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Abstract: In this paper, we study a warm standby repairable system that consists of two dissimilar units. One of these units is a good

quality unit while the other one is of substandard quality that might need some repairs or replacement by another substandard unit

upon failure. The system works under two different weather conditions, normal and abnormal. The unit operates under normal weather

conditions, but incase of abnormal weather conditions, the system stops and the unit fails. In this paper, we analyze the steady state

transition probabilities, mean sojourn time, mean time to failure, steady state availability of the system. We also performed busy period

analysis of repairman and cost benefit analysis of the system. All of the previously mentioned analyses were done by using regenerative

point technique.

Keywords: Warm Standby; MTSF; Busy period; Cost benefit estimated

1 Introduction

Nowadays, system reliability has an important role in both industry and manufacturing, with redundancy being one of the
most common techniques used to enhance system reliability. The research on the cold standby system, the warm standby
system, and the hot standby system has made great progress over the past decades. In case of the cold standby system,
the system assumes that the spare parts will not fail during the storage period, while the hot standby system assumes that
the spare parts have the same failure rate as the working part. In this regard, the warm standby system that assumes the
spare parts may fail in the storage period with a smaller failure rate than the working part is more suitable for modeling
the degradation process of the spare parts.
Extensive researches on the reliability analysis for the standby redundant systems have already been carried out in the
literature. For the cold standby redundancy systems, [1] dealt with a two-unit cold standby system considering hardware
failure, human error failure and preventive maintenance (PM) in which all time distributions are assumed to be arbitrary.
[2] studied reliability measures of a cold standby system with preventive maintenance and repair. [3] discussed Reliability
analysis of a two-unit cold standby system with arbitrary distributions and change in units. With regard to the hot standby
model, Rizwan, [4] provided a reliability analysis of a programable logic controllers system which was studied as a two-
unit hot standby system, and the real data had been used from an industrial system for the purpose. [5] discussed the
reliability analysis of a two-unit hot standby redundant system with repairable failures and non-repairable failures by
using probability analysis, definite integral and the supplementary variable technique.
The warm standby repairable system has also been explored, for example, [6] conducted the reliability indexes and the
steady-state availability with different parameters of a warm standby repairable system with repairman vacation under
Poisson shocks. [7] obtained the performance measures of a three-unit warm standby system with dependent structure,
whereas the lifetimes of online unit, standby units, and the repair time of failed units are governed by quadrivariate
exponential law. [8] analyzed cost benefit of two similar warm standby systems subject to failure due to melting of glaciers
and severe storms caused by global warming and failure rate as Gamma distribution. Kumar, Pawar and [9] analyzed
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economically a warm standby system with single server. the purpose of the present study is to obtain reliability measures
of a system of non identical units with warm standby approach. [10] studied a warm standby redundant repairable systems
with two different units and assumed that unit 1 follows a geometric process after repair, and some reliability indexes were
obtained by using the supplementary variables approach. In addition, the researches for warm standby repairable systems
have continuously developed, including the papers [11,12,13] and others.
For weather conditions [14,15] used the idea of two weather conditions (normal and abnormal) in a single-unit system.
[16] discussed reliability and economic analysis of a system operating under different weather conditions. [17] analyzed
steady state of an operating system with repair at different levels of damages subject to inspection and weather conditions.
In this paper we study a two-dissimilar-unit warm standby repairable system with priority in use. We present a study for a
warm standby system consisting of two units where one unit is of good quality and another unit is of substandard quality,
which may need some repair or replacement by another sub-standard unit upon failure. The system is affected by different
weather conditions.

2 Assumptions

– Two dissimilar units in the system. In the beginning, one unit is in operative mode and the another is in standby
mode (Warm standby).

– When operative unit get failure, the Warm standby unit may be turn to operative mode and failure unit move for
repair.

– The first unit has priority for operating, first unit is of good quality and another unit is of substandard quality, which
may need some repair or replacement by another substandard unit after getting failed.

– If the weather is in normal case, the unit operates, and if the weather is in abnormal case, the system stops, and the
operate unit fails.

