
Appl. Math. Inf. Sci. 16, No. 6, 883-890 (2022) 883

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/160604

A Multi-Index Generalized Derivative;

Some Introductory Notes

M. Vivas-Cortez1,∗, L. M. Lugo 2, Juan E. Nápoles Valdés 2,3 and M. E. Samei 4
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Abstract: In this work we present a generalized multi-index derivative, which contains as particular cases, with an index, several

local derivatives known from the literature (both conformable and non-conformable). Obviously this new development contains many

of the desirable properties of integer derivatives. It is worth noting that the multi-index differential operator departs from the classic

single-order local derivatives, as in the case of the particular cases presented, which leads to an adequate and useful mathematical tool

to generalize widely accepted results, with applications potentials to Physics, fundamental within mathematical simulation.
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1 Introduction

We know that the Fractional Calculus is contemporary of
the Ordinary Calculus, classical, of integer order, this
area, together with the generalized calculus are areas in
expansion and continuous development today. In the last
50 years, they have focused the attention of pure and
applied researchers and today they constitute one of the
most dynamic areas of Mathematical Sciences [1]. One of
the first operators that can be called fractional is the
Riemann-Liouville fractional integral of order α ∈ C,
with ℜ(α)> 0, defined as follows [2].

Let τ1 < τ2 and w ∈ L1((τ1,τ2);R). The right and left
side Riemann-Liouville fractional integrals of order α ,
with ℜ(α)> 0, are defined, respectively, by

RLJ α
τ1

+w(t) =
1

Γ (α)

∫

t

τ1

(t−η)α−1
w(η)dη , (1)

and

RLJ α
τ2

−w(t) =
1

Γ (α)

∫ τ2

t

(η − t)α−1
w(η)dη , (2)

with t ∈ (τ1,τ2). As we know, by manipulating simple
algebraic identities, we can follow the idea of fractional

differential operators of Riemann-Liouville or Caputo
type. Considering α = 1 + α − 1 or α = α − 1 + 1,
respectively.

It is important to note that the global fractional
derivatives (e.g., Caputo and Riemann-Liouville) are not
collecting mere local information. By contrast, fractional
operators keep track of the history of the process being
studied; this feature allows modeling the non-local and
distributed responses that commonly appear in natural
and physical phenomena. On the other side, one has to
recognize that these fractional derivatives Dα show some
drawbacks, this made new formulations and extensions
necessary, which resulted in the appearance of the Local
or Generalized Fractional Calculus, in the 60s of the last
century and that we will see later. An attractive
characteristic of this field is that there are numerous
fractional operators, and this permits researchers to
choose the most appropriate operator for the sake of
modeling the problem under investigation, in [3] a fairly
complete classification of these fractional operators is
presented, with abundant information, on the other hand,
in the work [4] some reasons are presented why new
operators linked to applications and developments
theorists appear every day. These operators had been
developed by numerous mathematicians with a barely
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specific formulation, for instance, the Riemann-Liouville
(RL), the Weyl, Erdelyi-Kober, Hadamard integrals, and
the Liouville and Katugampola fractional operators and
many authors have introduced new fractional operators
generated from general classical local derivatives.

In addition, Chapter 1 of [5] presents a history of
differential operators, both local and global, from Newton
to Caputo and presents a definition of local derivative
with new parameter, providing a large number of
applications, with a difference qualitative between both
types of operators, local and global. Most importantly,
Section 1.4 LIMITATIONS AND STRENGTH OF
LOCAL AND FRACTIONAL DERIVATIVES concludes
“We can therefore conclude that both the
Riemann?Liouville and Caputo operators are not
derivatives, and then they are not fractional derivatives,
but fractional operators. We agree with the result [6] that,
the local fractional operator is not a fractional derivative”
(p.24). As we said before, they are new tools that have
demonstrated their usefulness and potential in the
modeling of different processes and phenomena.

