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Abstract: In this paper, a new two-parameter continuous distribution called Sameera distribution is proposed. Some statistical
properties of this distribution are derived such as: moment-generating function, moments, and related measures, reliability analysis
and associated functions. Also, the distribution of order statistics and the quantile function are presented. The Shannon, Rényi, and
Tsallis entropies are derived. The methods of maximum likelihood estimation, ordinary and weighted least squares, Anderson-Darling,
Cramer-Von Mises, and maximum product spacing are used to estimate the distribution parameters. A simulation study is performed to
investigate the performance of these methods. Real data applications show that the proposed distribution can provide a better fit than

several competitive distributions.
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1 Introduction

In statistics, modeling lifetime data is an important
issue in many fields including biomedical sciences,
economics, finance, engineering. A lot of continuous
distributions have introduced for modeling such data.
Many ways are recently used to propose new models such
as the mixture of two or more distributions. These
distributions are used in many fields of life such as:
medicine, environment, biostatistics, and many others.
Several distributions have been proposed from mixing
distributions, for example, [l] suggested Darna
(£) and r(3,£) with

distribution as a mixture of Exp|

mixing proportion [2] employed the concept of

2a

202+p2°
mixture distributions using the Exp(f) and I'(ax — 1, 3),
with mixture proportions —— 2B 1o suggest a

af+1 af+1°
new two parameters distribution called Alzoubi
distribution. [3] employed the same concept to suggest
Benrabia distribution as a mixture of exponential and
gamma distributions. Alzoubi, et al. [4] proposed a new
distribution called Loai distribution as a mixture of

Lindley(0) and gamma(3,0). The properties of this

and

distribution are studied. Different methods of parameter
estimation are employed. Gharaibeh distribution is
proposed by [5] as a four components mixture of exp(f3),
I'2,B8), I'(4,B) and I'(6,8) with mixing proportions
6 4 2

PR R Fep A g
respectively. [6] suggested a new lifetime distribution
using mixture of distributions technique, called Karam
distribution. On the other hand, rank transmutation map
suggested by [7] is another technique used to propose
new distributions. For example, [8] used this map to
generate the transmuted Mukherjee-Islam distribution.
This map is also used to make a generalization of the new
Weibull-Pareto distribution [10]. Many other transmuted
distributions have been suggested using this map,
including transmuted Janardan distribution  [9],
transmuted gamma-Gompertz distribution [11],
transmuted Ishita distribution [12], transmuted Aradhana
distribution [13] and many others, for example [15], [16],
[17], [18], [19], [20], [21].

an

The idea of combining kernel functions with a
distribution is used to generate new distributions. For
example, [22] compounded the biweight kernel function
with the exponential distribution to propose the biweight
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exponential distribution by combining the biweight kernel
function and the exponential distribution. [23] used
Epanechnikov kernel function and the exponential
distribution to generate the Epanechnikov exponential
distribution.

A random variable X is said to have a mixture of k
distributions f (x),---, fy(x), if its probability density
function (pdf) g(x) = Y*, a;fi(x) with 0 < a; < 1 is the
mixing weight, such that Y¥_, a; = 1.

In this article, we adopt the idea of mixing
distributions of exponential with parameter  and gamma
with parameters o and 3 to suggest a new two parameters
distribution called Sameera distribution with mixing

proportions a; = and ap; = denoted as

2B 1
1+a2p 1+a2B’
X ~ SamD(o, B). Also, we want to prove that the
suggested distribution is more flexible than the base
distribution based on some real lifetime data.

This paper is organized as follows, in Section 2, we
define the probability density and the cumulative
distribution function of Sameera distribution. In Section
3, we consider some statistical properties including the
moment generating function, the moments, and some
related measures. In Section 4, the reliability analysis
functions are derived. In Section 5, we describe the
density of order statistics and the quantile function.
Sections 6 and 7 derive the Bonferroni and Lorenz curves
and the entropies; respectively. Section 8 implements the
mean absolute deviation about the mean and median. In
Section 9 we used different methods of estimation to
estimate the model parameters. Section 10 introduces the
stress-strength reliability. In Section 11, we provide a
simulation study for the methods of estimation. Section
12 presents applications to real lifetime data sets. Finally,
in Section 13 we sum up the article.

where y(a,x) = [it* le7'dt, is the lower incomplete
gamma function. The graphs of the pdf and cdf of
Sameera distribution are presented in Figures 1 and 2;
respectively.
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Fig. 1: The pdf of SamD when o = 0.5, 2, 3.5 and 5 for different
values of

a=0.5 a=2

2 Sameera Distribution o |

In this section, we define the probability density ¥ S
function (pdf) and the cumulative distribution function S
(cdf) of the proposed distribution with graphical s s
illustration for both of them. T 00 04 08 12
Definition 1.A random variable X is said to have Sameera x x
distribution if its pdf is defined as:

202 a—1lpo a=3.5 a=5
o’ x* B _
v B) M P ) 7
I+a’f  (1+o’B)I(a) N -
x>0, a>0,>0 (D =~ A = - B=2
. ¥ o« Y B=25

Note: For oo = 1, SamD reduces to the exponential T 3 T 3 =3
distribution with parameter f3. o o - g:i's

The cumulative distribution function of Sameera S T r—T—T— T S T T T T 1
distribution is given by 00 05 10 15 20 00 10 20 30
W(xof) = o [@B(1— ) + y(ec )] X X

’ 1+ a2B ’ ’ Fig. 2: The cdf of SamD when o = 0.5, 2, 3.5 and 5 for different
x>0, ¢>0,8>0, (2)  Valuesof B
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3 Moments and Moment Generating
Function

Moment generating function and the 7" moment are
derived in this section. Accordingly, the mean, variance,
kurtosis, skewness and coefficient of variation are
calculated.