– The connected switch is perfect.
– All times are independent and exponentially distributed.

3 Notations

E Set of regenerative states.
qi j(t),Qi j(t) PDF and CDF of time for the system transits from stateSi to S j.

Pi j Transition probability from Si to S j.
λ1,λ2 parameter of the failure rate of unit 1,unit 2 respectively.
µ1,µ2 The parameter of repair rate of unit 1,unit 2 respectively.

α parameter of normal weather rate.
β parameter of abnormal weather rate.
z parameter of second unit replacement rate.
τ Probability that the Standby unit is ready.

(1− τ) Probability that the Standby unit is not ready.
θ Probability that the second unit repair.

(1−θ ) Probability that the second unit replacement.
ηi j contribution to mean sojourn time in state Si,

when system transits direct to S j.
Mi(t) p {system is up initially in state Si is up at t without passing

through any other regenerative state}.
Mi(s)

∫

P{system sojourns in state Si for at least time t}dt.

∏i(t) CDF of time to system failure starting from state Si.
AVi(t) p { The system is up at time t starting at state Si}.
C(t) The net revenue of the system in (o, t].
G(t) Cdf of the repair time at state Siwith first unit.
G′(t) Cdf of the repair time at state Si with second unit.
⊛ Convolution.
∗ Laplace transforms.

3.1 Symbols for the states of the system

– sII unit 2 is in warm standby state.
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– oI,oII unit 1, unit 2 are in operating state respectively.
– oId ,oIId the first operating unit, the second operating unit stopped because the weather is abnormal.
– wg Normal weather.
– wd Abnormal weather.
– rI ,rII unit 1, unit 2 are under repair respectively.
– repII unit 2 is under replacement.
– wrI ,wrII unit 1, unit 2 are waiting for repair respectively.

The system can be in any one of the following states
S0 = (oI,sII ,wg), S1 = (rI ,oII ,wg), S2 = (rI ,wrII ,wg),
S3 = (rI ,oIId ,wd), S4 = (rI ,wrII ,wd), S5 = (oI ,rII ,wg),
S6 = (oI,repII ,wg), S7 = (oId ,sII ,wd), S8 = (oId ,rII ,wd),
S9 = (oId ,repII ,wd), S10 = (wrI ,rII ,wg), S11 = (wrI ,rII ,wd),
S12 = (wrI ,repII ,wd), S13 = (wrI ,repII ,wg).

Up states:S0,S1,S5,S6. Down states:S2,S3,S4,S7,S8,S9,S10,S11,S12,S13.

3.2 Transition probabilities and mean sojourn time

We use regenerative technique to obtain the transition probabilities. All points are regenerative points. Let
T1(≡ 0),T2,T0, ..... denote the epochs at which the system enters any state Si ∈ E let Xn denote the state visited at epoch
Tn+, i.e. just after transition at Tn. {Xn,Tn} is a Markov renewel process with state space E and
Qi j(t) = P[Xn+1 = j,Tn+1 − Tn � t \ Xn = i], is the semi Markov kernel over E. Since the transition probabilities
Pi j = Qi j(∞) then the non-zeros Pi j

,s are

P01 =
τλ1

β +λ1

, P02 =
(1− τ)λ1

β +λ1

, P03 =
τβ

β +λ1

, P04 =
(1− τ)β

β +λ1

,

P01 +P02 +P03+P04 = 1,

P10 =
µ1

β +λ2 + µ1

, P12 =
λ2

β +λ2 + µ1

, P14 =
β

β +λ2 + µ1

,

P10 +P12+P14 = 1,

P24 =
β

β + µ1

, P25 =
θ µ1

β + µ1

, P26 =
(1−θ )µ1

β + µ1

,

P24 +P25+P26 = 1,

P31 =
α

α + µ1
, P37 =

µ1

α + µ1
,

P31 +P37 = 1,

P42 =
α

α + µ1

, P48 =
θ µ1

α + µ1

, p49 =
(1−θ )µ1

α + µ1

,

P42 +P48+P49 = 1,

P50 =
µ2

β + µ2 +λ1

, P5(10) =
λ1

β + µ2 +λ1

, P5(11) =
β

β + µ2 +λ1

,

P51 +P5(10)+P5(11) = 1,

P60 =
z

β +λ1 + z
, P6(12) =

β

β +λ1 + z
, P6(13) =

λ1

β +λ1 + z
,
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P60 +P6(12)+P6(13) = 1,