Although local fractional derivatives have been used
since the 1960s, it was not until 2014 when they were
formalized with the work [7], where a local derivative,
called conformable, is defined as follows. Given a
function w : [0,+∞)→R, then the conformable fractional
derivative of w of order α , with 0 < α ≤ 1, is defined by

Tα w(t) = lim
ε→0

w
(

t+ εt(1−α)
)

−w(t)

ε
, t> 0. (3)

Remark.If w is α-differentiable in some 0 < α ≤ 1, and
limt→0+ Tα w(t) exists, then define
Tα w(0) = limt→0+ Tα w(t). Additionally we have if w is
differentiable then

Tα w(t) = w′(t)t(1−α)
,

of the latter we see that if α → 1 we obtain the classical
derivative.

Later, in 1918, the authors in [8] presented a fractional
local derivative of a new type [9]. Let w : [0,+∞) → R a
function. Then the N -derivative of w of order α is
defined by

N α
1 w(t) = lim

ε→0

w
(

t+ εet
−α
)

−w(t)

ε
,

forall t > 0, α ∈ (0,1). If w is α−differentiable in some

(0,τ1), and limt→0+ N
(α)

1 w(t) exists, then define

N
(α)

1 w(0) = lim
t→0+

N
(α)

1 w(t).

Lemma 1.Let w : [0,+∞)→R be differentiable, then

N α
1 w(t) = et

−α
w′(t). (4)

Remark.The authors justify the “non-conformable” term
with which they named it, since from (4) we obtain that
when α → 1 the ordinary derivative is not obtained and,
therefore, the slope of the tangent line to the curve at the
point is not maintained.

A generalized derivative was defined in [10] in the
following way. Let w : [0,+∞) → R, α ∈ (0,1) and
V(t,α) be some absolutly continuous function on
I × (0,1]. Then, the N -derivative of w of order α is
defined by

N α
V w(t) = lim

ε→0

w(t+ εV(t,α))−w(t)

ε
, t> 0.

(5)
Here we will use some cases of V defined using the
Eτ1,τ2

(.), the classic definition of Mittag–Leffler function
with ℜ(τ1), ℜ(τ2) > 0. Also we consider Eτ1,τ2

(.)k is the
k-th term of Eτ1,τ2

(.). If w is α-differentiable in some
0 < α ≤ 1, and lim

t→0+
N α

V w(t) exists, then define

N α
V w(0) = lim

t→0+
N α

w w(t).

Remark.This generalized derivative has proven its
usefulness in various applications, to get an idea we
recommend consulting [11,12,13,14].

Remark.If the kernel of the previous definition is V ≡ 1
the classical derivative is obtained. By other hand, if we
replace ε with εV(t,α) in (5) then

N α
V w(t) = lim

ε→0

w(t+ ε)−w(t)

ε
V(t,α),

if w is differentiable then N α
V w(t) = w′(t)V(t,α).

The following is a result that distinguishes local
derivatives from global classical ones.

Theorem 1.Let α ∈ (0,1], ẃ N -differentiable at t> 0 and

w differentiable at ẃ(t) then

N α
V (w◦ ẃ) (t) = w′(ẃ(t))N α

V ẃ(t).

Remark.From the above definition, it is not difficult to
extend the order of the derivative for 0 ≤ n− 1 < α ≤ n

by putting

N α
V w(t) = lim

ε→0

w(n−1)(t+ εV(t,α))−w(n−1)(t)

ε
. (6)

If w(n) exists on some interval I ⊆ R, then we have

N α
V w(t) = V(t,α)w(n)(t), 0 ≤ n− 1 < α ≤ n.

We can defined the following associate integral (see
[15]). Throughout the work we will consider that the
integral operator kernel V defined below is an absolutely
continuous function. Let I be an interval I ⊆ R, τ1, t ∈ I

and α ∈ R. The integral operator J α
V,τ1

is defined for
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every locally integrable function w on I and an absolutly
continuous V on I× (0,1] as

J α
V,τ1

(w)(t)=
∫

t

τ1

w(η)

V(η ,α)
dη =

∫

t

τ1

w(η)dVη , t> τ1.