Theorem 1.7he moment generating function of Sameera
distribution can be expressed as follows

(5 ) v o
Proof

Mx(t) = E (%) = /Oooetxl//(x)dx

- ./ou (112522;3 0 +x;2;sﬁ);(a)) ¢ P

b (5 (). <

Theorem 2.The 1" moment of Sameera distribution can
be expressed as follows

1 2T (r+1) TI'(r+o)
1+a2ﬁ[ BT BT(w)

ProofLet X have a SamD(a., 8), then the /" moment is

E(X") = /warl[/(x)dx

o 232
(2
0 1+ a’p

Mx (1)

E(X") } @

xocflﬁa px
( +a2ﬁ)F(a)>e o

_ oo xraZBQ xr+a71Ba pa
-, <1+azﬁ+(1+a2ﬁ)F(a)>e o
1

_ 2B e B

TP {/0 aBxe X
< 1

+/ _XH»(X*I aefﬁxdx}

o I'(a) P

_ U [plrt) Tirta)

C 1+a?p p=t  BT(a)

The first four moments can be found by substituting r = 1,

2,3 and 4 in (4). Thus

E(XS)ﬁ:%er(Hag(era)]
E(x) = 1+O(Cx2ﬁ :22?2 . (1+a)(2;—4a)(3+a)]

The variance, coefficient of variation, coefficient of
skewness and coefficient of kurtosis of the random
variable X ~ SamD(«, 3) are given; respectively, by:
Var(X) = 6% = E(X?)— (E(X))?
- 2(XSB270‘4B2+(X4B+O‘3B+O‘
- B (0?p +1)?
- \/2a5B2*a452+0‘4ﬁ+053B+05
N Bo2+a
(X3) —3uE(X?) +2u°
o3
C(7B2 +2a6B376a6B2+11a5B2
—a’B+703B 420
5
(20°B% —a*B2+a*f+ o’ +a)’
E(X*) —4pE(X3) +6u’E(X?) —3u*
v}
a'%B3 +600°B* + 100”83
—308B* + 770883 + 708 B2
+1400a7 B3 + 6207 B2 + 13705 B2
+170%B + 136a° B2 + 640° B
+970*B 4 80 + 5003 B
+2403 +19a% + 60
B4 (a2p+1)*
Figures 3 - 7 show the three dimensions plots of the
mean, standard deviation, skewness, excess kurtosis and
the coefficient of variation of Sameera distribution for
different values of o and . The figures show that the
distribution is skewed right with heavier tail than the
normal distribution as all values of excess kurtosis =
kurtosis — 3 [24] are positive. Also it shows that all
measure values decrease as the values of o and
increase.

CV =

N =lq

sk(X) =

ku(X) =

4 Reliability analysis

If T is a random variable that follows Sameera
distribution, then the survival or reliability function,
hazard, cumulative hazard function, the reversed hazard
rate and odd functions corresponding to (1) and (2) are
respectively, defined by

R(t) =1-¥(¢)
—1- ﬁ [0®B(1 =)+ y(00,)]
_ vy

"= Ty

(azﬁz_i_xo}*(;ﬁ)"‘) e Bx
1+ 02B — [o?B(1 —e P+ y(a,x)]
H(r) = —In(1-"P(t))

= —In [1 - ﬁ {oﬂﬁ(l —e P +y(a,x)H
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Fig. 3: The three dimension plot of the mean of SamD for
different values of @ and f3.
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Fig. 4: The three dimension plot of the standard deviation of
SamD for different values of & and 3.
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Fig. 5: The three dimension plot of the coefficient of skewness
of SamD for different values of o and 3.
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Fig. 6: The three dimension plot of the coefficient of kurtosis of
SamD for different values of & and 3.
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Fig. 7: The three dimension plot of the coefficient of variation of
SamD for different values of & and 3.

i) = YO _ Gl o L
(@) [a2B(1—e B+ y(ax)]’

B(1—e —Bx) )+ v(a, x)]

(1) 5

o) = 1=%(0) 1+ — [@2B(1—e )+ y(a,x)]

Figures 8 - 11 show that the reliability, hazard rate,
reversed hazard rate and the cumulative hazard rate
functions of SamD. They show that the hazard rate and
reversed hazard rate functions are decreasing functions as
the value of x is increasing. While the cumulative hazard
function is increasing.

5 Order Statistics and Quantile Function

In this section, we will derive the distribution of first,
n'" and j™ order statistics and the quantile function of
Sameera distribution.

