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Abstract: In the era of data revolution, availability and presence of data is a huge wealth that has to be utilized. Instead of 
making new surveys, benefit can be made from data that already exists. As, enormous amounts of data become available, it 
is becoming essential to undertake research that involves integrating data from multiple sources in order to make the best 
use out of it. Statistical Data Integration (SDI) is the statistical tool for considering this issue. SDI can be used to integrate 
data files that have common units, and it also allows to merge unrelated files that do not share any common units, 
depending on the input data. The convenient method of data integration is determined according to the nature of the input 
data. SDI has two main methods, Record Linkage (RL) and Statistical Matching (SM). SM techniques typically aim to 
achieve a complete data file from different sources which do not contain the same units. There are a number of traditional 
matching techniques mentioned in the literature. Among these techniques, there are various approaches for continuous data, 
but not as many methods for categorical data. This paper proposes a Statistical Matching technique for categorical data 
based on latent class models within a Bayesian framework. Dirichlet Process Mixture of Product of Multinomial 
distributions model is used in Statistical Matching throughout this paper which is a fully Bayesian estimation method for 
latent class models. Performance of the proposed latent class model used for Statistical Matching is evaluated using an 
empirical comparison with several existing matching procedures based on simulation studies.   
Key Words: Bayesian Statistical Matching; Categorical data; Dirichlet process; Latent Class Model; Mixed Methods. 
 

 

1 Introduction 
 

Attention has been growing towards Data Integration in response to the increasing flood of available data. Data Integration 
aims at integrating two or more data sources (usually data from sample surveys) sharing the same target population. 
Statistical Data Integration (SDI) can be used to integrate data files that have common units, and it also allows to merge 
unrelated files that do not share any common units, depending on the input data. The convenient method of data integration 
is determined according to the nature of the input data. SDI has two main methods, Record Linkage (RL) and Statistical 
Matching (SM). [1] provide a review of data integration techniques for combining probability samples, probability and 
nonprobability samples, and probability and big data samples. [2] presents a review for combining data from different 
sources focusing on record linkage. RL is the method of gathering information from multiple sources that relates to the 
same entity. If there is a unique identifier er in the data sources that will be integrated, then there is no difficulty in 
matching data sources.   
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In this case, deterministic linkage will be used. Deterministic linkage is a direct way of linking which usually requires exact 
agreement on a unique identifier (such as a national identity number). If there is no unique identifier, the Probabilistic 
Record Linkage is employed (see [3,4,5,6] for details). The advantage of SM is that it can be used as a supplement to RL to 
reduce the potential bias when obtaining the estimates using RL [7]. On the other hand, SM techniques typically aim to 
achieve a complete data file from different sources which do not contain the same units. In SM, data sources just share a set 
of common variables and inference is required on the other variables. Besides the main goal of SM which is data 
integration, SM also has the objective of jointly analyzing pairs of variables observed in two distinct sample surveys 
[8,9,10,11]. Inconsistent SM can only produce meaningless data that are impossible to compare and use. Accordingly, 
suitable approaches should be used for SM to keep pace with rapid development in the data science.  
The main goal of Statistical Matching (SM) is data integration. SM also has the objective of jointly analyzing pairs of 
variables observed in two distinct sample surveys [11,12,7,13,14]. Hence, the general benefit of SM is the creation of a full 
source of data that contains information about all variables from distinct sources that do not share the same units. This 
allows better use of data that is already available, making it a cost effective and timely way of gathering more information 
without the need to collect new data. This can improve decision making and data quality. There are a lot of approaches 
mentioned in the literature for SM either under Conditional Independence Assumption (CIA) or auxiliary information, 
along with their drawbacks whenever applicable [15,16,17]. It is noted that available SM procedures focus more on the 
case of continuous variables, rather than categorical data despite categorical data being the most common type of data in 
many social surveys. We thus pay more attention to categorical data in this paper by proposing a new Statistical Matching 
technique particularly designed for categorical data.  
Since SM can be viewed as a problem of missing data [18], some methods mentioned in the literature for handling 
incomplete categorical data are restructured to be used in the context of SM. These methods are Multiple Imputation (MI) 
using a Log Linear Model (LLM) and Multiple Imputation by Chained Equations (MICE) (see [19, 20, 12, 21] for details). 
Recently, latent class models (LCM) have been used for multiple imputation. We therefore propose to employ LCMs to be 
used in the SM framework in the same manner that LLM and MICE are implemented for the same purpose. In the 
literature, there are four estimation methods used for LCM for MI. These are Maximum Likelihood LCM (MLLC) and 
Divisive LC model (DLC) which are frequentist methods. Whereas, the standard Bayesian LC model (BLC) and the 
Dirichlet Process Mixture of Product of Multinomial distributions model (DPMPM) are Bayesian methods.  
The main motivation to use LCMs in SM, besides the limited number of existing techniques for SM in case of categorical 
data, is to overcome the disadvantages and problems arising from the use of LLM and MICE. The validity of the 
Conditional Independence Assumption, between variables that are not jointly observed, requires the best choice of common 
variables. [12] Suggests the use of latent classes to create and maintain CIA within classes, when relevant common 
variables cannot be found. Moreover, the structure of data used in SM can be very complex. In general, this means that the 
relationship between the variables is more complex than just a linear association, for instance. Another important point to 
be noted is the high dimensionality in the data due to having a lot of variables. The methods proposed in this paper for SM 
with categorical variables, use latent class models for MI within a Bayesian framework, taking into consideration the before 
mentioned problems.  
The organization of this paper is as follows: Section 2 gives a review of existing approaches for SM in case of categorical 
data. Section 3 gives a discussion of the use of LCM for MI. Section 4 presents the proposed model for SM based on 
Dirichlet Process Mixture of Product of Multinomial distributions model (DPMPM) with a full explanation of the steps of 
our proposed mixed methods based on CIA and auxiliary information. Furthermore, a comparison of our proposed methods 
either in case of CIA or auxiliary information with some traditional SM techniques is carried out based on a simulation 
studies in Section 5. Finally, Section 6 gives conclusion and future points.   
 