(7)
Obviously

J α
V,t(w)(τ1) =

∫ τ1

t

w(η)

V(η ,α)
dη =−J α

V,τ1
(w)(t),

J α
V,τ1

(w)(τ2) =

∫ τ2

τ1

w(η)

V(η ,α)
dη

= J α
V,τ1

(w)(t)+J α
V,t(w)(τ2).

Throughout the work we use the functions Γ (see [16]) and
Γk (see [17]):

Γ (t) =

∫ ∞

0
ηt−1e−η dη , ℜ(t)> 0,

Γk(t) =

∫ ∞

0
ηt−1e−

ηk

k dη , ℜ(t)> 0, k > 0.

It is clear that if k → 1 we have Γk(t)→ Γ (t), Γk(t+ k) =
tΓk(t) and

Γk(zt) = (k)
t

k
−1Γ

(

t

k

)

.

Unlike the rest of the known local derivatives, the
order of our operator is determined by n fractional indices
and n positive functions, which can be rearranged to
retrieve the integer derivative. The n indexes and the n

functions give the generalized derivative greater freedom
and a more complex dynamics than the derivatives of a
single index and single kernel, in addition, being a very
general derivative, it may be the case that it is
conformable for some indices and non-conformable for
others, it is a local operator as in the case of integer order.
Thus, our operator is similar to the Gateaux Derivative
(see [18]), but it is definitely not the same. We present a
differential operator in which the order of the derivative
now depends on multi-fractional indices, preserving
almost all the properties of integer-order derivatives, as is
often the case with generalized local derivatives. At the
end of the work, we present potential physical
applications of the defined operator and some
methodological remarks.

2 Main Results

Now we are in a position to define the differential operator,
the central object of this work.

Definition 1.Let w : [0,+∞) → R, αi ∈ (0,1] for
i = 1,2, · · · ,n and V(t,α) be some absolutly continuous

function on I × (0,1]. Then, the N generalized derivative
multi-index of N of order α1 +α2 + · · ·+αn is defined by

N
〈α1,α2,...,αn〉

V w(t) = lim
ε→0

w(t+ εV(t,α1,α2, . . . ,αn))−w(t)

ε
,

(8)

for t> 0.

For the kernel function, let’s consider the following

characteristics:

–V(t,α1,α2, . . . ,αn) 6= 0, ∀ t ∈ R+;

–V(t,α1, . . . ,αi, . . . ,αn) 6= V(t,α1, . . . ,α j , . . . ,αn),
∀i 6= j, with i, j = 1,2, . . . ,n

Here we will use some cases of F defined using the

Eτ1,τ2
(.), the classic definition of Mittag–Leffler function

with ℜ(τ1), ℜ(τ2) > 0. Also we consider Eτ1,τ2
(.)k is the

k-th term of Eτ1,τ2
(.). If w is N generalized differentiable

for 0 < α1,α2, . . . ,αn ≤ 1, and

lim
t→0+

N
〈α1,α2,...,αn〉

V w(t),

exists, then define

N
〈α1,α2,...,αn〉

V w(0) = lim
t→0+

N
〈α1,α2,...,αn〉

V w(t).

Remark.In the event that it is fulfilled

lim
(α1,α2,...,αn)→(1,1,...,1)

V(t,α1,α2, . . . ,αn) = 1, (9)

then we will say that it is a conformable N generalized
derivative multi-index, otherwise, we will say that it is
non-conformable.

Remark.We consider n = 1, if V(t,α) = t
1−α then from

Definition 1 we obtain the conformable derivative of
Khalil et al. Other kernel choices give us different known
local derivatives (see [19,20] for example).

Remark.If n = 2, we obtain the “α1α2 derivative” and with

εV(t,α1,α2) = w(t)α2E1,1[εk1−α1(t)],

then we have the “α1,α2hkl conformable derivative” of w
of order α1 +α2 (see [21]).

Remark.The important thing about the Definition 1 and
that it shows its generality and scope, is the fact that we
can include generalized derivatives of a new type (not
reported in the literature), “mixed”, since they can be
conformable for indices and non-conformables. Of
course, the result will be a non-conformable derivative
since it does not satisfy (9).