P70 = 1,

P85 =
α

α + µ2

, P87 =
r2

α + µ2

,

P85 +P87 = 1,

P96 =
α

α + z
, P97 =

z

α + z
,

P96 +P97 = 1,

P(10)1 =
µ2

β + µ2

, P(10)(11) =
β

β + µ2

,

P(10)1+P(10)(11) = 1,

P(11)(10) =
α

α + µ2

, P(11)3 =
µ2

α + µ2

,

P(11)(10)+P(11)3 = 1,

P(12)(13) =
α

α + z
, P(12)3 =

z

α + z
,

P(12)(13)+P(12)3 = 1,

P(13)(12) =
β

z+β
, P(13)1 =

z

z+β
,

P(13)(12)+P(13)1 = 1.

3.3 Mean sojourn times

The unconditional mean time taken by the system to transit from any regenerative state Si when time is counted from
epoch of entrance into state S j is given by

η01 =
τλ1

(β +λ1)2
, η02 =

(1− τ)λ1

(β +λ1)2
, η03 =

τβ

(β +λ1)2
, η04 =

(1− τ)β

(β +λ1)2
,

η24 =
β

(β + µ1)2
, η25 =

θ µ1

(β + µ1)2
, η26 =

(1−θ )µ1

(β + µ1)2
,

η31 =
α

(α + µ1)2
, η37 =

µ1

(α + µ1)2
,

η42 =
α

(α + µ1)2
, η48 =

θ µ1

(α + µ1)2
, η49 =

(1−θ )µ1

(α + µ1)2
,

η50 =
µ2

(β + µ2 +λ1)2
, η5(10) =

λ1

(β + µ2 +λ1)2
, η5(11) =

β

(β + µ2 +λ1)2
,

η60 =
z

(β +λ1 + z)2
, η6(12) =

β

(β +λ1 + z)2
, η6(13) =

λ1

(β +λ1 + z)2
,
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η70 =
1

α
,

η85 =
α

(α + µ2)2
, m87 =

µ2

(α + µ2)2
,

η96 =
α

(α + z)2
, η97 =

z

(α + z)2
,

η(10)1 =
µ2

(β + µ2)2
, η(10)(11) =

β

(β + µ2)2
,

η(11)(10) =
α

(α + µ2)2
, η(11)3 =

µ2

(α + µ2)2
,

η(12)(13) =
α

(α + z)2
, η(12)3 =

z

(α + z)2
,

η(13)(12) =
β

(z+β )2
, η(13)1 =

z

(z+β )2
.

Mean sojourn time in state Si which is given by Mi(s) = ∑ j ηi j

M0(s) =
1

β +λ1

, M1(s) =
1

β +λ2 + µ1

, M2(s) =
1

β + µ1

,

M3(s) =
1

α + µ1

, M4(s) =
1

α + µ1

, M5(s) =
1

β + µ2 +λ1

,

M6(s) =
1

β +λ1 + z
, M7(s) =

1

α
, M8(s) =

1

α + µ2

,

M9(s) =
1

α + z
, M10(s) =

1

β + µ2

, M11(s) =
1

α + µ2

,

M12(s) =
1

α + z
, M13(s) =

1

z+β
.