2 Reviews of Existing Approaches for Statistical Matching with Categorical Data 
There are two main methods in the literature for MI that are used for categorical data and then used for statistical matching. 
These are Log Linear Model (LLM) and Multiple Imputation by Chained Equations (MICE). MI using LLM, proposed by 
[22], works on capturing the relevant associations in the joint distribution of a series of categorical variables. SM for 
categorical data using LLM is presented as a mixed method of two steps. On the other hand, MICE is the second method 
used for SM of categorical data, introduced by [12]. MICE, a common modification action in MI, are an iterative method 
that considers the imputation problem as a set of estimations where each variable takes its turn in being regressed on the 
other variables. MICE is a flexible method that handles various types of variables, since each variable is imputed using its 
own imputation model [23]. This procedure is called chained equations, variable-by-variable Gibbs sampling, or regression 
switching. For more details (see [24,12]). MICE can be applied for both continuous and categorical data. [12] found out 
that MI approaches are superior to traditional SM procedures in case of continuous data, such as hot deck procedures, and 
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thus suggested to use it as a method for SM.  
One major limitation for the use of LLM for MI in general is that it can only be used if the number of variables is relatively 
limited. Since the processing cells number in the multi-way cross tabulation increases with the variables number 
exponentially [25], LLM can not be applied in this case of having a large number of variables. This is considered a serious 
defect in LLM and consequently it is necessary to search for alternative approaches to deal with a large number of 
variables.  
On the other hand, MICE also suffers from drawbacks although it is an intuitive and realistic technique. One of its 
disadvantages is that there is no theoretical background for the convergence of missing data draws with the resulting 
distribution of missing data. Secondly, MICE mainly involves the main effects when proceeding a series of regression 
equations. This may lead to not picking up higher order associations between the variables. In addition, while the approach 
requires interactions in the higher order to be used, this can be a completely challenging and time consuming process in 
case of having large number of variables in the imputation process [25].  
[26] proposed several mixed procedures in case of categorical data for SM based on multinomial logistic regression models 
depending on CIA and auxiliary information. Other SM approaches are based on Bayesian networks. [27] described and 
discussed first attempts for SM of discrete data using Bayesian networks. A further study of how probabilistic graphical 
models may be used for SM is introduced by [28], who performed log-linear Markov networks under the assumption of 
conditional independence. For a detailed review of recent approaches and developments of SM techniques, see [15].  
An imputation model using LCM is introduced in case of categorical data by [25]. Different problems associated with LLM 
and MICE appear to be solved by LCM for MI. Even if the variables number is large, LCM can be estimated efficiently 
[29]. In addition, complex interactions of higher order as well as simple associations between the variables are considered 
in the imputation process with models that contain a sufficient number of latent classes [30]. Therefore, LCM can be used 
for datasets drawn from large scale studies, where there is a large number of variables and complex relationship structures 
[31,32]. It is important to mention that latent variable models have also already been used in the end of record linkage, 
which is the second type of data integration. For more information about these methods of record linkage, see 
[33,34,35,36,37]. These methods used a Bayesian approach to graphical record linkage and duplication. [38] presented an 
approach using Dirichlet Process Mixture of Product of Multinomial distributions model (DPMPM) for imputing the 
missing values in case of categorical variables through NPBayesImputeCat package in R.  
In our study, we utilize this same model to be used in the context of SM. We present a new mixed approach, in which, 
we have two steps. The first step is to perform DPMPM and the second step is the hotdeck method, which is the same 
manner of previous approaches provided for SM such as loglinear method. Moreover, we will compare our new SM 
mixed method with existing SM methods. To extend this comparison, the method proposed by [38], which is 
demonstrated for imputing the missing data, will be exploited in SM. This comparison will be conducted via simulation 
studies in different scenarios in both cases, under conditional independence assumption and with auxiliary information.  
 

