
Inf. Sci. Lett. 12, No. 2, 625-634 (2023) 625

Information Sciences Letters
An International Journal

http://dx.doi.org/10.18576/isl/120209

Extended Maxwell–Chern–Simons Lagrangian Density

in Riemann–Liouville Fractional Derivatives

Amer D. Al-Oqali

Physics Department, Mutah University,Al-Karak, Jordan

Received: 2 Apr. 2022, Revised: 22 Jun. 2022, Accepted: 12 Jul. 2022

Published online: 1 Feb. 2023

Abstract: The Hamiltonian formulation for higher derivatives is reformulated using fractional derivatives. More precisely, the

extended Maxwell–Chern–Simons Lagrangian density is reformulated using the Riemann–Liouville fractional derivative. The

equations of motion resulting from the extended Maxwell–Chern–Simons Lagrangian density are obtained. Furthermore, the

Hamiltonian of the system is constructed. When fractional derivatives are replaced by integer order derivatives, the classical results are

obtained.
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1 Introduction

Fractional derivatives, which have many applications in physics, science, engineering, control, economics, mechanics, and
other fields, can be viewed as a generalization of classical calculus[1,2,3,4]. Actually, recently, physicists have applied
a fractional derivatives approach in order to deal with problems that cannot be solved by classical methods. Therefore,
fractional calculus appears as one of the most influential and commonly applicable methods for describing and explaining
a set of complicated physical systems. [5,6,7]. Generally, higher derivative theories are an essential field in theoretical
physics. Higher derivative theories were first proposed to remove infinities associated to point particles [8]. They can
enhance ultraviolet features in quantum field theories [9]. Furthermore, they have been obtained from string theory [10]
and non commutative theory [11] and have been utilized in electrodynamics[12], dark energy physics[13], and Lee-Wick
models [14].

The extended Maxwell–Chern–Simons model is an attractive instance of higher derivative field theory [15] [16].
Generally, the Maxwell–Chern–Simons theory is a (2+1) dimensional field model, which defines charged fermions
interactions with each other and with topologically massive propagating photons [17].

The fractional derivatives method was used by Jarab’ah and Nawafleh[18] to investigate nonconservative systems with
second order Lagrangian. They obtained the fractional Hamilton’s equations for nonconservative systems. The generated
equations were similar to fractional Euler– Lagrange equations.

Alawaida et al.[19] developed the Hamiltonian formulation of continuous field systems with third order using the
fractional derivatives method. They generated the fractional Euler and fractional Hamilton equations for these systems
from the fractional variational principle. In addition, Al-Oqali [20] reformulated Podolsky’s Lagrangian density in
fractional form using the Riemann–Liouville fractional derivative. He gained the equations of motion using the fractional
Euler–Lagrange equation. The Hamiltonian and the energy stress tensor are also generated in fractional form from the
Lagrangian density.

The remainder of this paper is organized as follows: Section 2 presents some basic definitions of fractional
derivatives. In Section 3, the Hamiltonian formulation of higher derivative field theories is reformulated using the
Riemann–Liouville fractional derivative. In Section 4, the fractional form of the Euler–Lagrange equation of the
extended Maxwell–Chern–Simons Lagrangian density is obtained. In section 5, the Hamiltonian density of the extended
Maxwell–Chern–Simons model in fractional form is constructed. Finally, Section 6 is devoted to the paper’s conclusion.
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2 Definitions of fractional derivatives

In this section, we briefly present some basic definitions utilized in this work. The left and right Riemann–Liouville
fractional derivative is defined as [21]:

The left Riemann–Liouville fractional derivative

aDα
x f (x) =

1

Γ (n−α)

(

d

dx

)n ∫ x

a
(x− τ)n−α+1 f (τ )dτ (1)

The right Riemann-Liouville fractional derivative

xDα
b f (x) =

1

Γ (n−α)

(

−d

dx

)n ∫ x

a
(τ − x)n−α+1 f (τ )dτ. (2)

where α represents the order of the derivative such that n− 1 ≤ α < n and Γ represents the gamma function. If α is
an integer, these derivatives are defined in the usual sense, i.e.:

aDα
x f (x) =

(

d

dx

)n

f (x) (3)

aDα
t f (x) =

(

d

dx

)n

f (t) (4)

α=1,2,...