3.4 Mean time to system failure MTSF

According to the arguments of theory of regenerative processes, we obtain the following relation for ∏0(t)

∏0
(t) = e−(β+λ1)+ q01(t)⊛∏1

(t), (1)

∏1
(t) = e−(β+λ2+µ1)+ q10∏0

(t), (2)

∏5
(t) = e−(β+µ2+λ1)+ q50∏0

(t), (3)

∏6
(t) = e−(β+λ1+z)+ q60∏0

(t). (4)

Taking Laplace transform (LT) for equations (1), (2) and (3) and solving for ∏
∗
0(s) considering S = 0, We have the mean

time to system failure MTSF as follows

MT SF =
N0

D0

, (5)

where

D0 = 1− (P10P01),

and

N0 = M0(s)+M1(s)P01.
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4 Availability Analysis

From the arguments used in the theory of regenrative processes, the point wise availabilities AVi(t) where
i = 0,1,2,5,6,11,12.we obtain the following recursive relations.

AV0(t) = M0(t)+ (q03(t)⊛ q37(t)⊛ q70(t)+ q04(t)⊛ q48(t)⊛ q87(t)⊛ q70(t)

+q04(t)⊛ q49(t)⊛ q97(t)⊛ q70(t))⊛AV0(t)+ (q01(t)+ q03(t)⊛ q31(t))⊛AV1(t)

+(q02(t)+ q04(t)⊛ q42(t))⊛AV2(t)+ (q04(t)⊛ q48(t)⊛ q85)⊛AV5(t)

+(q04(t)⊛ q49(t)⊛ q96(t))⊛AV6(t), (6)

AV1(t) = M1(t)+ (q10(t)+ q14(t)⊛ q48(t)⊛ q87(t)⊛ q70(t)

+q14(t)⊛ q49(t)⊛ q97(t)⊛ q70(t))AV0 +(q12(t)+ q14(t)⊛ q42(t))⊛AV2(t)

+(q14(t)⊛ q48(t)⊛ q85(t))⊛AV5(t)+ (q14(t)⊛ q49(t)⊛ q96(t))AV6(t), (7)

AV2(t) = (q24(t)⊛ q48(t)⊛ q87(t)⊛ q70(t)

+q24(t)⊛ q49(t)⊛ q97(t)⊛ q70(t))AV0(t)+ (q24(t)⊛ q42(t))⊛AV2(t)

+(q25(t)+ q24(t)⊛ q48(t)⊛ q85(t))⊛AV5(t)+ (q26(t)

+q24(t)⊛ q49(t)⊛ q96(t))⊛AV6(t), (8)

AV5(t) = M5(t)+ (q50(t))⊛AV0(t)+ (q5(10)(t)⊛ q(10)1(t)))⊛AV1(t)

+(q5(10)(t)⊛ q(10)(11)(t)+ q5(11)(t))⊛AV11(t), (9)

AV6(t) = M6(t)+ (q60(t))⊛AV0(t)+ (q6(13)(t)⊛ q(13)1(t))⊛AV1(t)

+(q6(12)(t)+ q6(13)(t)⊛ q(13)(12)(t))⊛AV12(t), (10)

AV11(t) = (q(11)3(t)⊛ q37(t)⊛ q70(t))⊛AV0(t)

+(q(11)(10)(t)⊛ q(10)1(t)+ q(11)3(t)⊛ q31(t))⊛AV1(t)

+(q(11)(10)(t)⊛ q(10)(11)(t))⊛AV11(t), (11)

AV12(t) = (q(12)(3)(t)⊛ q37(t)⊛ q70(t))⊛AV0(t)+ (q(12)(13)(t)⊛ q(13)1(t)

+q(12)3⊛ q31)⊛AV1(t)+ (q(12)(13)(t)⊛ q(13)(12)(t))⊛AV12(t). (12)

