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Abstract: The loading on bridges, ports, multi-story parking garages, airport facilities, and many other structures is 
often repeated and usually built with reinforced concrete beams. The behavior of concrete under repeated loads differs 
from that of static loads. Due to the loading and unloading process, repeated loads cause crushing in some concrete 
sections. The war and other events damaged numerous concrete structures and bridges in Iraq. Therefore, maintenance 
and rehabilitation of these structural parts are already required. This study aims to illustrate the behaviour of reinforced 
concrete hollow beams strengthened with a strip of carbon fiber reinforced polymer (CFRP) in various configurations 
using the externally bonded reinforcement (EBR) method when exposed to monotonic and repeated torsion. Eight 
beams of 250 x 350 x 3000 mm were cast and tested up to failure under pure torsion. Two of these beams were 
unreinforced. Other beams were strengthened with varied configurations of CFRP strips. The tested specimens were 
divided into two groups. For each investigation condition, the beam was examined under monotonic torsion and utilized 
as a control for those examined under repeated torsion after seven cycles of 60% of the control samples' ultimate loads. 
Using the CFRP stripe, the torsional performance of the reinforced concrete beams was greatly enhanced. Test beams 
reinforced with two continuous CFRP stripes demonstrated a more significant increase in the ultimate torsional moment 
than beams strengthened with other CFRP stripe configurations. Beams tested under repeated torsion show less 
degradation in torsional strength than beams tested under monotonic torsion moment. 

Keywords: Externally-bonded reinforcement (EBR), CFRP stripes, Repeated loads, Crack width, Energy Absorption, 
Ductility. 

 
1 Introduction 

Despite the availability of numerous classic rehabilitation procedures like epoxy repair or steel jacketing, there is 
always a demand for new technologies and materials to update weak buildings. In this context, external reinforcement 
of reinforced concrete structures employing FRP composite materials offers unique designer benefits not available with 
traditional strengthening techniques. Because of its superior features, such as high stiffness and strength, as well as ease 
of installation compared to other repair materials, externally bonded FRP sheets are now being explored and 
implemented for the repair and strengthening of concrete structural components all over the world. The materials' non-
corrosive and nonmagnetic properties and their chemical resistance made FRP a suitable choice for external 
reinforcement [1]. 

Externally bonded FRP composite materials to reinforce structures have gotten much attention in the last two decades. 
Externally bonded FRP sheets have been intensively pursued to improve reinforced concrete beams' flexural and shear 
performance. According to research, FRP strengthening significantly increases the post-cracking stiffness and ultimate 
load-carrying capability of flexure and shear elements [2,3,4,5,6,7]. 

The meager data or design guidelines available in the literature reveal that the FRP composite is a promising material 
for strengthening and repairing RC members subjected to torque [8, 9, 10]. Ghobarah [11] found that FRP torsional 
strengthening has improved the ductility and strength of RC beams. Hii and Al-Mahaidi [12] conducted experiments on 
torsional strengthening and discovered a 40% increase in cracking torque and angle of twist for ultimate torque strength. 
Deifalla et al. [13] examine the torsion behaviour of FRP externally strengthened flanged beams. Researchers concluded 
that the extended vertical U-jacket strip works better than the vertical U-jacket strip. Shraddha and Rathi [14] looked 
into how fibre-reinforced polymer fabric bonded with epoxy could be used to make reinforced concrete beams stronger 
in a twisting direction. Researchers find that fully wrapped U-jacketed beams of both CFRP and GFRP have greater 
torque strength. So, we can say cracks are less wide when CFRP and GFRP fabrics are used. A.N. Hanoon et al. [15] 
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found that the energy absorption capacity of reinforced specimens reinforced with CFRP with concrete strength of 55 
MPa was increased by (18.36%–29.14%) compared to un-strengthened beams with the same concrete grade. Askandar 
and Mahmood [16] describe the behavior of reinforced concrete beams strengthened with FRP sheets (strips) in various 
configurations. Due to the impact of different wrapping configurations, the fully wrapped beams performed better than 
the strip-wrapped beams. 