3 The Hamiltonian formulation of higher derivative field theories with Riemann–Liouville

fractional derivative

In this section, we will refomulate the generalized Euler–Lagrange equation, the generalized energy–momentum tensor,
and the Hamiltonian density of higher derivative theories using fractional derivatives [22].

Let us start with a Lagrangian

L (φ ,aDk
xµ

φ ,aDk
xµ aDk

xν
φ , .....,aDk

xµ1
aDk

xµ2
...aDk

xµN
φ) (5)

Which for simplicity we consider to be a function of a scalar field and to depend on a finite number of N derivatives.
In this case, the action function corresponding to the above Lagrangian is given by

S =

∫

d4xL (φ ,aDk
xµ

φ ,aDk
xµ aDk

xν
φ , .....,

aDk
xµ1

aDk
xµ2

...aDk
xµN

φ)
(6)

The generalized Euler–Lagrange equation in fractional form is obtained by following the typical approach of
extremizing the action.

∂L

∂φ
− aDk

xµ

(

∂L

∂ (aDk
xµ

φ)

)

+ aDk
xµ aDk

xν

(

∂L

∂ (aDk
xµ aDk

xν
φ)

)

− ...

+(−1)n
aDk

xµ1
aDk

xµ2
...aDk

xµN

(

∂L

∂ (aDk
xµ1

aDk
xµ2

...aDk
xµN

φ)

)

= 0 (7)
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and the generalized energy–momentum tensor in the same way

T
µ

ν =− δ
µ
ν L +

(

∂L

∂ (aDk
xµ

φ)

)

aDk
xν

φ−

[aDk
xµ1

(

∂L

∂ (aDk
xµ aDk

xµ1
φ)

)

aDk
xν

φ−

(

∂L

∂ (aDk
xµ aDk

xµ1
φ)

)

aDk
xµ1

aDk
xν

φ ]

+ [aDk
xµ1

aDk
xµ2

(

∂L

∂ (aDk
xµ1

aDk
xµ2

aDk
xµ

φ)

)

aDk
xν

φ−

aDk
xµ1

(

∂L

∂ (aDk
xµ1

aDk
xµ2

aDk
xµ

φ)

)

aDk
xµ2

aDk
xν

φ+

(

∂L

∂ (aDk
xµ1

aDk
xµ2

aDk
xµ

φ)

)

aDk
xµ1

aDk
xµ2

aDk
xν

φ ]+

...(−1)(N−1)[aDk
xµ1

...aDk
xµN−1

(

∂L

∂ (aDk
xµ1

...aDk
xµN−1 aDk

xµ
φ)

)

aDk
xν

φ − aDk
xµ1

...aDk
xµN−2

(

∂L

∂ (aDk
xµ1

...aDk
xµN−1 aDk

xµ
φ)

)

aDk
xµN−1 aDk

xν
φ+

...(−1)(N−1)

(

∂L

∂ (aDk
xµ1

...aDk
xµN−1 aDk

xµ
φ)

)

aDk
xµ1

...aDk
xµN−1 aDk

xν
φ ] (8)
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The Hamiltonian density in fractional form, which corresponds to the component T 0
0 , is now given by

H =−L +
∂L

∂ (aDk
x0

φ) aDk
x0

φ−

[aDk
xµ1

(

∂L

∂ (aDk
x0 aDk

xµ1
φ)

)

aDk
x0

φ−

(

∂L

∂ (aDk
x0 aDk

xµ1
φ)

)

aDk
xµ1

aDk
x0

φ ]+

[aDk
xµ1

aDk
xµ2

(

∂L

∂ (aDk
xµ1

aDk
xµ2

aDk
x0

φ)

)

aDk
x0

φ−

aDk
xµ1

(

∂L

∂ (aDk
xµ1

aDk
xµ2

aDk
x0

φ)