Taking LT for equation (6), (7), (8), (9), (10), (11) and (12) and solve for AV ∗
0 , then we get the steady state availability of

the system AV0 in the form,

AV0 = AV0(∞) = lim
x→0

SAV ∗
0 (S) =

N1

D1

. (13)

h1 = (η03P37P70 +P03η37P70 +P03P37η70 +η04P48P87P70 +P04η48P87P70

+P04P48η87P70 +P04P48P87η70 +η04P49P97P70 +P04η49P97P70 +P04P49η97P70

+P04P49P97η70 +η01 +η03P31 +P03η31 +η02 +η04P42 +P04η42 +η04P48P85

+P04η48P85 +P04P48η85 +η04P49P96 +P04η49P96 +P04P49η96),

h2 = (η10 +η14P48P87P70 +P14η48P87P70 +P14P48η87P70 +P14P48P87η70

+η14P49P97P70 +P14η49P97P70 +P14P49η97P70 +P14P49P97η70 +η12

+η14P42 +P14η42 +η14P48P85 +P14η48P85 +P14P48η85 +η14P49P96

+P14η49P96 +P14P49η96),

h3 = (η24P48P87P70 +P24η48P87P70 +P24P48η87P70 +P24P48P87η70

+η24P49P97P70 +P24η49P97P70 +P24P49η97P70 +P24P49P97η70

+η24P42 +P24η42 +η25 +η24P48P85 +P24η48P85 +P24P48η85

+η26 +η24P49P96 +P24η49P96 +P24P49η96),
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h4 = (η50 +η5(10)P(10)1 +P5(10)η(10)1 +η5(10)P(10)(11)+P5(10)η(10)(11)+η5(11)),

h5 = (η60 +η6(13)P(13)1 +P6(13)η(13)1 +η6(12)+η6(13)P(13)(12)+P6(13)η(13)(12)),

h6 = (η(11)3P37P70 +P(11)3η37P70 +P(11)3P37η70 +η(11)(10)P(10)1 +P(11)(10)η(10)1

+η(11)3P31 +P(11)3η31 +η(11)(10)P(10)(11)+P(11)(10)η(10)(11)),

h7 = (η(12)3P37P70 +P(12)3η37P70 +P(12)3P37η70 +η(12)(13)P(13)1

+P(12)(13)η(13)1 +η(12)3P31 +P(12)3η31 +η(12)(13)P(13)(12)+P(12)(13)η(13)(12)).

b1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −(L7) −(L10) −(L13) 0 0
0 1− (L8) −(L11) −(L14) 0 0

−(L2) 0 1 0 −(L15) 0
−(L3) 0 0 1 0 −(L17)
−(L4) 0 0 0 1− (L16) 0
−(L5) 0 0 0 0 1− (L18)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−(L1) −(L6) −(L9) −(L12) 0 0
0 1− (L8) −(L11) −(L14) 0 0

−(L2) 0 1 0 −(L15) 0
−(L3) 0 0 1 0 −(L17)
−(L4) 0 0 0 1− (L16) 0
−(L5) 0 0 0 0 1− (L18)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−(L1) −(L6) −(L9) −(L12) 0 0
1 −(L7) −(L10) −(L13) 0 0

−(L2) 0 1 0 −(L15) 0
−(L3) 0 0 1 0 −(L17)
−(L4) 0 0 0 1− (L16) 0
−(L5) 0 0 0 0 1− (L18)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b4 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−(L1) −(L6) −(L9) −(L12) 0 0
1 −(L7) −(L10) −(L13) 0 0
0 1− (L8) −(L11) −(L14) 0 0

−(L3) 0 0 1 0 −(L17)
−(L4) 0 0 0 1− (L16) 0
−(L5) 0 0 0 0 1− (L18)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b5 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−(L1) −(L6) −(L9) −(L12) 0 0
1 −(L7) −(L10) −(L13) 0 0
0 1− (L8) −(L11) −(L14) 0 0

−(L2) 0 1 0 −(L15) 0
−(L4) 0 0 0 1− (L16) 0
−(L5) 0 0 0 0 1− (L18)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b6 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−(L1) −(L6) −(L9) −(L12) 0 0
1 −(L7) −(L10) −(L13) 0 0
0 1− (L8) −(L11) −(L14) 0 0

−(L2) 0 1 0 −(L15) 0
−(L3) 0 0 1 0 −(L17)
−(L5) 0 0 0 0 1− (L18)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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b7 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−(L1) −(L6) −(L9) −(L12) 0 0
1 −(L7) −(L10) −(L13) 0 0
0 1− (L8) −(L11) −(L14) 0 0