Theorem 2.Let w1 and w2 be N generalized derivative

multi-index at a point t > 0 and αi ∈ (0,1], ∀ i = 1, . . . ,n.

Then

a)N
〈α1,α2,...,αn〉

V (ξ1w1 + ξ2w2)(t) =

ξ1N
〈α1,α2,...,αn〉

V (w1)(t)+ ξ2N
〈α1,α2,...,αn〉

V (w2)(t);
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b)N
〈α1,α2,...,αn〉

V (tr) = V(t,α1,α2, . . . ,αn)rt
r−1, r ∈ R;

c)N
〈α1,α2,...,αn〉

V (r) = 0, r ∈R;

d)N
〈α1,α2,...,αn〉

V (w1w2)(t) =

wN
〈α1,α2,...,αn〉

V (w2)(t)+w2N
〈α1,α2,...,αn〉

V (w1)(t);

e)N
〈α1,α2,...,αn〉

V (w1
w2
)(t) =

w2N
〈α1,α2,...,αn〉

V (w2)(t)−w1N
〈α1 ,α2,...,αn〉

V (w2)(t)

w2
2(t)

;

f)If, in addition, w1 is differentiable then

N
〈α1,α2,...,αn〉

V (w1) = V(t,α1,α2, . . . ,αn)w
′
1(t).

One of the basic results in the applications of
generalized derivatives are the following results. The
proof of the next theorem is obtained very easily,
following the classical way.

Theorem 3(Chain Rule). Let w2 be a N generalized

derivative multi-index function at a point t > 0, w1 N
generalized derivative multi-index function at point

w2(t)> 0 and αi ∈ (0,1], ∀ i = 1, . . . ,n, then we have

N
〈α1,α2,...,αn〉

V (w1 ◦w2)(t)

=
dw1(w2(t))

dt
N

〈α1,α2,...,αn〉
V w2(t).

Theorem 4(Rolle’s Theorem). Let w ∈ C([τ1,τ2] ,R),
with τ1 > 0, be a given function that satisfies

i)w is N generalized derivative multi-index function on

(τ1,τ2) for αi ∈ (0,1], ∀ i = 1, . . . ,n;

ii)w(τ1) = w(τ2).

Then, there exists s ∈ (τ1,τ2) such that

N
〈α1,α2,...,αn〉

V w(s) = 0.

Proof.We prove this using contradiction. From
assumptions, since w is continuous in [τ1,τ2], and
w(τ1) = w(τ2), there is s ∈ (τ1,τ2), at least one, which is
a point of local extreme. By other hand, how w is N
generalized derivative multi-index function in (τ1,τ2) for
αi ∈ (0,1], ∀ i = 1, . . . ,n we have

N
〈α1,α2,...,αn〉

V w(s)

= N α1
1 w(s+)

= lim
h→ 0+

w(s+ hV(s,α1,α2, . . . ,αn))−w(s)

h

= N
〈α1,α2,...,αn〉

V w(s−)

= lim
h→ 0−

w(s+ hV(s,α1,α2, . . . ,αn))−w(s)

h
,

but N
〈α1,α2,...,αn〉

V w(s+) and N
〈α1,α2,...,αn〉

V w(s−) have

opposite signs. Hence N
〈α1,α2,...,αn〉

V w(s) = 0. If

N
〈α1,α2,...,αn〉

V w(s+) and N
〈α1,α2,...,αn〉

V w(s−) they have

the same sign then as w(τ1) = w(τ2), we have that w is
constant and the result is trivially followed. This
concludes the proof.

Theorem 5(Mean Value Theorem). Let
w ∈C([τ1,τ2] ,R), with τ1 > 0, be a function satisfies w is
N generalized derivative multi-index function on
(τ1,τ2), αi ∈ (0,1], ∀ i = 1, . . . ,n. Then, exists s ∈ (τ1,τ2)
such that

N
〈α1,α2,...,αn〉

V w(s)

=

[

α1,α2, . . . ,αn(τ2)−α1,α2, . . . ,αn(τ1)

τ2 − τ1

]

V(s,α1,α2, . . . ,αn).