®© 2022 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 16, No. 6, 1057-1071 (2022) / www.naturalspublishing.com/Journals.asp %N ==y 1061

w=05 wz2 By replacing (1) and (2) in (5) and using binomial theorem,
° § we get
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Fig. 8: The reliability function of SamD for ot = 0.5, 2, 3.5, 5. - -
a=0.5 a=21 % LY % o
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00 05 10 18 012384567 Fig. 10: The reversed hazard rate function of SamD for o =
x x 0.5,2,3.5,5.
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Fig. 9: The hazard rate function of SamD for o = 0.5, 2, 3.5, 5. S r— S
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5.1 Order statistics
2\ S| 2\
Let X(1),X(2),.--X(n) be the order statistics of the 3 -4 3
random sample X;,Xp,---,X, selected from Sameera o
distribution. Then the pdf of the j** order statistics X(j) is 00 1020 30
defined as x x

n Fig. 11: The cumulative hazard rate function of SamD for o0 =

.)W&W'U—W@W’w&) 5 0F25ss

8(j(*x) ZJ(J
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The distribution of the minimum order statistic Xj) =
min(X(,Xa,--+,X,) and the largest order statistic Xy =
max(Xy,Xa,- -+ ,X,) can be computed by replacing j in the
previous equation by 1 and n; respectively. So, we get

X [1 +a2B - [OCZB(l —e P4 }/((x,x)HrFl

X {(xzﬁ(l —ePry 4 J/(Oc,x)} ! e P

5.2 Quantile function

The quantile function of a probability distribution
with cdf, ¥(x), is defined by g = ¥ '(x;), where
0 < g < 1. Then, the quantile function of Sameera
distribution is given by

Q,= %f' (a,%‘? [p(l +0o’B) - G“?fx)]) , (6)

where y~!(.,.) is the inverse of the lower incomplete
gamma function.
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Fig. 12: The probability density functions of the first to sixth
and tenth order statistics for a sample of size 10 of Sameera
distribution when f8 = 2.

Figure 13 shows the quantile plot for different values
of g. The selected values are ¢ = 0.05, 0.25, 0.5, 0.75.
0.95 and 0.99. The figure shows that the line represent
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Fig. 13: The quantile function of SamD when o = 3 =2

each value of ¢ intersects the x-axis (horizontal line) in
one point only, which means that the quantile function
has exactly one solution regardless the value of g. This
solution can no be determined in a close form, so one can
use numerical methods to find this solution.

6 Bonferroni and Lorenz Curves

The Bonferroni [26] and Lorenz [27] curves of a
random variable X that follows Sameera distribution are
defined, respectively, as

B(p) = L[ d
) = — [,
1 4
L(p) = E/O xy(x)dx,

where g =¥~!(p); p€[0,1] and p = E(X).
Hence the Bonferroni and Lorenz curves of Sameera
distribution are, respectively, given by:

_ B ~Bq  Y(o+1,B4)
Bp) = b |- 1 et NP0

s M+ 1,80)
L) = Gy |0 (1 Bae bo HEELED)
7 Entropy

The Shannon entropy [28] is introduced to measure the
uncertainty about an event accompanying with a discrete
random variable. It can, also be defined for a continuous
random variable X as:

HX) = [ yios(y)ds 9
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where X is a non-negative random variable with
probability density function w(x). Thus for Sameera
distribution, the Shannon entropy is

B oo azﬁz xocflﬁoc By
HX) _/0 (1+a2B + (1+a2B)F(a))e ’

xlog ((1 (fgzzﬁ 0 +x22;£1(i<a>> eﬁx> "’“’

[29] defined Tsallis entropy based on a discrete
probabilities p; subject to the condition Y ;> p; =1 as

k o
Ss = 51 (1 _iz()pl) ; ®

For continuous random variables with probability density
function y(x). Tsallis entropy is defined as:

5= 50 (1- [ w0y ©)

where 6 € R, § # 1. Thus for Sameera distribution with
pdf defined in (1), Tsallis entropy is defined to be

k oo a’B?
S5 = ﬁ(l _/o <<1+(x2ﬁ
ocflﬁoc 6
_ X P N eBr) gy
+(1+a2B)F(a)> ) ")

w & Lo-lga J
- L1(1 - Zo(f) ((1+aZII£F(a)>

k 5 18\ [ 26~ 2E—i)tia
i (1 ,g(j) ((1 +a2ﬁ)5(1“(a))f)
x/(;wxjml)eﬁaxdx)

8\ [ o260 p2s-i)+ja
j) ((l +a2B)5(F(a))f)

Il
ik
\ /-~

—

|

.

1M
VR

k(& 8\ [aPE BB (jla—1)+1)
5—'(1 ,g(l)( (1+a?B)? (I ()] ))

The limit of Tsallis entropy as & approaches 1, results
in Shannon entropy [29].

The Re’nyi entropy [30] of order § for a continuous
random variable X ~ SamD(a, 3) can be derived similar

to Tsallis entropy. It is defined as:

Rs = (ﬁ) log [/{ y/""(x)dx]
- (is)m[£0)

y (W”ﬁ””r(j(a 1)y 1))

(1+0a?B)>(I(at))/

Table 2 shows the numerical results of Shannon, Tsallis
and Re’nyi entropies for different values of & of 1 to 1.14
with step of 0.02 and values of  of 1-1.10 with step 0.02.
For Tsallis and Re’nyi entropies the value of § =5 is used.
These values are calculated using the R software [31].