3 Latent Class Model for Multiple Imputation 
This section aims to present an overview of MI by employing a LCM to overcome difficulties of the existing approaches 
in SM in case of categorical data. The four various estimation methods of LCM for MI will be considered. LCM is a 
type of mixture model which describes the distribution of categorical data [39, 40 y].  
Besides using them for data reduction, latent class models have been recently used for MI where they are employed as a 
tool for estimating the density of categorical variables [25,41]. An LCM can be estimated efficiently even if the number of 
variables is large [29,32,42], making it suitable for clustering or density estimation for datasets drawn from large-scale 
studies, where there is a large number of variables and complex relationship structures.  
By assuming that we have a fixed number of latent classes 𝐾, we can de ne some notations as follows; 
 𝑧! 	 ∈ 	 {1, . . . , 𝐾} is the class membership of unit 𝑖 for 𝑖	 = 	1, . . . , 𝑛,  
𝛹𝑧	=	(𝑧𝑖	=	𝑘) is the probability of belonging to class 𝑘, where; 𝛹	=	(𝛹1,	.	.	.	,	𝛹∞) is the same for all units,  
𝛷𝑦|𝑧	=		𝑟(𝑦𝑖𝑗	=	𝑦	|	𝑧𝑖	=	𝑘)	is the conditional probability of 𝑦𝑖𝑗	=	𝑦, given that unit 𝑖 is in class 𝑘 for any value, where; 
𝛷	=	{𝛷𝑦|𝑧	∶	𝑦	=	1,	.	.	.	,	𝑡𝑗,	𝑗	=	1,	.	.	.	,	𝑝,	𝑘	=	1,	.	.	.	,	𝐾} is the collection of all 𝛷𝑦|𝑧.  
The posterior class membership probabilities of the units are a quantity of concern while using LCM. This quantity 
represents the probability that a unit belongs to the 𝑘𝑡ℎ class given the observed data pattern 𝑦𝑖. Bayes’ theorem can 
describe this quantity in the following manner:  
 

                                        𝑃(𝑧! = 𝑘|y") =
#(%=&')#)y"*𝑧! = 𝑘+

#(,>)
                                                  (3.1) 
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When a LCM is employed for MI in case of data with missingness, there is no need to de ne meaningful clusters, but the 
joint density of variables in the imputation model should be well defined. Using LCM for imputation purposes is being a 
device for the estimation of (y"). Once an incomplete dataset is used to estimate a LCM, MI can be done by M draws of 
imputations in a random way from the posterior distribution of the missing values for each non-response, given the 
observed data and model parameters. Through MI model, the missing data are replaced (or predicted, imputed) 𝑀	 > 	1 
times by different values, the distribution of which is estimated with the imputation model. Hence, the uncertainty of the 
imputation is considered by repeating this process 𝑚	 > 	1 times for each unit with at least one missing value. In this case, 
data is divided into two parts 𝑦𝑖,𝑏𝑠 and 𝑦𝑖,𝑚𝑖𝑠. 𝑦𝑖,𝑏𝑠 represents the observed part for unit i, whereas 𝑦𝑖,𝑚𝑖𝑠 is the missing part for 
unit 𝑖. The role of the imputation model, specifically, is to provide values sampled from P(𝑦𝑖,𝑚𝑖𝑠|𝑦𝑖,𝑜𝑏𝑠), that is, the 
distribution of the missing data given the observed data. In LCM for incomplete data, the conditional distribution 
P(𝑦𝑖,𝑚𝑖𝑠|𝑦𝑖,𝑜𝑏𝑠) can be written as;  
 
             P(𝑦!,.!/|𝑦!,01/) = ∑ 𝑃F𝑧! = 𝑘, 𝑦!,.!/|𝑦!,01/G2

'&3                                                          (3.2) 
                                      

                                     = ∑ 𝑃F𝑧! = 𝑘|𝑦!,01/G	𝑃Fy",4"5H𝑧! = 𝑘G2
'&3                                               (3.3) 

                                 
                                      = ∑ 𝑃F𝑧! = 𝑘|𝑦!,01/G∏ [𝑃F𝑦!6H𝑧! = 𝑘G]378=L9

6&3
2
'&3 .                           (3.4) 

Where; 
𝑟!6 =0 if 𝑦!6 is missing and 1 if observed. 
 