−(L2) 0 1 0 −(L15) 0
−(L3) 0 0 1 0 −(L17)
−(L4) 0 0 0 1− (L16) 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Where

L1 = P01 +P03P31, L2 = P5(10)P(10)1, L3 = P6(13)P(13)1,

L4 = P(11)(10)P(10)1+P(11)3P31, L5 = P(12)(13)P(13)1 +P(12)3P31,

L6 = P02 +P04P42, L7 = P12 +P14P42, L8 = P24P42,

L9 = P04P48P85, L10 = P14P48P85, L11 = P25 +P24P48P85,

L12 = P04P49P96, L13 = P14P49P96, L14 = P26 +P24P49P96,

L15 = P5(10)P(10)(11)+P5(11), L16 = P(11)(10)P(10)(11),

L17 = P6(12)+P6(13)P(13)(12), L18 = P(12)(13)P(13)(12).

N1 = (M0(s)b1 −M1(s)b2 −M5(s)b4 +M6(s)b5),

D1 = h1b1 − h2b2 + h3b3 − h4b4 + h5b5 − h6b6 + h7b7.

5 Busy Period Analysis

Let Gi(t) be the probability that the repairman is busy due to repair of the failed failed unit at instant t, given that the
system entered the regenerative state Si at t = 0.

5.1 Expected busy period with first unit

By using probabilistic arguments, we obtain

G0(t) = (q03(t)+ q04(t))⊛R1 +(q03(t)⊛ q37(t)⊛ q70(t)

+q04(t)⊛ q48(t)⊛ q87(t)⊛ q70(t)+ q04(t)⊛ q49(t)⊛ q97(t)⊛ q70(t))⊛G0(t)

+(q01(t)+ q03(t)⊛ q31(t))G1(t)+ (q02(t)+ q04(t)⊛ q42(t))⊛G2(t)

+(q04(t)⊛ q48(t)⊛ q85(t))⊛G5(t)+ (q04(t)⊛ q49(t)⊛ q96(t))⊛G6(t), (14)

G1(t) = (1+ q14(t))⊛R1 +(q10(t)+ q14(t)⊛ q48(t)⊛ q87(t)⊛ q70(t)

+q14(t)⊛ q49(t)⊛ q97 ⊛ q70)G0(t)+ (q12(t)+ q14(t)⊛ q42)⊛G2(t)

+(q14(t)⊛ q48(t)⊛ q85)⊛G5(t)+ (q14(t)⊛ q49(t)⊛ q96(t))⊛G6(t), (15)

G2(t) = (1+ q24(t))⊛R1 +(q24(t)⊛ q48(t)⊛ q87(t)⊛ q70(t)

+q24(t)⊛ q49(t)⊛ q97(t)⊛ q70(t))G0(t)+ (q24(t)⊛ q42(t))⊛G2(t)

+(q25(t)+ q24(t)⊛ q48(t)⊛ q85(t))⊛G5(t)+ (q26(t)

+q24(t)⊛ q49(t)⊛ q96(t))⊛G6(t), (16)

G5(t) = (q50(t))⊛G0(t)+ (q5(10)(t)⊛ q(10)1(t))⊛G1(t)

+(q5(10)(t)⊛ q(10)(11)(t)+ q5(11)(t))⊛G11(t) (17)
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G6(t) = (q60(t))⊛G0(t)+ (q6(13)(t)⊛ q(13)1(t))⊛G1(t)

+(q6(12)(t)+ q6(13)(t)⊛ q(13)(12)(t))⊛G12(t), (18)

G11(t) = (q(11)3(t))⊛R1 +(q(11)3(t))⊛ q37(t)⊛ q70(t))⊛G0(t)

+(q(11)(10)(t)⊛ q(10)1(t)+ q(11)3(t)⊛ q31(t))⊛G1(t)

+(q(11)(10)(t)⊛ q(10)(11)(t))⊛G11(t), (19)