They were loading on offshore construction, motorways, multistory parking garages, and other structures. For a long 
time, extensive theoretical and experimental research on reinforced concrete beams has yielded fundamental approaches 
to serviceability design under static stresses. However, the consequences of repeated loading on reinforced concrete 
beams for cracking and deflection are still uncommon and poorly understood. Unlike static loading, concrete structures 
subjected to repeated loads undergo more deflection. There are a lot of permanent sets in this deflection, and permanent 
deflections rise in proportion to the number of load cycles. Many researchers have seen this behavior, yet there is 
currently a scarcity of relevant experimental data [17]. 

We conclude from the above that there is a progressive increase in strengthening concrete structures, particularly 
bridges, by using FRP composite strengthening techniques. Recently, an externally bonded reinforcement carbon fiber 
polymer was demonstrated to be a powerful strengthening technique. However, this technique has not been examined 
under repeated torsion loading conditions like traffic loads on bridge girders. The main objective of this study is to look 
at how hollow concrete beams with externally bonded carbon fiber reinforced polymer (CFRP) stripes behave when 
subjected to monotonic and repeated torsional loads. 

2. Experimental Program 
2.1 Specimen Details 

In the experimental program, eight concrete beam specimens with a rectangular hollow cross-section (350) mm in 
depth, (250) mm in width, and (3000) mm in length, and a circular hollow in the center of the concrete samples with a 
diameter of 100 mm, were cast using ready-mixed concrete and tested under pure torsion up to failure. 

All beams were reinforced with (4 φ 12 mm) and (2φ 8 mm) longitudinal bars around the perimeter. The beams were 
designed intentionally to display torsion failure at their central parts. End zones of 0.4 m on each end of the beam were 
reinforced with (8 mm) stirrups spaced at 60 mm on the center to force failure in the mid-zone of the tested beam. The 
2.2 m test region was chosen so that at least three complete spiral cracks at an angle of 45o would form along its length, 
so it was reinforced with (8 mm) stirrups spaced at 120 mm on the center. Reinforcements in both transverse and 
longitudinal directions are given for torsion specifications to prevent the collapse of the beam at cracking. The steel 
reinforcement details and the beam cross-section dimensions used for each beam are shown in figure1. The yield 
strength of the (φ 8 mm and φ 12 mm) was tested experimentally and determined to be (475 and 410) Mpa, 
respectively. 

Reinforced concrete specimens of identical dimensions and reinforcement have been cast using a concrete mix that was 
designed to achieve an average compressive concrete strength cylinder (300 mm and diameter is 150 mm) strength of 
(30 MPa) at (28) days (normal strength concrete), and the slump was approximately 100 mm. Figure 2 depicts the 
specifics of the employed moulds and reinforcing steel. 

 

Fig. 1. Dimensions and reinforcement details of the tested beams 
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Fig. 2. Molds and reinforcement steel used for casting sample. 

2.2 Torsion strengthening configurations 

The strengthening system is chosen carefully according to some considerations, mainly the crack pattern around the 
specimen and the most effective and economical application in practice. In addition to the mechanism by which the 
rotation of the concrete section is restricted, a total of eight beams were used in this analysis to determine the most 
important strengthening variables for torsional behaviour. Two of these beams did not have any extra material added to 
be used as "control beams". 

The strengthening samples included six beams strengthened with CFRP stripe materials with EBR methods in different 
schemes and tested up to failure. The first two beams are strengthened by using one continuous fabric wrapped at an 
equal width (7 cm) at each face around the sample at an angle of 45o and continuing through the total length of the 
sample. The other samples have been strengthened by doubling the stripe wrapped around the same width. Other 
techniques for wrapping the fabric were used in this study for the last two beams, which were strengthened by using a 
stripe that takes a spiral path around the sample. The difference between this technique and the previous technique used 
in this study is that the path taken by the tape in this technique parallels the supposed crack line on the other side of the 
beam, in contrast to the previous method, in which the tape was following a path perpendicular to the assumed crack 
line, and the purpose of that is to show the extent to which the direction of the strengthened CFRP fabric affects the 
threshold properties.  

It is noticeable that they have two beams for each state of study, one tested under monotonic load and the other for 
repeated load with seven cycles of service load taken at 60% of the monotonic load. Also, they use the same cross-
section area of materials for each type of scheme to compare them. Table 1 shows the description of all tested beams in 
this study, and figures 3 show the strengthening scheme of the tested beams. 