8 Mean Deviations about Mean and Median

One of the good measure of variability from the mean
of the data is the mean deviation about mean or median
[32]. Hence, for Sameera distribution they are defined
respectively, as

MDpan = EIX —pt| = | = ply(dx
= [Mw—ovear+ [ wwds
0 u
u
=2 [ (u—dx
U
—ouW(u) -2 /0 xy(x)dx
2 (aB+1) [ a?B(a+1)
1+a?2B )| 1+a2B 1+o2p
x <l_eﬁﬂ> +y(a,[3u)>
[a2<l(ﬁu+1)eﬁ”> +Y(a+B1’B”)H }

where 7y(a,x) is the incomplete gamma function and

Hence,

MDyean =

u= ﬁ [a—i— H The mean absolute deviation about

the median (M) is defined similar to the mean absolute
deviation about mean as:

14+ a2 14+ a2p

X (l - eﬁM> + y(a,ﬁM))

_|:a2<l_(ﬁM+])eﬁM> + Y(a+[31BM):|:| }7

where M is he median of Sameera distribution and it is the
solution of the equation ¥ (M) = 0.5.
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9 Methods of Estimation
9.1 Maximum likelihood method

The likelihood function, L(x,c,f), for a random

sample X1,X5,...X, selected from Sameera distribution, is
defined by
L(x,a,B) = H v(xj,o,B)

B 2B2 xlgxflﬁa B
H (1+a2ﬁ <+a2ﬁ>r<a>>" ]
1 non xqulﬁa px,
= (irap) H[(“zﬁ2+ I(a) ) ’ }
1 n 1Ba BY
(1+a23) H[( B+ (a) )}e o

then, the natural logarithm will give

¢ =In(L(x, e, B))

— 2 202, &iB)®
= —nln(1+a’B)+ Zln(aﬁ +xi1"((x)
n
-BY x (10)
i=1
Deriving with respect to @ and 3, we get
J —2n
£ = ( 1+a02£§)

P [ e an

% = () 25

n 202 Bx, T (o) +02x;(Bx;) !
+Zj:l[ BTl () +(B)®

The MLE (&, ) of (e, B) can be obtained by solving the system

of equation { % _ =0, a[; = 0}
The system of equations in (11) has no explicit analytical
solution, hence, it can be solved numerically using any iterartive

numerical method.

9.2 Ordinary and weighted least square
methods

This subsection shows other methods for estimation of the
model parameters, which are the ordinary least squares (OLSE)
and the weighted least squares (WLSE) estimators. They are
suggested by [35].

Let X<]),X(2>,.A.,X<n) be the order statistics of the random

sample X1, X5, ..., X;; which has a cdf defined by (2). The OLS of
o and B can be obtained by minimizing
n i 2
Wxiy,oB)— 12
P LEH A ) p (12)

i=1

with respect to o and . In our case, the &ppsg and [%LSE are
obtained by minimizing

Y(ayﬁxa))} i r

1 px,
| (#0000 TG -

i=1

with respect to the two parameters ¢ and f3.

The weighted least squares estimators (WLSE) of ¢ and 8
can be obtained by minimizing

2
; 13)

*(n41)? (n+1)°(n+2) ] i
i:Z] I’l*l+1) W(X([),(X,B) n+1

So, in SamD case, the Oy se and BWLSE can be obtained by
minimizing

i n—H ) (n+2)
(n—i+1)

i=1
2
1

1+a2B

)

’V(avﬁx(i)) i
I'(a) } S+l

o2B(1-e P+

with respect to @ and f; respectively. Some results of these
estimators are shown in the simulation study in Section 10.

9.3 Method of maximum product of spacings

An alternative estimation method to the maximum
likelihood (ML) method, [33], [34] proposed the method of
maximum product spacing (MPS). This method relies on
maximizing the geometric mean of the spacings of the data with
respect to the parameters. The MPS method provides consistent
and asymptotically efficient estimators whether MLE exists or
not. For a random sample X;,X,...,X, of size n and
X1),X(2),---»X(n) be the order statistics of the random sample.
The uniform spacings is defined as:

Ei(, B) = ¥(xpla B) =W (x|, B)i=1,...,n+1,
where ¥ (x(g)|et, f) = 0 and ¥ (x(,11)| e, f) = 1. It is clear that
L E (e, ﬁ)—l

The MPS estimators of the distribution parameters o and 3
denoted by &yps and Byps can be obtained by maximizing the
geometric mean of the spacings, that is,

n+1 ntl
KWﬁM=<H5WﬁO (14)

i=1

Now, the natural logarithm of (14) gives
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Table 1: The Shannon, Rényi and Tsallis entropies for different
values of o,  and 6 =5