)

aDk
xµ2

aDk
x0

φ+

(

∂L

∂ (aDk
xµ1

aDk
xµ2

aDk
x0

φ)

)

aDk
xµ1

aDk
xµ2

aDk
x0

φ ]+

...(−1)N−1[aDk
xµ1

aDk
xµ2

...aDk
xµN−1

(

∂L

∂ (aDk
xµ1

aDk
xµ2

...aDk
xµN−1 aDk

x0
φ)

)

aDk
x0

φ−

aDk
xµ1

...aDk
xµN−2

(

∂L

∂ (aDk
xµ1

aDk
xµN−1 aDk

x0
φ)

)

aDk
xµN−1 aDk

x0
φ +(−1)N−1

(

∂L

∂ (aDk
xµ1

...aDk
xµN−1 aDk

x0
φ)

)

aDk
xµ1

...aDk
xµN−1 aDk

x0
φ ] (9)

4 The fractional form of the Euler–Lagrange equation of the Extended

Maxwell–Chern–Simons Lagrangian density

As an example of a Lagrangian with a higher derivative, let us consider the Lagrangian for the extended
Maxwell–Chern–Simons model in 2+1 dimensions in the Lorentz gauge, which was proposed by Reyes [8]

L =
−1

4
FµνFµν +

g

2
εαβ γ(�Aα)aDk

xβ
Aγ −

1

2
(aDk

xµ
Aµ)2 (10)

where Aµ is the four-vector potential, Fµν = aDk
xµ

Aν − aDk
xν

Aµ is a four dimension antisymmetric second rank tensor,

ηµν=diag (1,-1,1) spacetime metric raises and lowers the indices, εαβ γ the Levi–Civita tensor, fully antisymmetric, is

given by ε012=1, and the constant g > 0 being a coupling coefficient of the Chern-Simons term.
To reformulate the extended Maxwell–Chern–Simons Lagrangian density in fractional form, we first define the

relations

aDk
xµ

= (aDk
t ,aDk

xi
),aDk

xµ = (aDk
t ,−aDk

xi) (11)

Aσ = (φ ,A), Aσ = (φ ,−A) (12)

In fractional form, the Euler–Lagrange equation for such a Lagrangian density is given by

∂L

∂Aσ
− aDk

xλ

(

∂L

∂ (aDk
xλ

Aσ )

)

+

aDk
xµ aDk

xλ

(

∂L

∂ (aDk
xµ aDk

xλ
Aσ )

)

= 0 (13)
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The first term ∂L

∂Aσ
= 0. The second term in Eq. (13) may be evaluated as follows:

(

∂L

∂ (aDk
xλ

Aσ )

)

=

−Fλ σ +
g

2
εαβ γ(�Aα)δ

λ
β δ σ

γ −
1

2

(

∂

∂ (aDk
xλ

Aσ )

)

[ηµµ′
aDk

xµ
Aµ′η

νν′
aDk

xν
Aν ′] (14)

=−Fλ σ +
g

2
εαλ σ (�Aα)−

1

2
ηµµ′ηνν′[δ λ

µ δ σ
µ′aDk

xν
Aν ′+ δ λ

ν δ σ
ν′aDk

xµ
Aµ ′] (15)

which can be rewritten as

=−Fλ σ +
g

2
εαλ σ (�Aα)−

1

2
[ηλ σ

aDk
xν

Aν +ηλ σ
aDk

xµ
Aµ ] (16)

=−Fλ σ +
g

2
εαλ σ (�Aα)−ηλ σ

aDk
xµ

Aµ (17)

It follows that

aDk
xλ

(

∂L

∂ (aDk
xλ

Aσ )

)

=−aDk
xλ

Fλ σ+

g

2
εαλ σ

aDk
xλ
(�Aα)+ηλ σ

aDk
xλ aDk

xµ
Aµ

(18)

Similarly, the third term in Eq. (13) may be obtained as follows:

(

∂L

∂ (aDk
xµ aDk

xλ
Aσ )