Table 1: The designation and description of all tested beams in this study. 
Beam 

designation 
Type of 

Load 
No of 
Cycles Details of Strengthening 

C-H-M Monotonic - 
Un-strengthened C-H-R Repeated 7 

Cycles 
S-H-M-EC-1C Monotonic - One continuous stripe of 7 cm wide around the sample at an angle of 45° and 

continuing through the total length of the sample, the horizontal spacing between 
the stripes equals 50 cm. 

S-H-R-EC-1C Repeated 7 
Cycles 

S-H-M-EC-2C Monotonic - Two continuous stripes of 7 cm wide around the sample at an angle of 45° and 
continuing through the total length of the sample, the horizontal spacing between 
the stripes equals 25 cm. 

S-H-R-EC-2C Repeated 7 
Cycles 

S-H-M-EC-1S Monotonic - A spiral stripe of 7 cm wide is drawn around the sample at an angle of 45°. The 
stripe goes around the sample for the entire sample length, and the horizontal 
spacing between the stripes is 25 cm. This method's path of the stripe is parallel 
to the supposed crack line on the other side of the beam. S-H-R-EC-1S Repeated 7 

Cycles 
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Fig. 3. strengthening scheme of the tested beams. 

2.3 FRP Material properties 

Sika Warp-300C carbon fiber fabric and Sikadur-330 epoxy-based saturated resin were employed in the experiment. 
Unidirectional CFRP fabric with 0.17 mm per ply (SikaWrap-300C) was used. According to the manufacturer, the 
elastic modulus, ultimate tensile strength, and elongation at failure of the fiber were 230 Gpa, 3900 Mpa, and 15 mm/m, 
respectively. The bonding adhesive supplied by the same company has a trading name of "Sikadur-330" and is used as a 
bonding agent for the dry application of CFRP fabric. According to the manufacturer, epoxy resin has two components 
(A and B). The mixing proportion of those components is 4:1 with an open time of 30 min. with density, elastic 
modulus, and tensile strength of 1310 kg/m3, 3800 Mpa, and 30 Mpa, respectively, were used to connect the CFRP 
fabric to concrete. 

2.4 CFRP Composite System Application to Existing Reinforced Concrete Element 

The procedure used in applying the CFRP composite system is summarized below. These steps were followed 
according to the recommendation of the CFRP manufacturer. 

The bond between the reinforced concrete beams and the CFRP was given special attention during the strengthening 
process. A handheld grinder was used to grind the concrete surface at the place of glueing the CFRP to the concrete to 
remove the soft surface before attaching the CFRP to the concrete. Again, the grinder was used to arciform the concrete 
corners to a minimum radius of 13 mm [1] and reduce stress concentration in the fibers at the edges. CFRP sheets will 
rupture at the corner edges due to this stress concentration before reaching their ultimate strength. 

The application of CFRP to the concrete substrate was made in stages. Before using the CFRP sheet, the beams were 
wire brushed and vacuumed. The resin (Sikadur-330) was mixed and applied to the prepared concrete surface using a 
brush at roughly 0.8 kg/m2 to 1.2 kg/m2, depending on substrate roughness. For all specimens, the SikaWrap®-300C 
fabric was cut into 70 mm wide strips with scissors for the required length (choosing the width of the strip according to 
the requirements of comparison with studies conducted with other strengthening materials of the same cross-sectional 
area). With a unique plastic roller, the SikaWrap®-300C strip was applied to the resin until the resin was squeezed out 
between the roving. The SikaWrap®-300C cloth was applied to the resin coating in the correct direction. In this case, 
Figure 4 shows applying the CFRP system to the concrete element. 

 
Fig. 4. Applying the CFRP system to the concrete beams. 

2.5 Instrumentation and Testing 

In the university's structural laboratory, all beams are tested in pure torsion until they fail. Two external arms attached at 
both ends were used to apply torque to various eccentricities. The load was applied at the ends of the beam using a 2000 
kN hydraulic jack through a diagonal (I) section steel girder with a (300) mm depth and a (4000) mm length. Under the 
jack, load cells were fixed to measure the applied load. These arms could achieve a maximum eccentricity of 500 mm 
concerning the beam's longitudinal axis. The utilized supports allowed rotation around the longitudinal axis to achieve 

C-H-M 
C-H-R 

 

S-H-M-EC-1C  
S-H-R-EC-1C 

 

S-H-M-EC-2C 
 S-H-R-EC-2C 
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pure torsion. Two LVDT sensors were attached to the bottom of each end of the beam. The sensors recorded the uplift 
and down values so that the twist angle at each end of the beam could be found. 