𝑃F𝑧! = 𝑘|y",:;5G =
𝑃(𝑧! = 𝑘)𝑃Fy",:;5H𝑧! = 𝑘G

𝑃Fy",:;5G
 

 
𝑃(𝐲𝐨𝐛𝐬)= ∑ 𝑃(𝑧! = 𝑘)∏ [𝑃F𝑦!6H𝑧! = 𝑘G]8=L9

6&3
2
'&3  

 

Equation (3.2) is obtained using the local independence assumption between 𝑦𝑖,𝑏𝑠 and 𝑦𝑖,𝑚𝑖𝑠 given 𝑧𝑖. Whereas equation (3.3) 
uses again the local independence assumption, but among the variables containing missing values.  
 There are four various estimation methods of LCM for MI. These are Maximum Likelihood LCM (MLLC) and Divisive 
LC model (DLC) which are frequentist methods. Whereas, the standard Bayesian LC model (BLC) and the Dirichlet 
Process Mixture of Product of Multinomial distributions model (DPMPM) are Bayesian methods. These four models can 
be used as a perfect MI tool with large data when variables are categorical [29,43,44]. Since SM can be viewed as a special 
case of imputation, we will use one of these four estimation methods in the context of SM. Namely, we choose to 
implement DPMPM for the following reasons:  
  
•   [45] Stated that the validity of the imputation inferences needs analysts for incorporating all uncertainty causes, 

including the estimation of the parameter. Since this uncertainty can be incorporated immediately within Bayesian 
estimation, we choose DPMPM, a fully Bayesian estimation method, where the number of classes is determined within 
the estimation process.  
 

• When the relationship between the categorical variables is more complex than just a linear association with missing data, 
there is a need for a MI approach that (i) prevents the difficulties inherent in LLM concerning model selection and 
estimation, (ii) has theoretical foundations as in a consistent Bayesian joint model, and (iii) offers efficient computation. 
All of these advantages are available in DPMPM.  
 

• It takes structural zero into consideration. Structural zero is an important feature of survey data, defined by the existence 
of impossible combinations of variables. For example, in the combinations of variables of pregnancy status and gender, 
there should not exist a pregnant male. For household survey, in the combinations of variables  
of relationship and age, there should not exist a household where a son is older than his biological father, and so on. 
DPMPM takes structural zeros into consideration by assigning zero probability for impossible combinations, which is a 
challenging task.  
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4 Proposed Mixed Approaches for Statistical Matching Using DPMPM 
 

In this section, we will present a number of mixed methods for SM based on DPMPM for both CIA and auxiliary 
information. We first give a detailed description for DPMPM model for MI and show the mechanism of this model and 
how it works before presenting our mixed methods.  
In general, the Dirichlet process is a stochastic process used in Bayesian nonparametric models of data, particularly in 
Dirichlet process mixture models (also known as infinite mixture models). Hence, DPMPM is considered to be a 
generalization of the finite mixture model for multinomial data, presented in Section 3, in which DPMPM assumes infinite 
classes number instead of a fixed number of classes. Moreover, DPMPM provides a complete Bayesian modelling method 
in case of categorical data with high dimensionality of the variables, estimated using Gibbs sampler.  
The finite mixture model assumes that a fixed number of latent classes 𝐾, but it is not known in practical analysis and 
should be determined by the researcher. If the researcher puts a too small value for 𝐾, the mixture model may not be 
versatile enough to predict the complicated dependencies. [25] propose that researchers pick 𝐾 based on penalized 
likelihood statistics, such as the Bayesian Information Criterion (BIC) or the Akaike Information Criterion (AIC). The 
efficiency of penalized likelihood model selection processes is not properly studied in this context. Therefore, it is not 
certain that the AIC (or BIC) chooses a sufficiently large 𝐾 [29]. And if we suppose that AIC gives a relatively large 𝐾, the 
uncertainty about 𝐾 when producing the imputations is still ignored until determining the 𝐾 value. This contradicts the 
recommendation by [45] to take into consideration all potential uncertainty regarding the imputation model parameters to 
prevent underestimating the variances of the model parameters [29]. DPMPM deals with the issue of parameter uncertainty, 
and tackles the problem of choosing a specific measure to determine a fixed 𝐾. This problem can be solved by assuming 
that theoretically there is an in finite number of classes (𝐾	=	+∞) and this matches with the theoretical background of 
DPMPM as it is basically an infinite mixture of products of multinomial distributions.  
For DPMPM, the likelihood of the data can be given by  
  

𝑦!6|𝑧! , 𝛷	 ∼ 	𝑀𝑢𝑙𝑡𝑖𝑚𝑛𝑜𝑚𝑖𝑎𝑙	(𝛷%=63, …	, 𝛷%=6?)	∀	𝑖, 𝑗																																																																										 		(4.1) 

𝑧𝑖|𝛹	∼	𝑀𝑢𝑙𝑡𝑖𝑚𝑛𝑜𝑚𝑖𝑎𝑙	(𝛹1,	…	,	𝛹∞)	∀	𝑖																																																																																									 			 			(4.2) 
  
