +A1E4]+A0.

(2.4)

with

Hu(s) =
η1 f (s,u(s),Dγ u(s))+η2g(s,u(s),Dρ u(s))

S(s,u(s),Dγ u(s))

+
η3h(s,u(s))

S(s,u(s),Dγ u(s))
.

3 Main Results

3.1 Part 1: Existence of Exactly One Solution

In this subsection, we note that we need to work with the
following hypotheses: (A1) : The functions f ,g defined
on J ×R

2, h defined on J ×R, and non-negative function
S defined on J × R

2, all these functions are supposed
continuous..

(A2) : There exist non-negative continuous functions
ζ1(t),ζ2(t),λ1(t),λ2(t),ψ(t), such that for any t ∈ J ,
u1,u2,v1,v2 ∈ R,

∣

∣

∣

f (t,u1,u2)

S(t,u1,u2)
− f (t,v1,v2)

S(t,v1,v2)

∣

∣

∣
≤ ∑2

i=1 ζi(t)|ui − vi|,

∣

∣

∣

g(t,u1,u2)

S(t,u1,u2)
− g(t,v1,v2)

S(t,v1,v2)

∣

∣

∣
≤ ∑2

i=1 λi(t)|ui − vi|,

∣

∣

∣

h(t,u1)

S(t,u1,u2)
− h(t,v1)

S(t,v1,v2)

∣

∣

∣
≤ ∑2

i=1 ψi(t)|ui − vi|.

It is to note that we take:

κ = Max(sup
t∈I

|ζ1(t)|,sup
t∈I

|ζ2(t)|),
Λ = Max(sup

t∈I

|λ1(t)|,sup
t∈I

|λ2(t)|),
Ψ = Max(sup

t∈I

|ψ1(t)|,sup
t∈I

|ψ2(t)|).

Further, we consider the quantities:

Σ1 = (|η1|κ + |η2|Λ + |η3|Ψ)
[ 1+ |E5|+ |E1|

Γ (α +β + γ + 1)

+
2|E2|

Γ (α +β + γ + 2)

]

.

Σ2 = (|η1|κ + |η2|Λ + |η3|Ψ)
[ 1

Γ (α +β + 1)

+
|E5φ2|+ | E1φ1

Γ (β+1)
|

Γ (α +β + γ + 1)
+

| E2φ1

Γ (β+1)
|+ |E2φ2|

Γ (α +β + γ + 2)

]

.

Σ3 = (|η1|κ + |η2|Λ + |η3|Ψ)
[ 1

Γ (α +β + γ −ρ + 1)

+
| E5φ2

Γ (γ−ρ+1)
|+ | E1φ1

Γ (β+γ−ρ+1)
|

Γ (α +β + γ + 1)

+
| E2φ1

Γ (β+γ−ρ+1)
|+ | E2φ2

Γ (γ−ρ+1)
|

Γ (α +β + γ + 2)

]

.
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Theorem 3.1. Assume that (A1),(A2) are satisfied. Then,
the problem (1.8) has a unique solution, provided that Σ <
1, where Σ = Σ1 +Σ2 +Σ3.

Proof. We begin this proof by showing that T satisfies the
Banach contraction principle. For (u,v)∈X2, we can write

‖Tu−Tv‖∞ ≤ (|η1|κ + |η2|Λ + |η3|Ψ)

×
[ 1+ |E5|+ |E1|

Γ (α +β + γ + 1)

+
2|E2|

Γ (α +β + γ + 2)

]

‖u− v‖X .

(2.5)

We have also

DγTu(t) =
1

Γ (α +β )

∫ t

0
(1− s)α+β−1Hu(s)ds

+
[E5φ2 − E1φ1tβ

Γ (β+1) ]

Γ (α +β + γ)

∫ 1

0
(1− s)α+β+γ−1Hu(s)ds

+
[ E2φ1tβ

Γ (β+1) −E2φ2]

Γ (α +β + γ + 1)

∫ θ

0
(1− s)α+β+γHu(s)ds

+φ2[A0E6 +A1E7]−
φ1tβ

Γ (β + 1)
[A0E3 +A1E4].

By (A2), we obtain

‖DγTu−DγTv‖∞ ≤ (|η1|κ + |η2|Λ + |η3|Ψ)

×
[ 1

Γ (α +β + 1)

+
|E5φ2|+ | E1φ1

Γ (β+1)
|

Γ (α +β + γ + 1)

+
| E2φ1

Γ (β+1) |+ |E2φ2|
Γ (α +β + γ + 2)

]

‖u− v‖X .