The first cracks and the crack width of concrete were measured using a micro crack meter with (0.02 mm) accuracy. 
The ultimate torsion capacity and the twist angle were determined as the load was applied gradually. Readings were 
obtained using the data logger connected to the device's computer, which transmits the data on the loads and 
displacements from the load cell and LVDT sensors. Torque gradually increased up to the failure of the beams. Failure 
is defined by dropping the loading capacity and increasing the rotation of the beam. To measure the elongation of the 
beam, dial gages were fixed in the center of each beam's one end. Figure 5 shows the test setup with the loading frame 
and specific clamping loading structure on each end of the beam employed in this study. 

 
Fig. 5. Testing setup with the loading frame. 

3. Results and discussion 

In order to understand the behavior of reinforced concrete specimens and CFRP strengthened specimens under 
monotonic and repeated torsion loads, the twist of the specimen is measured at regular intervals of torque up to failure. 
Also, all specimens' torque at the first crack and ultimate torque is observed. The failure mechanism of each specimen is 
observed to understand the role of CFRP in torsional strengthening subjected to different load types. Table 2 
summarizes the concrete beams' cracking torque (Tcr), ultimate torque (Tu), and ultimate twist angle (θu). 

Table 2: The Experimental results of the tested beams. 

Beam designation Tcr 
(kN. m) 

% increase 
of Tcr 

 

Tu 
(kN. m) 

% increase 
of Tu θu 

deg./m 

% increase 
of θu 

C-H-M 7.09 - 15.39 - 2.72 - 
S-H-M-EC-1C 11.04 55.7 25.79 67.6 4.03 48.2 
S-H-M-EC-2C 12.03 69.7 28.856 87.5 4.754 74.8 
S-H-M-EC-1S 11.9 67.8 28.5 85.2 4.666 71.5 

C-H-R 6.99 - 12.62 - 2.338 - 
S-H-R-EC-1C 11 58.3 20.645 63.6 3.57 52.7 
S-H-R-EC-2C 11.907 71.3 22.83 80.9 4.096 75.2 
S-H-R-EC-1S 11.766 69.3 22.43 77.7 3.98 70.4 

3.1 Cracking and Ultimate Torque Comparison 

The cracking torsional moment (Tcr) is the torque at which cracking appears and shows that the section's tension 
strength's applied stress has been exceeded. However, the ultimate torsional moment (Tu) reflects the load-carrying 
capacity of the tested beam, and the beam rapidly deforms after that drop in machine reading. 

3.1.1 Influence of techniques used for strengthening on cracking and Ultimate torsional moment carrying 
capacity.  

The first crack of all specimens appeared approximately at apposition, between the support and mid-span of the tested 
beams. The first crack torque and ultimate torsional moment carrying capacity of the control and strengthened beams by 
CFRP under the influence of monotonic and repeated loads are shown in figure 6. Nonlinear improvement of the crack 
and ultimate torsional moment carrying capacity of the strengthened beams to the control beam, significantly for beams 
strengthened using double fabric CFRP around them. 
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The crack and ultimate torsional moment of the sample (S-H-M-EC-2C) tested under monotonic load were 12.03 & 
28.856 kN.m, respectively, while the torsional moment of the control beam was 7.09 & 15.39 kN.m. The value of the 
examined beam was under the influence of repeated loads compared with the control beams tested under the same 
loading conditions. The beams (S-H-R-EC-2C) had the crack and ultimate torsional moment of 11.907 & 22.83 kN.m, 
while the value of the crack and ultimate torsional moment of the control beam was 6.99 &12.62 kN.m. The 
strengthening method was mainly responsible for the improvement rather than the control beams. 

  
             (a) Beams tested under Monotonic loads.                            (b) Beams tested under Repeated loads.  

Fig. 6. Ultimate torque and cracking for the tested beams. 