Where parameters prior distributions are assumed as follows  
  

𝛷𝑦|𝑧	=	(𝛷𝑘𝑗,	…	,	𝛷𝑘𝑗𝑙𝑗)		∼	𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡	(𝑎𝑗1,	…	,	𝛷𝑗𝑡𝑗)																																																																																 					(4.3) 
𝛹𝑧	=	𝑉	∏ (1 − 𝑉@)@A' ;	𝑘	=	1,	…	,	∞																																																																																								 																				(4.4) 
𝑉𝑘	∼	𝐵𝑒𝑡𝑎	(1,	𝑎)																																																																																																																																										 				(4.5) 

																						𝑎	∼	Gamma	(𝛼,	𝛽)																																																																																																																																							 			(4.6)		   
A stick-breaking procedure is one of the potential principles of the Dirichlet process. It acts as a prior for the mixture 
probabilities Ψ% [46,47]. Therefore, the prior distribution is modelled for the mixture probabilities, 𝛹𝑧	=	Pr(𝛹1,	…	,	𝛹∞),	by 
using the stick-breaking representation of the Dirichlet process as in equations 4.4 and 4.5. 
 
 The joint posterior distribution of the parameters can be approximated via MCMC. According to the system of equations 
mentioned above, 𝑉𝑘 is drawn from a Beta distribution with parameters (1,	 𝑎) for 𝑘	 = 	1, . . . , ∞; where a follows a 
𝐺𝑎𝑚𝑚𝑎	(𝛼,	𝛽). In this context, [48] suggest the parameters of Gamma distribution to be α = 0.25, β = 0.25. This makes 
each 𝑉𝑘 to be uniformly distributed in the (0,1) range, whereas each element of (𝑎63, . . . , 𝑎6?6)	equalized to one to 
correspond to a uniform distribution. For adapting with missing data, truncation process is considered. Truncation of the 
stick breaking probabilities 𝛹𝑧 at an arbitrary large 𝐾∗ is suggested by [29] due to the difficulty to deal with infinite 
number of classes K practically. They just put a condition that 𝐾∗ not to be too large to guarantee the fast computing. After 
that, Gibbs sampler is conducted. This requires running an algorithm containing six main steps: the first is to assign each 
unit to a latent category by sampling draws from the posterior membership probabilities (𝑧𝑖 = 𝑘|𝑦𝑖) in equation 3.1. 
Secondly, because of the truncation, some updates occur to the system of equations mentioned above and the sample draws 
for them are as follows;  
 

𝑉𝑘	∼	𝐵𝑒𝑡𝑎	(1	+	𝑣,	𝑎	+	𝜃);	k	=	1,	.	.	.	,	𝐾∗	−	1                                                                              (4.7) 
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where;  
ν is the number of units allocated in the kth latent class, 
θ is the number of units assigned to the latent classes which go from k + 1 to 𝐾∗  
 
      For the third step in the algorithm, we set 	𝑉B∗ = 1 and each 𝛹𝑧 is calculated through the formula  
𝛹𝑧	=	𝑉𝑘	∏ (1	 − 	Vg).DAE	 	In the fourth step, draw 𝛷𝑦|𝑧	from  
  𝛷𝑦|𝑧	=	(𝛷𝑘𝑗,	.	.	.	,	𝛷𝑘𝑗𝑙𝑗)	∼	𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝑎𝑗1	+	𝜔,	.	.	.	,	𝑎𝑗𝑡𝑗	+	𝜔)																																																					(4.8)  

where;  
𝜔 is the number of units, which take one of the possible observed values of the 𝑗𝑡ℎ variable and are dropped into the kth 
latent class.  
In the fifth step, a is drawn from Gamma distribution as follows;  

(4.9) 

The last step is the imputation process, given that the value 𝑧𝑖	=	𝑘 of each unit, 𝑦𝑖𝑗 is sampled by;  

                          𝑦𝑖𝑗	|	𝑧𝑖,	𝛷∼	𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖(𝛷𝑧𝑖𝑗1,	.	.	.	,	𝛷𝑧𝑖𝑗𝑡𝑗)					∀𝑖,	𝑗                                                                  (4.10)  

Steps 1-6 are repeated until convergence is attained.  
Next, we introduce a number of mixed methods for SM using DPMPM in case of categorical data for both under CIA and 
with auxiliary information. 
  