)

=

(

∂

∂ (aDk
xµ aDk

xλ
Aσ )

)

(g

2
εαβ γ

aDk
xζ aDk

xζ Aα

)

aDk
xβ

Aγ (19)

which can be simplified to

=
g

2
εαβ γηζν δ

ζ
µ δ ν

λ δ α
σ aDk

xβ
Aγ (20)

=
g

2
εσβ γηµλ

aDk
xβ

Aγ (21)

then we have

aDk
xµ aDk

xλ

(

∂L

∂ (aDk
xµ aDk

xλ
Aσ )

)

=

g

2
εσβ γηµλ

aDk
xµ aDk

xλ aDk
xβ

Aγ (22)

Substituting Eqs. (18 and 22) into Eq. (13), we get

aDk
xλ

Fλ σ −
g

2
εαλ σ

aDk
xλ
(�Aα)+ηλ σ

aDk
xλ aDk

xµ
Aµ+

g

2
εσβ γηµλ

aDk
xµ aDk

xλ aDk
xβ

Aγ = 0 (23)
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aDk
xλ

Fλ σ −
g

2
εαλ σ (�Aα)aDk

xλ
Aα+

g

2
εσβ γ

aDk

xλ aDk
xλ aDk

xβ
Aγ

+aDk
xσ aDk

xµ
Aµ = 0

(24)

aDk
xλ

Fλ σ −
g

2
�

(

εαλ σ
aDk

xλ
Aα − εσβ γ

aDk
xβ

Aγ

)

+

aDk
xσ aDk

xµ
Aµ = 0 (25)

Setting λ = γ and α = β in the term εαλ σ
aDk

xλ
Aα in Eq. (25). This lead to following:

aDk
xλ

Fλ σ −
g

2
�

(

εβ γσ
aDk

xγ
Aβ − εσβ γ

aDk
xβ

Aγ

)

+

aDk
xσ aDk

xµ
Aµ = 0 (26)

aDk
xλ

Fλ σ −
g

2
�

(

εβ γσ
aDk

xγ
Aβ − εσβ γ

aDk
xβ

Aγ

)

+

aDk
xσ aDk

xµ
Aµ = 0 (27)

using the definition of the field strength tensor Fβ γ = aDk
xβ

Aγ − aDk
xγ

Aβ , Eq. (27) can be written as:

aDk
xλ

Fλ σ +
g

2
εσβ γ

�Fβ γ + aDk
xσ aDk

xµ
Aµ = 0 (28)

The above equation represents the fractional form of the modified Maxwell equations. It’s worth pointing out that for
k → 1, Eq. (28) simplifies to the usual Maxwell equation:

∂λ Fλ σ +
g

2
εσβ γ

�Fβ γ + ∂ σ (∂ .A) = 0 (29)

Equation (28) can be rewritten as follows, see appendix A.

(

ησα + gεσβ α
)

(�Aα) = 0 (30)

5 The Hamiltonian formulation of the Extended Maxwell–Chern–Simons Model with the

Riemann–Liouville fractional derivative

Consider Aµ(x) and aDk
t Aµ as two independent configuration field variables with their corresponding conjugate momenta

defined by

Pµ =
∂L

∂ (aDk
t Aµ)

− aDk
t Π µ

, Π µ =
∂L

∂ (aDk
t aDk

t Aµ)
(31)

By using Eq. (17), we can write the conjugate momenta Π µ as

Π µ =
∂L

∂ (aDk
t aDk

t Aµ)
=

g

2
εµβ γ

aDk
xβ

Aγ (32)

which reads in components

Π 0 =
∂L

∂ (aDk
t aDk

t Aµ)
=

g

2
ε0i j

aDk
xi

A j (33)

Π i =
g

2
ε i j
(

aDk
t A j − aDk

jA0

)

(34)
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and the conjugate momenta Pµ is given by

Pµ =
∂L

∂ (aDk
t Aµ)

− aDk
t

(

∂L

∂ (aDk
t aDk

t Aµ)

)

(35)