(2.6)

On other hand, we have

Dρ Tu(t) =
1

Γ (α +β + γ −ρ)

∫ t

0
(1− s)α+β+γ−ρ−1

×Hu(s)ds+
[ E5φ2tγ−ρ

Γ (γ−ρ+1) −
E1φ1tβ+γ−ρ

Γ (β+γ−ρ+1) ]

Γ (α +β + γ)

×
∫ 1

0
(1− s)α+β+γ−1Hu(s)ds

+
[ E2φ1tβ+γ−ρ

Γ (β+γ−ρ+1) −
E2φ2tγ−ρ

Γ (γ−ρ+1) ]

Γ (α +β + γ + 1)

∫ θ

0
(1− s)α+β+γ

×Hu(s)ds+
φ2tγ−ρ

Γ (γ −ρ + 1)
[A0E6 +A1E7]

− φ1tβ+γ−ρ

Γ (β + γ −ρ + 1)
[A0E3 +A1E4].

By (A2), we obtain

‖DρTu−DρT v‖∞ ≤ (|η1|κ + |η2|Λ + |η3|Ψ )

×
[ 1

Γ (α +β + γ −ρ + 1)

+
| E5φ2

Γ (γ−ρ+1) |+ | E1φ1

Γ (β+γ−ρ+1) |
Γ (α +β + γ + 1)

+
| E2φ1

Γ (β+γ−ρ+1) |+ | E2φ2

Γ (γ−ρ+1) |
Γ (α +β + γ + 2)

]

× ‖u− v‖X .
(2.7)

From (2.5), (2.6) and (2.7), we get

‖Tu1 −Tu2‖X ≤ (Σ1 +Σ2 +Σ3)‖u1 − u2‖X .

We conclude that T is contraction. As a consequence of
Banach fixed point theorem, we deduce that T has a unique
fixed point which is a solution of (1.8).

An Example

As illustrative example for the first part of our results, we
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consider the following problem























































D
6

10 D
8

10 D
7
10 u(t) =

f (t,u(t),D
7

10 u(t))

S(t,u(t),D
7
10 u(t))

+
1
2
g(t,u(t),D

65
100 u(t))+ 5h(t,u(t))

S(t,u(t),D
7
10 u(t))

,

u(0) = 2,
u(1) = 3,

D
7

10 u(0) =
∫ 0.6

0 u(s)ds,

(2.8)

where

f (t,u,v) =
2|u|+ |u|et+u+v

(et + 200)(|u|+ 1)
+

|v|(2+ et+u+v)

(75+ t2)(2+ |v|) ,

g(t,u,v) =
|u|(2+ et+u+v)

(t4 + 40)(3+ |u|) +
2etsinv+ e2t+u+vsinv

π(200+ t2)
,

h(t,u) =
|u|(2+ et+u+D

7
10 u(t))

10(t3 + 30)(1+ |u|) ,

S(t,u,v) = 2+ et+u+v,

and

α = 6
10
, β = 8

10
, γ = 7

10
, ρ = 65

100
, θ = 0.6,

Σ1 = 0.0302, Σ2 = 0.0457, Σ3 = 0.0447,

Σ = Σ1 +Σ2 +Σ3 = 0.1206.

The conditions of Theorem 6 hold. Therefore, the problem
(2.8) has thus a unique solution on [0,1].

3.2 Part 2: Traveling Wave Solutions by Tanh

Method

In this section, we are interested in using the tanh method
to solve the conformable problem:

T 2α
t u+Tx(G(u)T

3β
x u)+Tx(H(u)T

β
x u) = F(u), (1)

where T
β

x ,T α
t are the conformable fractional

derivative, with 0 < α,β ≤ 1 and f : R2 → R is a given
function.
Note that (1.9) when G(u) = 1, H(u) = 0 and α = β = 1
transforms into the Euler-Bernoulli beam equation:

utt + uxxxx = F(u). (3.1)

To be able to study the above conformable problem, we
need to introduce the following preliminaries, see [35,36]:

3.2.1 Conformable Derivative and Its Properties

In this subsection, we provide a definition of the
conformable derivative and its important properties as
established by Khalil et al.[37]

Definition 3.2.1. Let f : (0,∞) → R. Then, the
conformable fractional derivative of order α is defined by

(T α f ) (t) =
∂ α f (t,x)

∂ tα = lim
ε→0

(

f(t+εt1−α)− f (t)

ε

)

, t > 0,

0 < α ≤ 1.

It is to note that when α = 1, the above formula is
reduced to the standard derivative or order one.

Definition 3.2.2. The conformable fractional integral of a
function f : (0,∞)→R of order α is defined as

(Iα f ) (t) =
t
∫

0

τα−1 f (τ)dτ, 0 < α ≤ 1.