 4.1 Statistical Matching Methods under CIA 
 

Mixed DPMPM Approach in case of CIA (MDC1)  
 
In the basic SM structure, there exist two files say A and B as sources of data. Now, suppose file A contains variables X 
and Y, while file B contains variables X and Z. In this case, variables Y and Z are not found jointly in one dataset. In this 
method, file A and file B will be combined together and the resulting missing pattern is known as Missing Completely At 
Random (MCAR) by design (see Table 1 in Appendix A). SM aims to provide a complete file containing variables 𝑋,	𝑌 and 
𝑍 by imputing the missing 𝑍 in file A to get an integrated file A. So, our first proposed method, which we call MDC1, takes 
the following steps:  
1. MDC1 procedure begins by DPMPM to fill the missing data. After running DPMPM step, file A consists of 
𝑋G1/H8IHJ
(K) , 𝑌G1/H8IHJ

(K)  and 𝑍u#8!.L8M
(K) . File B consists of 𝑋G1/H8IHJ

(N) , 𝑍G1/H8IHJ
(N)  and 𝑌v#8!.L8M

(N) . 
2. Matching step for MDC1 is done by hot deck method. A live z value 𝑍O!IH

(N)  that is observed in file B is assigned to 
the ath record in file A according to the nearest distance 𝑑L1((𝑌G1/H8IHJ

(K) ,𝑍u#8!.L8M
(K) ), (𝑌v#8!.L8M

(N) , 𝑍G1/H8IHJ
(N) ).    

Mixed DPMPM Approach in case of CIA (MDC2)  
 
1. The first step is same as MDC1.  

2. For each unit in file A, фy6
(K) is estimated by fitting a multinomial logistic regression model in which the common 

variables  𝑋G1/H8IHJ
(K)  and 	 𝑌G1/H8IHJ

(K)  are the independent variables and the primary variable 𝑍u#8!.L8M
(K) in file A is the 

dependent variable.  
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3. For each unit in file B, фy6
(N) is estimated by fitting a multinomial logistic regression model in which the common 

variables 𝑋G1/H8IHJ
(N) 	 and	 𝑌v#8!.L8M

(N)  are the independent variables and the observed variable 𝑍G1/H8IHJ
(N)  in file B is the 

dependent variable.  
4. Distance hot deck approach is applied in which a value of Z in file B is imputed for file A based on the nearest 
distance 𝑑L1Fфy6

(K), фy6
(N)G. 

 

Mixed DPMPM Approach in case of CIA (MDC3)   
  
       1-2. The first two steps are the same as MDC2.  
  
3. Obtain categorical variable Z for the recipient file A by generating multinomial random variable with the       predicted 
probability фy6

(K) in step (2).  

4.2 Statistical Matching with Auxiliary Information  

Mixed DPMPM Approach in case of Auxiliary Information (MDA1)  

1. MDA1 procedure begins by running DPMPM using file A, file B and file C.  

2. Matching step for MDA1 is done by hot deck method. A live z value 𝑍O!IH
(P)  that is observed in file C is then 

assigned to the ath record in file A according to the nearest distance 𝑑L1((𝑌G1/H8IHJ
(K) ,𝑍u#8!.L8M

(K) ), (𝑌G1/H8IHJ
(P) , 𝑍G1/H8IHJ

(P) ). 

Mixed DPMPM Approach in case of Auxiliary Information (MDA2)  

1. The first step is same as MDA1.  

2. For file A, t a multinomial logistic regression model in which 𝑍u#8!.L8M
(K)  is the dependent variable and 𝑋G1/H8IHJ

(K) 	
and		𝑌G1/H8IHJ

(K)  is the independent variables to get probability фy6
(K). 

3. For file C, fit a multinomial logistic regression model in which 𝑍G1/H8IHJ
(P)  is the dependent variable and 𝑋G1/H8IHJ

(P) 	
and		𝑌G1/H8IHJ

(P)  is the independent variables to get probability фy6
(P). 

4. Distance hot deck approach is applied in which a value of Z in file C is imputed for file A based on the nearest 
distance 𝑑L1Fфy6

(K), фy6
(P)G.  

Mixed DPMPM Approach in case of Auxiliary Information (MDA3)  

1. The first step is same as MDA1.  

2. Using file B, fit a multinomial logistic regression model in which 𝑍G1/H8IHJ
(N)  is the dependent variable and 

𝑋G1/H8IHJ
(N)  and	𝑌v#8!.L8M

(N)   are the independent variables. 

3. Using file A, the predicted probability фy6
(K) is obtained by using the following equation;  

																	фy6
(K) =

QRS	(TL
|U)

3V∑ QRS	(TL
|U)}~�

=��
, j=1,…,J-1. Where 𝛽"# is estimated from step (2).  

4. Obtain categorical variable Z for the recipient file A by generating multinomial random variable with the predicted 
probability фy6

(K) in step (3).  

5 Simulation Studies 
 

To compare the performance of the proposed SM methods in Section 4 with loglinear, MICE and hot deck, simulation 
studies are performed. Separate simulation studies are carried out under CIA and with auxiliary information. The effect of 
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different sample sizes of auxiliary file C is also studied, via another simulation study.  
In this section, we present the three steps of our simulation studies. These are data generation, simulation design, and 
simulation results.  