By making use of Eq. (17), we obtain

∂L

∂ (aDk
t Aµ)

==−F0µ +
g

2
εα0µ(�Aα)−

η0µ
(

aDk
xγ

Aγ
)

(36)

or

∂L

∂ (aDk
t Aµ)

==−F0µ −
g

2
εµ0α(�Aα)−

η0µ
(

aDk
xγ

Aγ
)

(37)

Setting α = γ in the second term of Eq. (37), we get

∂L

∂ (aDk
t Aµ)

==−F0µ −
g

2
εµ0γ (�Aγ)−η0µ

(

aDk
xγ

Aγ
)

(38)

Substituting Eqs. (38 and 32) into Eq. (35), we get

Pµ =−F0µ −
g

2
εµ0γ (�Aγ)−η0µ

(

aDk
xγ

Aγ
)

−

g

2
εµβ γ

aDk
xβ aDk

xt
Aγ (39)

which read in components

P0 =−F00 −
g

2
ε00γ(�Aγ)−η00

(

aDk
xγ

Aγ
)

−

g

2
ε0β γ

aDk
xβ aDk

xt
Aγ (40)

P0 =−
(

aDk
xγ

Aγ
)

−
g

2
ε i j

aDk
xi a

Dk
xt

A j (41)

Pi =−F0µ −
g

2
ε i0γ (�Aγ)−η0i

(

aDk
xγ

Aγ
)

−

g

2
ε iβ γ

aDk
xβ aDk

xt
Aγ

(42)

Pi = F0i +
g

2
ε i j(�Aγ)−

g

2
ε iβ γ

aDk
xβ aDk

t Aγ (43)

Eq. (43) can be rewritten as

Pi = F0i +
g

2
ε i j(�A j)−

g

2
ε i0γ

aDk
t aDk

t Aγ−

g

2
ε i jγ

aDk
x j aDk

t Aγ (44)

Pi = F0i +
g

2
ε i j(�A j)+

g

2
ε0i j

aDk
t aDk

t Aγ−

g

2
ε i j0

aDk
x j aDk

t A0 (45)
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or
Pi = F0i +

g

2
ε i j(�A j)+

g

2
ε i j

aDk
t Fjo (46)

The Hamiltonian density is given by

H = Pµ
aDk

t Aµ +Π µ
aDk

t aDk
t Aµ −L (47)

Taking into account Eqs. (10 and 32), then the Hamiltonian density in fractional form is

H = P0
aDk

t A0 +Pi
aDk

t Ai+

g

2
εµβ γ

aDk
xβ

Aγ aDk
t aDk

t Aµ −
1

2
(F0 j)2 +

1

4
(Fi j)2−

g

2
εαβ γ(�Aα)aDk

xβ
Aγ +

1

2

(

aDk
xµ

Aµ
)2

(48)

By using the relation �A = aDk
t aDk

t −▽2 Eq. (48), simplified to

H = P0
aDk

t A0 +Pi
aDk

t Ai −
1

2
(F0 j)2 +

1

4
(Fi j)2+

g

2
εαβ γ

(

▽2Aα

)

aDk
xβ

Aγ +
1

2

(

aDk
xµ

Aµ
)2

(49)

The second term in Eq. (49) can be written as

Π i =
g

2
ε iβ γ

aDk
xβ

Aγ =
g

2
ε i j
(

aDk
x j

A0 − aDk
t A j

)

(50)

or

aDk
t A j =−

2

g
ε i jΠ i + aDk

x j
A0 (51)

aDk
t Ai =

2

g
ε i jΠ j + aDk

xi
A0 (52)

Multiply both sides of Eq. (52) by Pi, we get

Pi
aDk

t Ai =
2

g
ε i jPiΠ j +Pi

aDk
xi

A0 (53)

or

Pi
aDk

t Ai =
2

g
ε i jPiΠ j −Pi aDk

xi
A0 (54)

The third term in Eq. (49) can be expressed as

Π i =
g

2
ε i j
(

aDk
t A j − aDk

x j
A0

)