B o Shannon Rényi Tsallis
1.00 1.00 1.76141 | -0.00074 | 0.24926
1.00 1.02 1.76382 | -0.00073 | 0.24927
1.00 1.04 1.76615 | -0.00072 | 0.24928
1.00 1.06 1.76841 | -0.00071 | 0.24929
1.00 1.08 1.77061 | -0.00070 | 0.24930
1.00 1.10 1.77275 | -0.00069 | 0.24931
1.00 1.12 1.77482 | -0.00068 | 0.24932
1.00 1.14 1.77684 | -0.00068 | 0.24932
1.02 1.00 1.74108 | -0.00081 | 0.24919
1.02 1.02 1.74350 | -0.00079 | 0.24921
1.02 1.04 1.74585 | -0.00078 | 0.24922
1.02 1.06 1.74812 | -0.00077 | 0.24923
1.02 1.08 1.75034 | -0.00076 | 0.24924
1.02 1.10 1.75249 | -0.00075 | 0.24925
1.02 1.12 1.75458 | -0.00074 | 0.24926
1.02 1.14 1.75661 | -0.00073 | 0.24927
1.04 1.00 1.72113 | -0.00087 | 0.24913
1.04 1.02 1.72357 | -0.00086 | 0.24914
1.04 1.04 1.72593 | -0.00085 | 0.24915
1.04 1.06 1.72822 | -0.00084 | 0.24916
1.04 1.08 1.73045 | -0.00083 | 0.24917
1.04 1.10 1.73262 | -0.00082 | 0.24918
1.04 1.12 1.73472 | -0.00080 | 0.24920
1.04 1.14 1.73676 | -0.00080 | 0.24920
1.06 1.00 1.70156 | -0.00095 | 0.24905
1.06 1.02 1.70401 | -0.00093 | 0.24907
1.06 1.04 1.70639 | -0.00092 | 0.24908
1.06 1.06 1.70870 | -0.00091 | 0.24909
1.06 1.08 1.71094 | -0.00089 | 0.24911
1.06 1.10 1.71312 | -0.00088 | 0.24912
1.06 1.12 1.71523 | -0.00087 | 0.24913
1.06 1.14 1.71729 | -0.00086 | 0.24914
1.08 1.00 1.68235 | -0.00103 | 0.24897
1.08 1.02 1.68481 | -0.00101 | 0.24899
1.08 1.04 1.68721 | -0.00099 | 0.24901
1.08 1.06 1.68953 | -0.00098 | 0.24902
1.08 1.08 1.69178 | -0.00097 | 0.24903
1.08 1.10 1.69397 | -0.00095 | 0.24905
1.08 1.12 1.69610 | -0.00094 | 0.24906
1.08 1.14 1.69817 | -0.00093 | 0.24907
1.08 1.16 1.70018 | -0.00092 | 0.24908
1.10 1.00 1.66349 | -0.00111 | 0.24889
1.10 1.02 1.66596 | -0.00109 | 0.24891
1.10 1.04 1.66837 | -0.00107 | 0.24893
1.10 1.06 1.67071 | -0.00106 | 0.24894
1.10 1.08 1.67298 | -0.00104 | 0.24896
1.10 1.10 1.67518 | -0.00103 | 0.24897
1.10 1.12 1.67732 | -0.00102 | 0.24898
1.10 1.14 1.67940 | -0.00100 | 0.24900

Table 2: Numerical results for Shannon, Rényi and Tsallis
entropies for Sameera distribution using different values of ¢ and
B with §=5.

1 n+1

7 L n(E(@p)

1 n+1
= {Zln(1+a2ﬁ)

ntl | 5

NL(a, B|x)

By 4 M@Bx)
a?B(1—e Pro) 4 Lo

(o) (15)
—a2B(1 —e*ﬁxmu))_i_% }

In

+

The MPS estimators &yps and BMPS can be obtained by solving
the following nonlinear system of equations with respect to the
parameters o and f3.

ONL(at, Bx) _0
Jdo

ONL(at, Bx) 0
B ’

9.4 Methods of minimum distances

[36] introduced the method of minimum distances to obtain
strong consistent estimators. It is defined by considering a
random sample of size n, say Xp,---,X, with cdf ¥(x|a,f).
Assuming that ¥, (x) is the empirical distribution function based
on the sample x = (xi,---,x,). If (&, fB) is the vector of
estimators of (a,B), then ¥(x|&,f) is an estimator of
¥ (x|a, B). Assuming (&, ) exist, such that

d[¥(x]e, B), (x)] = inf{d[¥ (x]et, B), % ()]},

where d[.,.] is the distance between ¥ (x|&, ) and ¥ (x), then
(&, ) is called the minimum-distance estimator of (¢, 8) [37].

9.4.1 Cramer-Von-Mises method

Cramer-Von-Mises and Anderson-Darling methods of
estimation are the most famous methods of minimizing the test
statistics between the theoretical and empirical cdfs.

Cramer-Von-Mises method [38], [39] usually denoted as
W2, is a method used in one-sample applications to compare
between the theoretical cumulative distribution function ¥*(x)
of a random variable and a given empirical distribution ¥, (x)
using the goodness of fit. It is also used as a part of the
minimum distance method of estimation. It is defined as

2= [ - e )

For a random sample of size n with observed values xp,--- ,x,
sorted in an ascending order, the Cramer-Von Mises test statistic
value is [40].