5.1 Data Generation 
 

For our simulation studies, we generate a population of size 50,000 with a number of categorical variables (X,Y,Z). Three 
common variables; X1, X2, and X3, are generated with 4, 3, and 2 categories, respectively. The 𝑌 and Z variables, which are 
not found jointly found in the same file, we are generated with 3 and 4 categories, respectively where 𝑌 is found in file B, 
and 𝑍 is found in file A. The choice of number of common variables and number of categories here is arbitrary. Through 
the simulation process, file A, the recipient file, and file B, the donor file, are created using random sampling. In each 
replication, recipient file A is created by randomly selecting 1500 units of the generated data, while variable 𝑍 is being 
removed. Similarly, file B is generated of size 5000 with Y being removed. Accordingly, 𝑋 and 𝑌 are observed in the 
recipient file A. While 𝑋 and 𝑍 are observed in the donor file B. This process is repeated 1000 times in order to obtain 1000 
different sets of files A and B. The integrated file A will be used to evaluate the performance of our proposed SM methods, 
by comparing the resulting integrated data to the true generated complete dataset (𝑋, 𝑌, 𝑍), using a relevant measure.  

5.2 Simulation Design 
The generation of 𝑋, 𝑌 and 𝑍 is performed basically using multinomial logistic regressions in order to consider different 
associations between variables. 𝑋 variables are created from multinomial distribution with probabilities shown in table 2 in 
Appendix A. The vector of common variables, 𝑋	=	 (𝑋1,	 𝑋2,	 𝑋3)′, includes three categorical variables with 4,3, and 2 
categories, respectively. This vector is converted into dummies as,  

𝑋𝑑	=	(𝑥1𝑑,	𝑥2𝑑,3𝑑)′	=	(𝑥11,	𝑥12,	𝑥13,𝑥14,𝑥21,	𝑥22,	𝑥23,𝑥31,𝑥32)′,  

where 𝑥𝑖𝑗 = 1 if the observation belongs to jth category of the ith categorical variable, and 0 otherwise.  
 Now, we generate Y based on a multinomial logistic regression model to obtain a certain association between 𝑋 and  .  

Assume that variable 𝑌 has 𝐽 categories and that the probability of belonging to each category is (Φ1,Φ2,...,Φj), where 
∑ ф6 = 1X
6&3 . Under the multinomial logistic regression model, the log of probability of the observation belonging to each 

category 𝑗 relative to the last category 𝐽 is  

𝑙𝑛
ф6
фX

= 𝛽6Y𝑋, 𝑗 = 1,… , 𝐽 − 1																																																																					(5.1) 

where 𝑋	=	(𝑥1,	𝑥2,	…	,	𝑥𝑝)′ is a vector of explanatory variables and 𝛽6Y = (𝛽63, 𝛽6Z, … , 𝛽69) is a vector of regression  
coefficients corresponding to outcome j. From Equation 5.1, we get the probability Φj  as  

ф" = ф. exp2𝛽"#𝑋3 =
exp2𝛽"#𝑋3

1 + ∑ exp2𝛽"#𝑋3
.78
9:8

,						𝑗 = 1,… . , 𝐽 − 1																					(5.2) 

  
𝑌 is generated according to the above probabilities, which are functions of the common variables 𝑋. The variable Y is 
generated having three categories such that 𝑌J 	= 	 (𝑦3, 𝑦Z, 𝑦[) ∼ 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(ф3

M, фZ
M, ф[

M) multinomial where y1,y2 and y3 

are dummy variables and ф3
M, фZ

Mand ф[
M are the corresponding probabilities of belonging to each category (probability that 

yj = 1), such that  
 

𝑙𝑛
ф6
M

ф[
M = 𝛽6

YM𝑋J ,						𝑗 = 1,2 

The following values are assumed for parameters in the above model for the generation of the Y variable:  

𝛽1′ = (−0.1,0.1,−0.1,−0.1,0.1,−0.1,0.1,0.1,−0.1),   

𝛽2′ =  (−0.1,0.1,−0.1,−0.1,0.1,−0.1,0.1,0.1,−0.1).  
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Then, Z is generated given the generated X and Y . Ten Z variables are created. Each generated Z having different levels of 
association with X and Y is included in the dataset (one at a time). Various association strengths of (X,Y,Z) are considered 
by obtaining 10 different Z variables to evaluate the performance of the different matching methods, under different 
scenarios of association among variables. Z1 to Z5 are generated so that no association exists with X but different level of 
association exists with Y . Z6 to Z10 are generated so that association exists with X and different level of association exists 
with Y. Z is generated with four categories from the model  

	

𝑙𝑛
ф\
%�

ф]
%� = 𝛽\

Y%�𝑋J + 𝜆\
Y%�𝑌J																																																													(5.3) 