As shown in figure 7, The percentage of enhancement in cracking and ultimate torsional moments for the tested beams 
with different CFRP strengthening techniques (S-H-M-EC-1C, S-H-M-EC-2C, S-H-M-EC-1S) compared to the 
control specimen (C-H-M) tested under monotonic load is (55.7%,69.7%,67.8%) in crack torsional and 
(67.6%,87.5%,85.2%) in the ultimate torsional moment, respectively. The percentage of enhancement in the cracking 
and ultimate torsional moment for the specimens (S-H-R-EC-1C, S-H-R-EC-2C, S-H-R-EC-1S) subjected to repeated 
loads is (58.3%,71.3%,69.3%) in crack torsional and (63.15%,80.9%,77.7%) in the ultimate torsional moment, 
compared to the control specimen (C-H-R ). 

 
              (a) Beams tested under Monotonic loads.                               (b) Beams tested under Repeated loads. 

Fig. 7. Percentage improvements in the torque of the beams tested. 

3.1.2 The effect of the repeated load on cracking and Ultimate torsional moment. 

Under monotonic loading, all the tested beams behaved elastically during the applied load and at the low load level, and 
the rotation at the ends of the beam specimens was slight in proportion to the applied loads. When the load is increased, 
the first crack occurs, and several cracks are observed in the region of the pure torsion moment. When beam specimens 
are subjected to repeated loading, similar cracks in the monotonic test were observed in the first cycle. In the subsequent 
cycles, the same cracks observed in the first cycle during the loading phase were gradually widened and propagated 
diagonally along the beams, at the last cycle, beams loaded up to failure. 

For this reason, repeated loads do not affect the crack torsion moment characteristics of the strengthened and un-
strengthened beams compared with the beams tested under the influence of monotonous loads, while the effect of 
repeated loading resulting from cycles of loading and unloading is to reduce the value of the ultimate torsional moments 
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of the reference and reinforced beams when they are compared with beams similar to those tested under the influence of 
monotonous loads. 

As shown in figure 8, The percentage of decrease in the ultimate torsional moment carrying capacity of the 
strengthened and un-strengthened beams (C-H-R, S-H-R-EC-1C, S-H-R-EC-2C, S-H-R-EC-1S) under the influence 
of repeated loads resulting from cycles compared with the control beams is (17.99%,19.9%,20.8%,21.3%), respectively. 

 
Fig. 8. Ultimate torque value of tested beams under monotonic and repeated loads. 

3.2 Torque–twist behaviour comparison 

The torque-twist relationships for tested beams (strengthened and un-strengthened) under monotonic static loading and 
counterpart specimens after seven repeated loading cycles are shown in figures 9-12. In general, linear elastic 
behaviour was observed in all beams first, followed by a considerable increase in twist angle and a gradual increase in 
torque until failure. The crack and ultimate torques for each beam were calculated using the torsion-twist curves, with 
the ultimate torque being the maximum torque beyond which the beam will fail and the crack torque being the torque at 
which the first diagonal crack appears. The torque vs angle of the twist curve revealed the first cracking, with the torque 
dropping suddenly at the point of first cracking, followed by a change in the slope of the torque-twist curve. The effect 
of external CFRP strengthening and the type of loading applied to the beams were discussed in the previous paragraphs. 

 
                   (a) Beams tested under Monotonic loads.                         (b) Beams tested under Repeated loads. 
Fig. 9. Torque - twist angle relationship of tested beams ((C-H-M) &(C-H-R)) under Monotonic and repeated loads. 

 
                 (a) Beams tested under Monotonic loads.                             (b) Beams tested under Repeated loads. 
Fig. 10. Torque - twist angle relationship of tested beams ((S-H-M-EC-1C) &(S-H-R-EC-1C)) under Monotonic and 
repeated loads. 
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C-H 15.39 12.62
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                (a) Beams tested under Monotonic loads.                                (b) Beams tested under Repeated loads. 
Fig. 11. Torque - twist angle relationship of tested beams ((S-H-M-EC-2C) & (S-H-R-EC-2C)) under Monotonic and 
repeated loads. 

 
                 (a) Beams tested under Monotonic loads.                               (b) Beams tested under Repeated loads. 
Fig. 12. Torque - twist angle relationship of tested beams ((S-H-M-EC-1S) & (S-H-R-EC-1S)) under Monotonic and 
repeated loads. 