The following properties are needed.

IαT α f (t) = f (t)− f (0)

and

(T α f ) (t) = t1−α d f (t)
dt

.

3.2.2 Description of tanh method

Let us discuss the following nonlinear conformable
equation

F
(

u,T α
t u,T

β
x u,T 2α

t u,T α
t (T

β
x u),T

2β
x u, ...

)

= 0, (3.2)

where T α
t u is the conformable fractional derivative of u of

order α,0 < α ≤ 1.

Introducing the new wave variable, namely

ξ = k
α tα + ω

β xβ , (3.3)

where k and ω are constants.

So, we can rewrite the above FPDE in the following
nonlinear ordinary differential equation:

G
(

U,U
′
,U

′′
,U

′′′
, ...

)

= 0, (3.4)

where the prime denotes the derivation with respect to ξ .

We then introduce a new independent variable,

Y = tanh(ξ ), (3.5)

leads to the change of derivatives:
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d

dξ
=
(

1−Y2
) d

dY
,

d2

dξ 2
=− 2Y

(

1−Y2
) d

dY
+
(

1−Y2
)2 d2

dY 2
,

d3

dξ 3
=2

(

1−Y2
)(

3Y 2 − 1
) d

dY
− 6Y

(

1−Y2
)2 d2

dY 2

+
(

1−Y2
)3 d3

dY 3
,

d4

dξ 4
=− 8Y

(

1−Y2
)(

3Y 2 − 2
) d

dY
+ 4

(

1−Y2
)2

×
(

9Y 2 − 2
) d2

dY 2
− 12Y

(

1−Y2
)3 d3

dY 3

+
(

1−Y2
)4 d4

dY 4
.

(3.6)
In the context of tanh function method, we use

u(x, t) =U(ξ ) = F(Y ) =
m

∑
i=0

aiY
i, (3.7)

where m is a positive integer determined by the balancing
procedure in the resulting nonlinear ODE in F . Thus, we
have an algebraic system of equations from which the
constants k,ω ,ai(i = 0, · · · ,m) are obtained and
determine the function U , hence we get the exact
solutions of (3,2).

3.2.3 Examples for Finding Traveling Wave Solutions

To demonstrate the power of the tanh method, some of
well known nonlinear equations will be examined

Example 3.2.1. The oscillations and motion of waves of
the elastic beams on elastic foundation scan be described
by means of the following equation [38,39] (G(u) = 1,
H(u) = 0):

T 2α
t u(x, t)+T

4β
x u(x, t) = (u(x, t))3 − cu(x, t) . (3.8)

Using (3.3), to change (3.8) into the following
nonlinear ODE

k2Uζζ +ω4Uζζζζ =U3 − cU, (3.9)

Substituting (3,6) and (3.7) into (3.9),we can get

(k2 + c1ω2)
[

− 2Y(1−Y2)
dF

dY
+(1−Y2)2 d2F

dY 2

]

+ω4
[

− 8Y(1−Y2)(3Y 2 − 2)
dF

dY
+ 4(1−Y2)2

× (9Y 2 − 2)
d2F

dY2
− 12Y(1−Y2)3 d3F

dY 3

+(1−Y2)4 d4F

dY 4

]

= F3 − cF.

(3.10)

To determine the parameter m we usually balance

Y 8 d4F
dY 4 with F3. This in turn gives

8+m− 4= 3m

so that m = 2. This gives the solution in the form

F(Y ) = a0 + a1Y + a2Y
2. (3.11)

Substituting (3,11) into (3.10), we can get

(k2 + c1ω2)(1−Y2)
[

− 2Y(a1 + 2a2Y )+ 2a2(1−Y2)
]

+ω4(1−Y2)
[

− 8Y(3Y 2 − 2)(a1+ 2a2Y )

+ 8a2(1−Y2)(9Y 2 − 2)
]

− (a0 + a1Y + a2Y 2)3

+ c(a0 + a1Y + a2Y
2) = 0.

(3.12)

Then, we have the system:



















































































−16ω4a2 + 2k2a2 − a3
0 + ca0 = 0,

16ω4a1 − 2k2a1 − 3a2
0a1 + ca1 = 0,

136ω4a2 − 8k2a2 − 3a2a2
0 − 3a2

1a0 + ca2 = 0,

−40ω4a1 + 2k2a1 − 6a0a1a2 − a3
1 = 0,

−240ω4a2 + 6k2a2 − 3a0a2
2 − 3a2

1a2 = 0,

24ω4a1 − 3a1a2
2 = 0,

120ω4a2 − a3
2 = 0.