W2 — g2 i Wiy ap) 2i—11% 1
=nt° = Xy, 0, B) — —
| 2n 12n
Thus for a random sample of size n from Sameera distribution
with observed with observed values x,---,x, sorted in an
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ascending order. The Cramer-Von Mises test statistic value is

, 1 ¢ 1 a0t By o Y% B
W= l2n+i:21 1+a2B {a PU=e+
2
2i-1
2n :|

The Cramer-Von Mises estimators (&,f) of (ot
obtained by minimizing W2.

,B) can be

9.4.2 Method of Anderson-Darling

The method of Anderson-Darling for estimating the
distribution parameters was introduced by [41]. It is defined as

n

Ala,B) = —n— % Y (2i—1) [zog[lp(x

i=0

(@30, B)]

+10g¢(x(n+17i);a>ﬁ)]

u (Zi—l)
(16)
=0\

0B (1~ e )

= —n—

™

lOg |:(1+;1317ﬁ>|: .
o,px() o ﬁ
| e el
+ 7(‘17?){(&;179) ] ]

where ¥ = 1 — . The estimators & p and ﬁAD can be obtained
by minimizing (16).

10 Stress-Strength Reliability

Suppose that X and Y are two independent random variables
from Sameera distribution, where X represents the strength of
the system and Y is the stress applied to this system [42]. The
component failed to work at the moment that the stress applied
to it exceeds the strength and the component will function
satisfactorily whenever X > Y. The stress- strength model is
defined as p(Y < X), [43].

pY <X) = /Om/x(lfsjﬁ * (14:62;;!)3;(06))

(1+0?B)I"(ax)
Using the power series [44] for e P, we can write the above
integration as:

<o = [ [ (5 e >)”“*

(e e ) 5

(] lﬁa )67&
(1+02B)I ()
yaflﬁa (*l)iﬁiyi
)

- /om /0 (lfgﬁ
g() (ﬁg; T+ (a

- /om /(;x ( 1 (fszzﬁ - (1 +Z¢21ﬁﬁa )

(Srte e

) g/j (ﬁzgjﬁ It +Zez}£10:(a>)

(_])iaZﬁHZle (_l)iBi+(xxa+i *ﬁxd
X((i+1)!(1+a2B) i!(a+i)(1+a2B)F(a))e *

(71)‘0{4[3“4)5‘4'
(i+1)!(1+a2p)?

-

,1)ia2ﬁi+a+2xa+i
il(o+i) (1+a2B)*T ()

—pPXx
_1)iq2piasd i x e Prgx

S CI

,1)iﬁi+2ax2a+t—l

Mot (1+02B)2 (T ()2

(—l)’a4ﬁi+4l"(i+2)
(i+1)!B 2 (1+a2B)?

+ (71)ia2Bi+a+2F<a+i+])
i(a+i)BerTT(1+a?B) I (@)

+ (71)ia2Bi+a+2F<a+i+])
(i+1)1p*+T(1+a?B)2 (o)

i
o

(—1) B2 2a+i)

T Mar)pe (1B (@)
(=Dia*B? | (=1)'a*BI(a+i)
(1+a?B)?> " i(1+a2B)’I (o)

n
L
i=0

+(—l)’a2BF(a+i+1) + (—=1)'T(20+i)
(i+D)!(1+a2B)?I' (o) " il(a+i)(1+02B)2(I'())?

n B )i 4B2 a?BI(a+i)
Z 1+ o2B)2 213F(a+ i+1) : F)(2a+‘)
a B 1 ]

=0 ( (HI(a) T (ot T(@)?

11 Simulation study

In this section, a simulation study is performed to test
the accuracy of the estimators of the Sameera distribution
parameters with the help of R software [31]. For this
purpose, N = 1000 samples are generated, each of size
15, 100, 150, 200, 300, and 500 for values of & = = 0.5
using (10).

For each sample, the estimators of the parameter space
¢ = (a, ) using MLE, OLS, WLS, MPS, CVM, and AD
methods of estimation with their mean square error
(MSE) and the bias are obtained. Then, the average bias
(AB) and the average mean square error (AMSE) are
calculated as follows:

N
AB(®) = 5 L (66 AMSE = § Z(¢ o)

= l
The results of this simulation are summarlzed in Tables 3
and 4.
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Table 3: Parameter Estimates and their average biases and
average mean squares errors, when o = 0.5.

The first data set is reported in [45] and represents a failure time
of 50 items. The failure times are given in Table 6.