3.3 Angles of twist  

The angle at which a beam's free end rotates concerning the fixed end. When a body is twisted by force, one end or 
section of a longitudinal axis rotates in one direction while the other is turned opposite. Two LVDTs were attached to 
the steel plate at the end of the beams to measure the twist angle. Figures 9-12 show that each tested beam's average of 
two twist angles is plotted against the torsional moment. As the ultimate torsional moment value increases, the beam's 
maximum twisting angle increases. As a result, as the beams are strengthened, the area under the curve increases 
gradually. The increase in value of twist at ultimate torque of beams strengthened with different CFRP strengthening 
techniques (SHMEC1C, SHMEC2C, SHMEC1S) compared to the control specimen (CHM) tested under monotonic 
load is (48.16 %,74.78 %,71.54%) and (52.69%,75.19%,70.39%) for beam specimens tested under repeated load effect. 

In this regard, the angle of twist for the identical beams tested under the effect of repeated loads is less than the angle of 
twist for the identical beams tested under monotonic load at their twist angle at the ultimate torsion moment. 

3.4 Longitudinal elongation response 

Because of the formation and widening of concrete cracks, all beams elongated longitudinally once they reached the 
cracking torsional moment. We recorded the elongation values for each load during the test until the torsional moment 
reached its peak. 

Control beams C-H-M and C-H-R (2.16 and 2.056) mm had the highest elongation at peak torsional moment. The 
supporting members may constrain this elongation in functional structures, especially monolithic concrete construction. 
However, the effect of this elongation (or its restriction) may require more consideration. The beams strengthened with 
external CFRP stripe using various strengthening techniques reduced longitudinal elongation values by (18.8%,28.77%, 
and 30.55%) for beams tested under monotonic load and (22.18%, 28.01%, and 28.4%) for beams tested under repeated 
load when compared to un-strengthened samples tested under the same condition tested. That means the CFRP restraint 
of cracks from propagation and widening. 

Figure 13 shows the torque-longitudinal elongation relationships for the beams tested under monotonic load. It can be 
seen that beam elongations at the center of the supported end had started in the early stages after cracking. Figure 14 
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shows the effect of repeated loads on the longitudinal elongation values of the tested beams compared with their 
counterparts tested under the influence of monotonous loads. 

 
Fig. 13. Beam longitudinal elongation tested under monotonic loads. 

 
Fig. 14. longitudinal elongation value of tested beams under monotonic and repeated loads. 

3.5 Crack width response 

The effect of the strengthened CFRP stripe and type of load on the width of the cracks generated on the surface of the 
models was one of the most important things that were noticed when examining all of the models. A micro concrete 
crack width meter was used to measure and record the crack widths at each load increment during the test, as illustrated 
in figure 15. Compared to controlled beams, strengthening beams (SHMEC1C, SHMEC2C, SHMEC1S) and 
(SHREC1C, SHREC2C, SHREC1S) resulted in a decrease in the crack width value at ultimate torque. The 
strengthening has reduced crack width in the center regions, according to the results. In other words, the crack behavior 
was improved. 

 
Fig. 15. measure and record the crack widths during the test. 
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The torque-crack width relationships for the beams tested under monotonic load are shown in figure 16. There will be a 
comparison of specimens tested under monotonic static loading and specimens subjected to repeated loading. This 
comparison aims to see how repeated loading influences crack width. Figure 17 compares maximum crack width for 
specimens subjected to monotonic static loading and counterpart specimens subjected to restricted repeated loading 
cycles. The decrease in crack width for beams under repeated load compared to beams tested under monotonic load is 
due mainly to new large cracks that developed due to the applied cycles of repeating load and the reduction in ultimate 
load. 

 
Fig. 16. Crack width behavior of beams tested under monotonic loads. 

 
Fig. 17. Crack width value of tested beams under monotonic and repeated loads. 