Proof.Consider the function

ẃ(t) = w(t)−w(τ1)−

[

w(τ2)−w(τ1)

τ2 − τ1

]

( t− τ1).

The auxiliary function w2 satisfies all the conditions of
Rolle’s Theorem and, therefore, exists τ1 < s < τ2 such

that N
〈α1,α2,...,αn〉

V ẃ(s) = 0. Then, we have

N
〈α1,α2,...,αn〉

V ẃ(t)

= N
〈α1,α2,...,αn〉

V (w(t)−w(τ1))

−
w(τ2)−w(τ1)

τ2 − τ1
N

〈α1,α2,...,αn〉
V (t− τ1) ,

and from here it follows that

N
〈α1,α2,...,αn〉

V ẃ(s)

= N
〈α1,α2,...,αn〉

V w(s)

−
w(τ2)−w(τ1)

τ2 − τ1

V(c,α1,α2, . . . ,αn) = 0,

from where

N
〈α1,α2,...,αn〉

V [w(s)] =
w(τ2)−w(τ1)

τ2 − τ1
V(s,α1,α2, . . . ,αn).

This concludes the proof.

Theorem 6.Let w ∈C([τ1,τ2] ,R), with τ1 > 0, be a given

function that satisfies w is N generalized derivative

multi-index function on (τ1,τ2), αi ∈ (0,1], ∀ i = 1, . . . ,n.

If N
〈α1,α2,...,αn〉

V w(t) = 0 for all t ∈ (τ1,τ2), then w is a

constant on [τ1,τ2].

Proof.It is sufficient to apply the theorem of the mean
value to the function w over any non-degenerate interval
contained in [τ1,τ2].

As a consequence of the previous theorem we have.

Corollary 1.Let a > 0 and V1,V2 : [τ1,τ2] → R be

functions such that for all α ∈ (0,1),

N
〈α1,α2,...,αn〉

V1
V1(t)=N

〈α1,α2,...,αn〉
V1

V2(t), ∀ t∈ (τ1,τ2).

Then there exist a constant s such that V1(t) = V2(t)+ s.
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Remark.Something that we must point out is that this
generalized operator does not satisfy the Index Law, valid
in the fractional case. That is to say,

N
〈α1,α2,...,αn〉

V

(

N
〈β1,β2,...,βn〉

V

)

6=N
〈α1+β1,α2+β2,...,αn+βn〉

V ,

unless the kernel V is an additive function, with respect to
the second variable.

Let C1[τ1,τ2] be the set of functions f with first
ordinary derivative continuous on [τ1,τ2], we consider the
following norms on C1[τ1,τ2],

‖V‖C = max
[τ1,τ2]

|w(w)|,

‖V‖C1 =

{

max
[τ1,τ2]

|w(t)|+ max
[τ1,τ2]

∣

∣w′(t)
∣

∣

}

.

Theorem 7.For a function w ∈ C1[τ1,τ2] and t ∈ [τ1,τ2],
we have
∣

∣

∣
N

〈α1,α2,...,αn〉
V w(t)

∣

∣

∣
≤ K (α1,α2, . . . ,αn)‖V‖C max

t∈[τ1,τ2]
|w(t)|.

(10)

Remark.The constant K(α1,α2, . . . ,αn) of the theorem
can depend on other parameters, as in the case of the
Katugampola operator (n = 1), where ρ will appear. It is
easily obtained from the previous definitions.

Theorem 8.The derivative generalized multi-index

N
〈α1,α2,...,αn〉

V w(t) is a bounded operators from C1[τ1,τ2]
to C[τ1,τ2] with

∣

∣

∣
N

〈α1,α2,...,αn〉
V w(t)

∣

∣

∣
≤ K‖V‖C ‖w‖C1 . (11)

where the constant K, may be depend of derivative frame

considered.