n Method a AB(&) | AMSE(&) The second data set consists of 46 observations reported on
MLE 0.5899 | 0.0899 0.0641 active repair times (hours) for an airborne communication
OLS 0.5041 | 0.0041 0.0067 transceiver analyzed by [46] and given in Table 7.
15 WLS 0.5303 | 0.0303 0.0556 The goodness of fit of the proposed distribution is compared
AD 0.5361 | 0.0361 0.0449 with the following distributions:
CVM | 0.6114 | 0.1114 0.1036 o
MPS | 0.7421 | 02421 | 0.1633 —Gamma distribution [47]
MLE | 05112 | 0.0112 | 0.0035 flx) = %, x>0, >0, 5>0.
OLS 0.5114 | 0.0114 0.0013 —Weibull distribution [48]
100 | _WLS | 0.5078 | 0.0078 | ~0.0040 flx) = l%xa’]e’("/ﬁ)a7 x>0,00>0,8>0
2 —ox
C/:/]ID\/I 8?8;‘2 gjggég 8:882 —Lindley distribution [49]: f(x) = % x>0, 00>0
MPS | 05319 | 0.0319 0.0046 —Shanker distribution [50]: f(x) = a_offf])‘) e % x>0,00>0
MLE | 0.5049 | 0.0049 0.0021 -Exponential distribution [51]: f(x) = o™ **, x>0, a >0
OLS 0.5102 | 0.0102 0.0009
150 WLS 0.5024 | 0.0024 0.0024
AD 0.5039 | 0.0039 0.0023
CvM 0.5065 | 0.0065 0.0030 Table 4: Parameter Estimates and their average biases and
l\l\//llllilsi 8231(7) 8831(7) 888?2 average mean squares errors, when f8 = 0.5.
OLS | 05103 | 0.0103 | 0.0008 n_| Method | B __| AB(B) | AMSE(S)
WIS 0.5018 | 0.0018 0.0018 MLE 0.6615 | 0.1615 0.1441
200 ) 0:5037 0:0037 0:0017 OLS 0.5167 | 0.0167 0.0070
CVM 0.5061 | 0.0061 0.0022 15 WLS 0.5512 | 0.0512 0.1236
MPS | 05172 | 0.0172 | 0.0019 AD_ | 0.5748 | 0.0748 | 0.1136
CVM | 0.6769 | 0.1769 0.2361
MLE | 0.5042 | 0.0042 0.0009 MPS 0.8908 | 0.3908 0.3507
OLS 0.5111 | 0.0111 0.0006 . . .
WLS | 0.5024 | 0.0024 | 0.0010 MLE | 05224 1 0.0224 | 0.009
300 D 05014 | 0.0014 0.0011 OLS 0.5210 | 0.0210 0.0016
CVM | 0.5023 | 0.0023 0.0014 100 WLS 0.5139 | 0.0139 0.0107
MPS | 05116 | 0.0116 | 0.0012 AD__ | 051211 00121 ) 00102
CVM | 0.5212 | 0.0212 0.0151
MLE 0.5015 | 0.0015 0.0006 MPS 05646 | 0.0646 0.0153
OLS 0.5110 | 0.0110 0.0005 . . .
MLE 0.5121 | 0.0121 0.0063
WLS 0.5004 | 0.0004 0.0007
500 D 0.5006 | 0.0006 0.0007 OLS 0.5212 | 0.0212 0.0014
CVM | 0.5012 | 0.0012 0.0008 150 WLS 0.5061 | 0.0061 0.0074
MPS | 0.5068 | 0.0068 | 0.0007 AD__ | 05I17-1 00117} 0.0073
CVM 0.5139 | 0.0139 0.0100
MPS 0.5417 | 0.0417 0.0086
MLE | 0.5104 | 0.0104 0.0045
Tables 3 and 4 show the values of the average bigs, \?JII:SS 82(2)12 88(2)413 8885
and the average of mean squares errors for & and f . 200 AD 05063 | 0.0063 0.0051
They show that these values decrease with increasing CVM | 05112 | 00112 0.0069
sample sizes, thus the estimates behave in a standard MPS | 05339 | 0.0339 | 0.0059
manner for different values of o and ﬁ AISO, it indicates MLE 0.5058 0.0058 0.0028
that the MLEs are asymptotically unbiased and OLS 0.5200 | 0.0200 0.0009
consistent. Table 5 summarizes the preferences of the methods WLS 0.5029 | 0.0029 0.0033
of estimation. It shows that for small sample sizes the OLS 300 AD 0.5038 | 0.0038 0.0036
method is the best based on AB and AMSE. Based on AMSE CVM 0.5068 | 0.0068 0.0047
the OLS is the best method regardless the sample size. Based on MPS 05242 | 0.0242 0.0038
AB it alternates between OLS, WLS, and AD methods. MLE 05023 | 0.0023 0.0017
OLS 0.5216 | 0.0216 0.0008
500 WLS 0.5002 | 0.0002 0.0019
12 Real Data Applications AD | 0.5009 | 0.0009 | 0.0020
CVM 0.5043 | 0.0043 0.0027
In this section, we show the flexibility of the proposed MPS | 05152 | 0.0152 0.0021
distribution by considering two real-life time data sets and
comparing its goodness of fit with some existing distributions.
@© 2022 NSP
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Table 5: Best methods based on simulation results

n | AB(&) | AMSE(&) | AB(B) | AMSE(B)

15 | OLS OLS OLS OLS
100 | AD OLS AD OLS
150 | WLS OLS WLS OLS
200 | WLS OLS WLS OLS
300 | AD OLS WLS OLS
500 | WLS OLS WLS OLS

H

Table 6: Data 1: Failure times
0.12 0.43 0.92 1.14 1.24 1.61 1.93
2.38 4.51 5.09 6.79 7.64 8.45 11.90