We solve the algebraic system with the aid of Maple.
We obtain traveling wave solutions of (3.8) as follows:

Case 1.

a0 =

√
30c

4
,a1 = 0,a2 =

√
30c

4
,

u(x, t) =

√
30c

4
+

√
30c

4
tanh2(ξ ). (3.13)

Case 2.

a0 =

√
30c

4
,a1 = 0,a2 =−

√
30c

4
,

u(x, t) =

√
30c

4
−

√
30c

4
tanh2(ξ ). (3.14)

Case 3.

a0 =−
√

30c

4
,a1 = 0,a2 =−

√
30c

4
,
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u(x, t) =−
√

30c

4
−

√
30c

4
tanh2(ξ ). (3.15)

Case 4.

a0 =−
√

30c

4
,a1 = 0,a2 =

√
30c

4
,

u(x, t) =−
√

30c

4
+

√
30c

4
tanh2(ξ ). (3.16)

Case 5.

a0 =−
√

30c

4
,a1 = 0,a2 =

√
30c

4
,

u(x, t) =
√

c. (3.17)

Fig. 1: 3D plot of traveling wave solution (case 1.) of

(3.13) sketched within the intervals 0 ≤ x ≤ 10 and 0 ≤
t ≤ 50.

Example 3.2.2. We now consider the nonlinear beam
equation [40] (G(u) = 1, H(u) = 1):

T 2α
t u(x, t)+T

4β
x u(x, t)+ c1T

2β
x u(x, t)+ c2u(x, t)

+(u(x, t))2 = 0.
(3.18)

Using (3.3), to change (3.18) into the following
nonlinear ODE

(k2 + c1ω2)Uζζ +ω4Uζζζζ + c2U +U2 = 0, (3.19)

Substituting (3,6) and (3.7) into (3.19), we can get

(k2 + c1ω2)
[

− 2Y(1−Y2)
dF

dY
+(1−Y2)2 d2F

dY 2

]

+ω4
[

− 8Y

× (1−Y2)(3Y 2 − 2)
dF

dY
+ 4(1−Y2)2(9Y 2 − 2)

d2F

dY2

− 12Y(1−Y2)3 d3F

dY 3
+(1−Y2)4 d4F

dY4

]

+ c2F +F2 = 0.

(3.20)

To determine the parameter m we usually balance

Y 8 d4F
dY 4 with F2. This in turn gives

8+m− 4= 2m

so that m = 4. This gives the solution in the form

F(Y ) = a0 + a1Y + a2Y
2 + a3Y 3 + a4Y

4. (3.21)

Substituting (3,21) into (3.20), we can get

(k2 + c1ω2)(1−Y2)
[

− 2Y(a1 + 2a2Y + 3a3Y
2 + 4a4Y

3)

+ (2a2 + 6a3Y + 12a4Y
2)(1−Y2)

]

+ω4(1−Y2)

×
[

− 8Y(3Y 2 − 2)(a1 + 2a2Y + 3a3Y
2 + 4a4Y

3)

+ 4(2a2+ 6a3Y + 12a4Y
2)(1−Y2)(9Y 2 − 2)− 12Y

× (1−Y2)2(6a3 + 24a4Y )+ (1−Y2)3(24a4)
]

+ c2(a0 + a1Y + a2Y
2 + a3Y

3 + a4Y 4)

+ (a0 + a1Y + a2Y
2 + a3Y 3 + a4Y

4)2 = 0.
(3.22)

We solve the algebraic system with the aid of Maple.
We obtain traveling wave solutions of (3.18) as follows:

Case 1.

a0 =
c2

2
,a1 = 0,a2 =−3c2

2
,a3 = 0,a4 = 0,

u(x, t) =
c2

2
− 3c2

2
tanh2(ξ ). (3.23)

Case 2.

a0 =−3c2

2
,a1 = 0,a2 =

3c2

2
,a3 = 0,a4 = 0,

u(x, t) =−3c2

2
+

3c2

2
tanh2(ξ ). (3.24)

Case 3.

a0 =−c2,a1 = 0,a2 = 0,a3 = 0,a4 = 0,

u(x, t) =−c2. (3.25)
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Fig. 2: 3D plot of traveling wave solution (case 1.) of

(3.23) sketched within the intervals 0 ≤ x ≤ 10 and 0 ≤
t ≤ 50.

4 Conclusion

We have first proposed a more general fractional Caputo
type problem which has been given by (1.8). Then, we
have used Banach contraction principle to discuss an
existence and uniqueness result. In the second part of the
present paper, we have been concerned with Khalil
derivatives to obtain some new travelling wave solutions
for two interesting fractional differential equations of
beam type. Some graphs on the obtained traveling waves
have been showed. The results have been obtained by
means of tanh method.
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