Proof.Given t ∈ [τ1,τ2] and w ∈ C1[τ1,τ2], using simple
properties of norm and previous theorem, the result
follows.

Remark.From previou results we obtain that the derivative

N
〈α1,α2,...,αn〉

V w(t) is well defined.

Taking into account the previous ideas, we can define the
generalized multi-index partial derivatives as follows.

Definition 2.Given a real valued function w : Rn → R

and −→a = (a1, ...,an) ∈ Rn a point whose ith component is

positive. Then the N-derivative generalized multi-index

partial of w of order α1,α2, · · · ,αn in the point
−→a = (a1, · · · ,an) is defined by

N
〈α1,α2,...,αn〉

Vi,ti
w(−→a )

= lim
ε→0

1

ε

[

w
(

a1, . . . ,ai + εVi(ai,α1,α2, . . . ,αn), . . . ,an

)

−w(a1, . . . ,ai, . . . ,an)
]

, (12)

if it exists, is denoted N
〈α1,α2,...,αn〉

Vi,ti
w(−→a ), and called the

ith N generalized partial derivative multi-index of w of

the order α1,α2, . . . ,αn at −→a .

Remark.If a real valued function f with n variables has all
generalized partial derivatives of the order α1,α2, . . . ,αn

at −→a , each ai > 0, then the generalized
α1,α2, . . . ,αn-gradient multi-index of w of the order
α1,α2, . . . ,αn at −→a is

▽
〈α1,α2,...,αn〉
N w(−→a )

=
(

N
〈α1,α2,...,αn〉
t1

f (−→a ), . . . ,N
〈α1,α2,...,αn〉
tn

w(−→a )
)

.

(13)

Now, we give the definition of a general fractional
integral. Throughout the work we will consider that the
integral operator kernel V defined below is an absolutely
continuous function.

Definition 3.Let I ⊆ R, τ1, t ∈ I and αi ∈ (0,1],

∀ i = 1, . . . ,n. The integral operator J
〈β1,β2,...,βn〉
V,τ1

, is

defined for every locally integrable function w on I as

[

N
〈α1,α2,...,αn〉

V w(t)
]−1

= J
〈α1,α2,...,αn〉
V,τ1

(w)(t)

=

∫

t

τ1

w(η)

V(η ,α1,α2, . . . ,αn)
dη

=
∫

t

τ1

w(η)ddFη , t> τ1.

(14)

Remark.It is easy to see that the case of the Jα
V operator

defined above contains (n = 1), as particular cases, the
integral operators obtained from conformable and
non-conformable local derivatives and even, for
appropriate kernels, it may contain known fractional
integral operators.

We can define the function space Lr
α [τ1,τ2] as the set of

functions over [τ1,τ2] such that

(

J
〈α1,α2,...,αn〉
V,τ1

[w(t)]r(τ2)
)

<+∞.

The following two results establish the relationship
between the generalized operators defined above.

Theorem 9.Let I ⊆R, τ1 ∈ I, αi ∈ (0,1], ∀ i = 1, . . . ,n and

w a N generalized derivative multi-index function on I

such that w′ is a locally integrable function on I. Then, we

have for all t ∈ I

J
〈α1,α2,...,αn〉
V,τ1

(

N
〈α1,α2,...,αn〉

V (w)
)

(t) = w(t)−w(τ1).
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Proof.Since w′ is a locally integrable function on I, we
have

J
〈α1,α2,...,αn〉
V,τ1

(

N
〈α1,α2,...,αn〉

V (w)
)

(t)

=
∫

t

τ1

N
〈α1,α2,...,αn〉

V (w)(τ1)

V(η ,α1,α2, . . . ,αn)
dη

=

∫

t

τ1

w′(η)dη

= w(t)−w(τ1),

which is the desired result.

Theorem 10.Let I ⊆ R, τ1 ∈ I and αi ∈ (0,1],
∀ i = 1, . . . ,n. Then we have

N
〈α1,α2,...,αn〉

V

(

J
〈α1,α2,...,αn〉
V,τ1

(w)(t)
)

= w(t),

for every continuous function w on I and τ1, t ∈ I.