G12(t) = (q(12)3(t))⊛R1 +(q(12)3(t))⊛ q37(t)⊛ q70(t))⊛G0(t)

+(q(12)(13)(t)⊛ q(13)1(t)+ q(12)3(t)⊛ q31(t))⊛G1(t)

+(q(12)(13)(t)⊛ q(13)(12)(t)⊛G12(t). (20)

Using LT to solve equations (14), (15), (16), (17), (18), (19) and (20) for G∗
0(s), We have the expected busy period with

repair in steady state as follows

G0 = G0(∞) =
N2

D1

, (21)

where

N2 = R
∗
(0){(P03 +P04)b1 − (1+P14)b2 +(1+P24)b3 − (P(11)3)b6 +(P(12)3)b7}, (22)

and

R
∗
(0) =

1

µ1

.

5.2 Expected busy period with second unit

By using probabilistic arguments, we obtain

G′
0(t) = (q04(t)⊛ q48(t))⊛R′

2 +(q03(t)⊛ q37(t)⊛ q70(t)

+q04(t)⊛ q48(t)⊛ q87(t)⊛ q70(t)+ q04(t)⊛ q49(t)⊛ q97(t)⊛ q70(t))⊛G′
0(t)

+(q01(t)+ q03(t)⊛ q31(t))G
′
1(t)+ (q02(t)+ q04(t)⊛ q42(t))⊛G′

2(t)

+(q04(t)⊛ q48(t)⊛ q85(t))⊛G′
5(t)+ (q04(t)⊛ q49(t)⊛ q96(t))⊛G′

6(t), (23)

G′
1(t) = (q14(t)⊛ q48(t))⊛R′

2 +(q10(t)+ q14(t)⊛ q48(t)⊛ q87(t)⊛ q70(t)

+q14(t)⊛ q49(t)⊛ q97(t)⊛ q70(t))G
′
0(t)+ (q12(t)+ q14(t)⊛ q42(t))⊛G′

2(t)

+(q14(t)⊛ q48(t)⊛ q85(t))⊛G′
5(t)+ (q14(t)⊛ q49(t)⊛ q96(t))⊛G′

6(t), (24)

G′
2(t) = (q24(t)⊛ q48(t))⊛R′

2 +(q24(t)⊛ q48(t)⊛ q87(t)⊛ q70(t)

+q24(t)⊛ q49(t)⊛ q97(t)⊛ q70(t))G
′
0(t)+ (q24(t)⊛ q42(t))⊛G′

2(t)

+(q25(t)+ q24(t)⊛ q48(t)⊛ q85(t))⊛G′
5(t)

+(q26(t)+ q24(t)⊛ q49(t)⊛ q96(t))⊛G′
6(t), (25)

G′
5(t) = (1+ q5(10)(t))⊛R′

2 +(q50(t))⊛G′
0(t)

+(q5(10)(t)⊛ q(10)1(t))⊛G′
1(t)+ (q5(10)(t)⊛ q(10)(11)(t)

+q5(11)(t))⊛G′
11(t), (26)

G′
6(t) = (q60(t))⊛G′

0(t)+ (q6(13)(t)⊛ q(13)1(t))⊛G′
1(t)

+(q6(12)(t)+ q6(13)(t)⊛ q(13)(12)(t))⊛G′
12(t), (27)

G′
11(t) = (1+ q(11)(10)(t))⊛R′

2 +(q(11)3(t))⊛ q37(t)⊛ q70(t))⊛G′
0(t)

+(q(11)(10)(t)⊛ q(10)1(t)+ q(11)3(t)⊛ q31(t))⊛G′
1(t)

+(q(11)(10)(t)⊛ q(10)(11)(t))⊛G′
11(t), (28)
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G′
12(t) = (q(12)3(t))⊛ q37(t)⊛ q70(t))⊛G′

0(t)+ (q(12)(13)(t)⊛ q(13)1(t)

+q(12)3(t)⊛ q31(t))⊛G′
1(t)+ (q(12)(13)(t)⊛ q(13)(12)(t)⊛G′

12(t). (29)

Using LT to solve equations (23), (24), (25), (26), (27), (28) and (29) for G∗
0(s), We have the expected busy period with

repair in steady state as follows

G′
0 = G′

0(∞) =
N3

D1

, (30)

where

N3 = R
′∗
(0){(P04P48)b1 − (P14P48)b2 +(P24P48)b3 − (1+P5(10))b4 − (1+P(11)(10))b6}, (31)

and

R
′∗
(0) =

1

µ2

.