3.6 Torsional Stiffness 
Stiffness is a property that can be used to describe the rigidity of a material. Thus, torsional stiffness is the amount of 
resistance a member provides for each degree of twist. Torsional stiffness before cracking is defined as stiffness 
previous to cracking (Kpre). It can be calculated from the torque-twist curve as the pre-cracking tangent slope of this 
curve, as in equation (1), whereas stiffness after cracking is defined as a post-cracking stiffness (Kpost) significantly 
less than that of the pre-cracking stiffness. As in equation (2), it represents the tangent slope of the torque-twist curve 
following cracking [18]. In the current study, this method was used to calculate stiffness, figures 18 and 19 show the 
effect of parameters on the pre and post-stiffness values, respectively. 

k𝐩𝐫𝐞−𝐜𝐫𝐚𝐜𝐤𝐢𝐧𝐠 = 𝐓𝐜𝐫/Ө𝐜𝐫	   ………….                                                                                                                                                  (1) 

k𝐩𝐨𝐬𝐭−𝐜𝐫𝐚𝐜𝐤𝐢𝐧𝐠 = (𝐓𝐦𝐚𝐱−𝐓𝐜𝐫)	/	(Ө𝐦𝐚𝐱−Ө𝐜𝐫)   ……....…..                                                                                                                     (2) 

The torsional stiffness of strengthened beams is greater than that of un-strengthened beams (monotonic and repeated 
loads). This is because the CFRP stripe adds stiffness and increases the torsional capacity, particularly at the model's 
linear relationship between twisting angle and torque stage. 

Under repeated load effects, the torsional stiffness of beams is lower than under monotonic load effects 
because the loading and unloading process makes the ultimate torsional capacity of the beams less than 
before. 

0
5

10
15
20
25
30

-1 0 1 2 3 4

Ap
pl

ie
d 

to
rq

ue
 (k

N
.m

)

Crack width (mm) 
CHM SHMEC1C

SHMEC2C SHMEC2CS

Monotonic load Repeated load
C-H 3.17 3.37
S-H-EC-1C 2.33 2.29
S-H-EC-2C 2.25 2.15
S-H-EC-1S 2.1 2.05

1.5
1.7
1.9
2.1
2.3
2.5
2.7
2.9
3.1
3.3
3.5

Cr
ac

k 
w

id
th

 (m
m

)



 Inf. Sci. Lett. 12, No. 1, 427-441 (2023)         /  http://www.naturalspublishing.com/Journals.asp                                                     437 

 
                                                                                                                                                                                                                                                     © 2023 NSP 
                                                                                                                                                                                                                                                                                      Natural Sciences Publishing Cor. 
 

 
Fig. 18. Effect variables on pre-cracking stiffness value. 

 
Fig. 19. Effect variables on post-cracking stiffness value. 

3.7 The Energy Absorption and The Ductility 

Mechanical energy is converted into internal potential energy by reinforced concrete members, and this is due to those 
members' inherent ductility and energy absorption. In addition, concrete members have to deal with many complicated 
processes, like the fracture mechanics of concrete cracking and the deformations caused by elastic and plastic forces 
[15]. 

Many studies have shown that the ductility of reinforced concrete members is related to how much energy they can take 
in. This study computed the areas under energy absorption curves for all beams tested. With this note, the energy 
absorbed at each cycle of the torque-twist curves of beams subjected to repeated loads is calculated, and the cumulative 
absorbed energy for each girder is then calculated. 

The ductility ratio is usually defined as the ratio of the angle of twist corresponding to ultimate torque to the angle of 
the twist that corresponds to the yield torque. As shown in figure 20, Strengthened beams with CFRP stripes with 
different technics decreased the ductility factor of the beams by (4.18%, 13.58%, and 12.238%) compared with 
controlled beams tested under monotonic loads and (4.87%, 17.916%, and 18.7%) for beams tested under repeated 
loads. This is due to the CFRP's brittle nature, which affects the ductility of the overall strengthened beams. 
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Fig. 20. Effect variables on ductility factor. 

The ductility factor of tested beams under monotonic load is greater than the values of the ductility factor of tested 
beams under repeated loads after a cycle of loads because of the loss in the stiffness of the beams when they are 
subjected to repeated loads, especially in the last five or six cycles of the loading and unloading process. 

Generally, the energy absorption capacity of CFRP reinforced beams was much larger than that of unreinforced beams. 
This was attributed to the CFRP fabrics' capacity to limit crack propagation. Repeated loading was seen to have a 
detrimental effect on the rise in cracking and ultimate loads. In pure torsion, the maximum increase in cracking loads 
was noted. CFRP strips showed more significant post-cracking energy deformation and energy absorption capacities 
than reference beams. 