Proof.Let w be a continuous function w on I. Proposition 9
gives for every τ1, t ∈ I,

(

J
〈α1,α2,...,αn〉
V,τ1

(w)(t)
)′

=

(

∫

t

τ1

w(η)

V(η ,α1,α2, . . . ,αn)
dη

)′

=
w(t)

V(t,α1,α2, . . . ,αn

.

So, we have

N
〈α1,α2,...,αn〉

V

(

J
〈α1,α2,...,αn〉
V,τ1

(w)(t)
)

= V(t,α1,α2, . . . ,αn)
(

Jα
V,τ1

(w)(t)
)′

= V(t,α1,α2, . . . ,αn)
w(t)

V(t,α1,α2, . . . ,αn)

= w(t).

Sometimes, the kernel of the integral operator may not be
the same as the derivative operator, from the theoretical
point of view it does not affect, in fact what it does is
complicate expressions and some elementary properties.

3 Applications to differential equations

The fractional derivative present here is local by nature,
hence any comparison with classical fractional derivatives
is erroneous, because we are considering mathematical
objects of different kinds. Our operator is local and the
derivatives of Caputo, Riemann-Liouville, etc. are global
(in [22] a comparison of this type is presented).

Next, to simplify the calculations, we will use our
generalized derivative with two indices in this section. We
know that in the classical fractional case

Dα (sin (τ2t)) = τα
2 sin

(

τ2t+
π

4

)

,

but what’s up if α = 1
2n

, n ∈ N, and τ2 = −1? However
using our definition, and Theorem 2-(f), we have no
problem

N
〈 1

2 ,
1
2 〉

V (sin(−t)) =−e
t

2+t
− 1

2
cos t,

with n = 1 and

V(t,α1,α2) = e(1−α1)t et
−α2

.

In addition, there are functions like

w(t) = e(1−α1)t et
−α2

,

whose fractional derivative in the classical sense is very
difficult to calculate, if not impossible, while using our
definition is very easy, so we have

N
〈α1,α2〉

V

(

e−((1−α1)t+t
−α2)

)

=−
(

(1−α1)−α2t
−α2−1

)

.

Consider the very simple differential equation

Dα w+w = t
−
(

α1+
α2
α1

)

e(t
−α2−t)

.

This is a differential equation, whose independent term is
a biparametric function, very common in different
applications. If we try to solve it using classical
derivatives Dα as the Caputo or Riemann-Liouville
definition, then must use either the Laplace transform or
the fractional power series technique. By other hand, if
Dα is our definition, we rewrite it as a generalized
derivative with two indices, like this

N
〈α1,α2〉

V w+w = t
−
(

α1+
α2
α1

)

e(t
−α2−t)

,

easily we obtain that

w(t) =−
1

α1

[

t
−
(

α1+
α1
α2

)

et
−α2−t

]

e
− 1

α1
Γ
(

−
α2
α1

,
1

t
α1

)

,

is a particular solution. We would like to add an additional
application of our fractional derivative to solve ordinary
differential equations. Thus, consider the following linear
first-order differential equation:

w′+
(

(α1 − 1)+α2t
−α2−1

)

w= e(1−α1)t+t
−α2

t
r
, r ∈R.

(15)
It is clear that this equation can be written this way:

N
〈α1,α2〉

V

[

w(t)e(1−α1)t+t
−α2

]

= N
〈α1,α2〉

V [tr] .

According to Corollary 1, we easily obtain that:

w(t)e(1−α1)t+t
−α2 = t

r +C.

From where the general solution sought can be obtained
without problems.
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4 Conclusion

The FDq − DP has been investigated in this work in
detail. The investigation of this particular equation
provides us with a powerful tool in modeling most
scientific phenomena without the need to remove most
parameters which have an essential role in the physical
interpretation of the studied phenomena. FDq−DP has
been studied on a time scale under some B.Cs. An
application that describe the motion of a particle in the
plane has been provided to support our results’ validity
and applicability in fields of physics and engineering.
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