11.94 13.01 1325 1432 1747 18.10 18.66
19.23 2439 2501 2641 2680 27.75 29.69
29.84 31.65 32.64 3500 40.70 4234 43.05
4340 4436 4540 48.14 49.10 4944 51.17
58.62 60.29 7213 7222 7225 7229 85.20
89.52

Table 7: Data 2: Repair times (hours)for an airborne
communication transceiver
0.2 03 05 05 05 05 06 0.6 0.7
0.7 07 08 08 1.0 10 080 1.0 1.1
1.3 1.5 15 15 15 20 20 22 2.5
2.7 30 3.0 33 33 40 4.0 4.5 4.7
5.0 54 54 70 75 88 9.0 103 220
24.55

For comparison, we consider the following goodness of fit
criteria: -2InL, Akaike Information Criterion (AIC) [52],
Corrected Akaike Information Criterion (CAIC) [53], Bayesian
Information Criterion (BIC) [54], Kolmogorov-Smirnov
Statistic (KS-Statistic) and its p-value [55], where

2k(k+1)

n—k—1

KS = sup |F,(x) — Fy(x)],
X

AIC = =2InL+2k, AICC=AIC+

BIC = —2InL+kin(n),

where L is the likelihood function, k& is the number of
parameters, n is the sample size and F,(x) is the empirical
distribution function.

Table 8 shows that the Sameera distribution has the smallest
values of -2InL, AIC, CAIC, BIC, and KS statistics with the
highest p-values compared with other fitted distributions. This
indicates that the proposed distribution is more adequate in
fitting both data sets than other distributions.

For both data sets, the MLEs of the parameters of the fitted
distributions along with their corresponding confidence intervals
are computed and the results are summarized in Table 9.

13 Conclusion

This article suggested a new two parameter continuous
distribution called Sameera distribution. Its statistical properties

Table 8: —2/nL, AIC, AICC, BIC, KS statistic and the p-values
of the fitted distributions.

Data | Distribution —2logL AIC CAIC
Sameera 435.4424 439.4423 439.6976
Gamma 440.5202 444.5202 444.7755

1 Weibull 440.698 444.698 444.9534
Lindley 453.9486 455.9486 456.032
Shanker 463.371 465.3709 465.4543

Exponential 440.7134 4427134 442.7968
Sameera 204.0448 208.0447 208.3238
Gamma 209.8618 213.2cm619 | 214.141

) Weibul 208.9394 212.9394 213.2185
Lindley 219.9694 221.9694 222.0603
Shanker 223.5056 225.5056 225.5965

Exponential 210.0124 212.0124 212.1033

Data | Distribution BIC KS p-value
Sameera 443.2664 0.0769 0.9067
Gamma 448.3442 0.1224 0.4092

) Weibull 448.5221 0.1111 0.5309
Lindley 457.8607 0.1426 0.2377
Shanker 467.283 0.153 0.1736

Exponential 444.6254 0.1138 0.5008
Sameera 211.702 0.117 0.5548
Gamma 217.5192 0.1454 0.2855

’ Weibul 216.5967 0.1204 0.5174
Lindley 223.7981 0.2339 0.0131
Shanker 227.3342 0.2471 0.0073

Exponential | 213.2cm411 0.1597 0.1915

are discussed thoroughly including: the moments and their
related measures, moment-generating function, reliability
analysis functions, mean deviation about the mean and median,
Bonferroni and Lorenz curves, Shannon, Rényi and Tsallis

Table 9: The MLEs of the parameters of the fitted distributions
and their corresponding confidence intervals using data 1 and 2

I 95%CI
Data | Distribution | Par. | MLE SE B UB
Sameera o 3.5675 0.5101 | 2.5678 4.5673
B 0.0771 0.0080 | 0.0614 0.0928
Gamma [] 0.9260 0.1618 | 0.6089 1.2432
B 0.0307 0.0070 | 0.0170 0.0444
1 Weibull a 1.0150 0.1211 | 0.7777 1.2523
B 30.3490 | 4.4168 | 21.6920 39.0059
Lindley B 0.0643 0.0064 | 0.0517 0.0769
Shanker B 0.0666 0.0066 | 0.0536 0.0796
Exponential | 0.0331 0.0047 | 0.0239 0.0422
Sameera ] 8.2550 2.2255 | 3.2cm931 | 12.6170
B 0.3652 0.0507 | 0.2659 0.4645
Gamma o 0.9322 0.1701 | 0.5988 1.2655
B 0.2585 0.0615 | 0.1380 0.3791
2 Weibull o 0.8986 0.0958 | 0.7109 1.0863
B 3.3919 0.5910 | 2.2335 4.5503
Lindley B 0.4663 0.0499 | 0.3685 0.5641
Shanker B 0.5109 0.0493 | 0.4144 0.6074
Exponential | B 0.2774 0.0409 | 0.1972 0.3570
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entropies, order statistics, quantile function, and the
stress-strength ~ reliability. Estimates of the distribution
parameters are attained using MLE, OLS, WLS, MPS, CV, and
AD methods. A simulation study using these methods is
conducted as well. It revealed that the estimators are
approximately unbiased and consistent. Sameera distribution is
used for fitting two real data sets. The results showed that
Sameera outperformed competence distributions.
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