The experimental result shows that the energy absorption capacity of reinforced concrete beams externally bonded with 
CFRP stripe is more than that of un-strengthened beams, as illustrated in figure 21 and figure 22. However, the 
predominant mode of failure was CFRP strip debonding. Additionally, CFRP strips provided greater post-cracking 
rigidity and confinement, which increased ultimate torque. 

 
Fig. 21. Energy absorption capacity of beams tested under monotonic load. 
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Fig. 22. Cumulative Energy absorption capacity of beams tested under repeated load. 

3.8 Failure Mechanism 

All reinforced concrete beams subjected to testing failed due to torsional moments. We found typically reinforced beam 
cracking in both control and strengthened beams, and diagonal cracks developed in a spiral pattern on all four sides of 
the testing span. 

As the applied loading rose, the cracks grew larger at both ends and around the reinforced concrete beam's centroidal 
axis. Upgraded beams with CFRP strips failed at a slower rate than control beams. Additionally, the failure of CFRP 
was shown by the debonding of CFRP fabrics and the concrete crash. Compared to the control beam, the strengthened 
beam had more cracks due to the rising tensile stress. The photograph shown in figure 23 demonstrates that most cracks 
in the reinforced beams were dispersed and contained inside the concrete surfaces between the CFRP strips. 

 
Fig. 23. Failure modes of beams tested under monotonic and repeated loads. 

The failure mechanism for each specimen exposed to repeated loading was similar to that of its counterpart subjected to 
monotonic static loading on the specimen. 

4. Conclusions 
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1. Despite the different CFRP stripe patterns and load types, all strengthened beams exhibited more excellent torsional 
resistance than the control beam. 

2. The percentage of improvement in cracking and ultimate torsional moments and value of twist at ultimate torque for 
the tested beams with various CFRP strengthening techniques (S-H-M-EC-1C, S-H-M-EC-2C, S-H-M-EC-1S) compared 
with the control specimen (C-H-M) tested under monotonic load is (55.7%, 69.7%, 67.8%) in crack torsional and 
(67.6%,87.5%,85.2%) in the ultimate torsional moment and (48.2%, 74.8%, and 71.5%) in twist angle value, 
respectively. 

3. When compared to the control beam (C-H-R), the percentage of improvement in cracking and ultimate torsional 
moments and value of twist at ultimate torque for the tested beams (S-H-R-EC-1C, S-H-R-EC-2C, S-H-R-EC-1S) 
subjected to repeated loads is (58.3%, 71.3%, 69.3%) and (63.15%, 80.9%, 77.7%) and (52.7%, 75.2%, 70.4%), 
respectively. 

4. Repeated loads do not change the crack torsion moment characteristics of the strengthened and un-strengthened 
beams compared to those tested under monotonous loads. However, repeated loading from cycles of loading and 
unloading does lower the value of the ultimate torsional moments of the reference and strengthened beams when 
compared to beams tested under monotonous loads.  

5. When compared to un-strengthened beams, longitudinal elongation and crack width values were reduced by (18.8%, 
28.77%, 30.55%) and (26.5%, 29.02%, 33.75%) for beams tested under monotonic load and by (22.18 %, 28.01%, 
28.4%) and (33.23%, 36.20%, 39.17%) for beams tested under repeated load. This indicates that the CFRP restricts the 
propagation and growth of cracks. 

6.   Under repeated loading, the crack width is smaller than when beams are tested under monotonic load. This is mostly 
because the applied cycles of repeating load and the lower ultimate load caused new large cracks to form. 

7. The torsional stiffness of strengthened beams exceeds that of un-strengthened beams (monotonic and repeated loads). 
The CFRP stripe increases stiffness and torsional capacity, especially at the model's linear relationship between twisting 
angle and torque stage. 

8. The energy absorption ability of beams strengthened with CFRP was much greater than those without strengthening. 
This was ascribed to the ability of CFRP fabrics to prevent crack growth. Repeated loading was shown to have a 
deleterious impact on the increase in cracking and ultimate loads. The most significant increase in cracking loads was 
seen in pure torsion. CFRP strips' post-cracking energy deformation and energy absorption capabilities were much more 
significant than reference beams. 

9. The failure rate of upgraded beams with CFRP strips was lower than that of control beams. Additionally, the 
debonding of CFRP fabrics and the concrete crash. The failure mechanism for each specimen exposed to repeated 
loading was similar to that of its counterpart subjected to monotonic static loading on the specimen. 
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