5.3 Cost benefit analysis

This section, we calculate the expected profit to the system in the period (0, t] by calculating the deference between total
revenue and total cost of repair

C(t) = K1ωup(t)−K2ωr(t)−K3ωr′(t), (32)

Where, K1 is the revenue per unit of up time, K2 is cost per unit of repair of the first unit, and K3 is cost per unit of repair
of the second unit .

ωup(t) =

∫ t

0
AV0(t)dt, (33)

ωr(t) =
∫ t

0
G0(t)dt, (34)

ωr′(t) =

∫ t

0
G′

0(t)dt. (35)

using (5.33), (5.34) and (5.35) we obtain

C∗(s) = K1ω∗
up(s)−K2ω∗

r (s)−K3ω∗
r′(s).

Therefore the expected revenue per unit time in steady state is given by

C = lim
t→∞

C(t)

t
= lim

s→0
s2C∗(s) =

K1N1 −K2N2 −K3N3

D1

. (36)

6 Numerical Example

By setting K1 = 500,K2 = 5,K3 = 2, figures display the variation of MTSF, Availability, Busy period1, Busy period2 and
Cost benefit, for different values of θ ,τ,β ,α,µ1,µ2,z,λ1 and λ2.
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Fig. 1: MTSF with θ = 0.8, τ = .99, β = .005, α = .001, µ1 = .01, µ2 = .002, z = .03, λ1 = 0.05 to 0.5 and λ2 = 0.05 to 0.5.

Fig. 2: Availability with θ = 0.8, τ = .99, β = .005, α = .001, µ1 = .01, µ2 = .002, z = .03, λ1 = 0.05 to 0.5 and λ2 = 0.05 to 0.5.

Fig. 3: Busy period1 with θ = 0.8, τ = .99, β = .005, α = .001, µ1 = .01, µ2 = .002, z = .03, λ1 = 0.05 to 0.5 and λ2 = 0.05 to 0.5.
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Fig. 4: Busy period2 with θ = 0.8, τ = .99, β = .005, α = .001, µ1 = .01, µ2 = .002, z = .03, λ1 = 0.05 to 0.5 and λ2 = 0.05 to 0.5.

Fig. 5: Cost benefit with θ = 0.8, τ = .99, β = .005, α = .001, µ1 = .01, µ2 = .002, z = .03, K1 = 500,K2 = 5,K3 = 2, λ1 = 0.05 to 0.5

and λ2 = 0.05 to 0.5.

7 Conclusion

This paper provides the reliability analysis for a warm standby repairable system that consists of two dissimilar units.
One of these units is a good quality unit while the other one is of substandard quality that might need some repairs or
replacement by another substandard unit upon failure. The system works under two different weather conditions, normal
and abnormal. The unit operates under normal weather conditions, but incase of abnormal weather conditions, the
system stops and the unit fails. we successfully obtained some reliability measures of the system such as, the MTSF, the
availability analysis, the expected busy period and the expected profit of the system.

– The mean time to system failure increases with decreasing the failure rate of unit 1(λ1) and the failure rate of unit 2
(λ2).

– The Availability increases with decreasing the failure rate of unit 1(λ1) and the failure rate of unit 2 (λ2).
– The busy period with first and second unit increase with increasing the failure rate of unit 1(λ1) and the failure rate
of unit 2 (λ2).

– The cost benefit increases with decreasing the failure rate of unit 1(λ1) and the failure rate of unit 2 (λ2).
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