=
g

2
ε i jF0 j (55)

It follows that
(F0i)

2 = 4(Πi)
2 \ (g2) (56)

The fourth term in Eq. (49) can be written in the following way:

g

2
εαβ γ

(

▽2Aα

)

aDk
xβ

Aγ =
g

2
ε0β γ

(

▽2A0

)

aDk
xβ

Aγ+

g

2
ε iβ γ

(

▽2Ai

)

aDk
xβ

Aγ (57)

=
g

2
ε i j
(

▽2A0

)

aDk
xi

A j+

g

2

(

ε i0γ
aDk

x0
Aγ + ε iβ 0

aDk
xβ

A0

)

(

▽2Ai

)

(58)
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=
g

2
ε i j
(

▽2A0

)

aDk
xi

A j +
g

2
ε i j
(

aDk
x j

A0 − aDk
x0

A j

)

(

▽2Ai

)

(59)

=
g

2
ε i j
(

▽2A0

)

aDk
xi

A j −
g

2
ε i j(F0 j)

(

▽2Ai

)

(60)

Inserting Eq. (55) into Eq. (60), we get

g

2
εαβ γ

(

▽2Aα

)

aDk
xβ

Aγ =
g

2
ε i j
(

▽2A0

)

aDk
xi

A j−

Πi

(

▽2Ai

)

(61)

Substituting Eqs. (54, 56, and 61) into Eq. (49), the Hamiltonian density can be written as

H = P0
aDk

t A0 +
2

g
ε i jPiΠ j −PiaDk

xi
A j −

2(Πi)
2

(g2)
+

1

4
(Fi j)

2 +
g

2
ε i j
(

▽2A0

)

aDk
xi

A j −Πi

(

▽2Ai

)

+

1

2

(

aDk
xµ

Aµ
)2

(62)

6 Conclousion

In this work, the Hamiltonian formulation for higher derivatives has been reformulated using fractional derivatives. For
higher order derivatives, the extended Maxwell–Chern–Simons Lagrangian density is refomulated in fractional form using
the Riemann–Liouville fractional derivative. The fractional form of the Euler–Lagrange equation and the Hamiltonian
density of these systems are obtained. The classical results are obtained when fractional derivatives are replaced by integer
order derivatives.

Appendix A: The Derivation of Equation (30):
We can write Eq. (28) as

aDk
xλ

(

aDk

xλ Aσ − aDk
xσ Aλ

)

+ aDk
xσ aDk

xµ
Aµ +

g

2
εσβ γ

�

(

aDk
xβ

Aγ − aDk
xγ

Aβ

)

= 0 (A.1)

The above equation can be rearranged as:

�Aσ − aDk
xσ aDk

xλ
Aλ + aDk

xσ aDk
xµ

Aµ +
g

2
εσβ γ

�

(

aDk
xβ

Aγ − aDk
xγ

Aβ

)

= 0 (A.2)

The second and third terms cancel after changing a dummy index from µ to λ . This leaves us with

ησα
�Aα +

g

2
εσβ γ

�

(

aDk
xβ

Aγ − aDk
xγ

Aβ

)

= 0 (A.3)

using εσβ ζ εσβ α = δ
ζ
α , we rewrite Eq. (A.3) as:

ησα
�Aα +

g

2
εσβ γεσβ αεσβ α�

(

aDk
xβ

Aγ − aDk
xγ

Aβ

)

= 0 (A.4)
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or

ησα
�Aα +

g

2

(

εσβ α
aDk

xβ
Aα − εσβ α

aDk
xα

Aβ

)

= 0 (A.5)

let α → β and β → α in the term εσβ α
aDk

xα
Aβ of the above equation, we get

ησα
�Aα +

g

2
�

(

εσβ α
aDk

xβ
Aα + εσβ α

aDk
xβ

Aα

)

= 0 (A.6)

It follows that
(

ησα + gεσβ α
aDk

xβ

)

�Aα = 0 (A.7)

The author is grateful for the suggestions of anonymous referees, which have considerably improved the readability of the
paper.
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