 
Such that 𝑍J 	= 	 (𝑧3, 𝑧Z, 𝑧[, 𝑧]) ∼ 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(ф3

M, фZ
M, ф[

M) ∼ 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(ф3%, фZ%, ф[%, ф]%) where 𝑧3, 𝑧Z, 𝑧[, 𝑧] are 
dummy variables and ф3%, фZ%, ф[	% and ф]% are the corresponding probabilities of belonging to each category (probability that 

zj = 1), such that 𝑙𝑛
ф�
��

ф�
�� = 𝛽\

Y%�𝑋J + 𝜆\
Y%�𝑌J , ℎ = 1,2,3.  Z is generated with H categories, (ℎ	=	1,2,	𝐻	−	1) and different 

scenarios (k = 1,2,...,10), and Yd  is a vector of 3 dummy variables.  
  
For generating different scenarios of Z, coefficients are provided in Table 4 in Appendix A. Table 3 in Appendix A shows 
different levels of association between Y and Z according to Cramer’s V measure of association for nominal variables. 
Values were chosen arbitrarily, however, a variety of values was chosen to capture different levels of association.  
  
Finally and with this simulation design, 1000 completed synthetic datasets are imputed for each one of the 10 scenarios of 
Z using different SM methods. In other words, for each one of the 10 different scenarios of Z, 1000 datasets are imputed for 
each method.  

5.3 Simulation Results 
5.3.1 Simulation results for SM under CIA 
To evaluate the performance of the proposed statistical matching methods versus existing methods, we consider the 
estimation of contingency table of Y and Z using the matched data, since inference on categorical variables is usually based 
on contingency tables. A set of similarity/dissimilarity measures are computed for marginal or joint distribution of 
categorical variables. Examples of similarity measures include overlap between two variables and bhattacharyya 
coefficient, a measure that is based on the difference between frequencies of a contingency table that is constructed from 
the matched file, and those of the contingency table of the population. Both these measures range within the interval [0,1]. 
The closer to 1, the more the distributions of variables are similar. Measures of dissimilarity such as total variation distance 
and Hellinger’s distance, also range within the interval [0,1]. The closer to 0, the more the distributions are similar. For 
details about various distance measures, see [49]. Among these similarity /dissimilarity measures, we use the Hellinger’s 
distance (Hell) for the comparison of the two distributions, which takes the following formula:  

 
  𝐻𝑒𝑙𝑙	=	√1	−	𝐵ℎ𝑎𝑡𝑡    

Where  

𝐵ℎ𝑎𝑡𝑡 = ∑ �𝐵3,. − 𝐵Z,._
.&3   is the Bhattacharyya coefficient such that 𝐵3,.	is a relative frequency of Y ×𝑍u  contingency 

table in the matched file, and 𝐵Z,.	is a relative frequency of Y ×Z contingency table in the population, and M is number of 
cells in the Y ×Z contingency table.  

We evaluate the performance of our proposed methods by comparing them with LLM, MICE, Random hot deck and other 
two proposed methods by [26]. We denoted two methods by Kim and Park methods as KP1 and KP2 respectively. Also, a 
DPMPM method by [38] will be exploited in SM context and denoted by MVR.  
 
The comparison between the different approaches of SM are performed in terms of Hellinger distance for all methods under 
consideration (Hotdeck, Loglinear, MICE, KP1, KP2, MDC1, MDC2, MDC3) under the ten different simulated scenarios 
of associations outlined above. Table 5 in Appendix A shows the mean, maximum and minimum of 1000 values of 



256                                                                                             I. Lewaa et al.: Mixed Statistical Matching Approaches Using … 

 

 
 
© 2023 NSP 
Natural Sciences Publishing Cor. 
 

Hellinger distance. The results indicate that MICE consistently has the worst performance among the eight methods. This 
may be due to the fact that MICE approach is basically designed for missing data not as a SM technique. Accordingly, 
MICE is removed from Figure 1in Appendix B that compares different methods of SM, for the sake of a clearer graph. Due 
to its bad performance, whenever it is included in the graph, the differences among other methods is not visible. On the 
other hand, all existing methods perform poorly under scenarios where CIA does not hold in the population (𝑍4,	𝑍5,	𝑍9,	
𝑍10). On the contrary, our proposed methods (MDC1, MDC2, MDC3) outperform other methods by having the least 
values for Hellinger distance in case of Z4,Z5,Z9 and Z10. These are scenarios where CIA does not hold in the population. 
This is because latent class model has the advantage of being based on conditional independence assumption, that is, the 
scores of different items are independent of each other given latent classes. The results indicate that whenever CIA holds, 
namely in cases 𝑍1,	𝑍2,	𝑍3,	𝑍6,	𝑍7,	𝑎𝑛𝑑	𝑍8,	𝐾𝑃1	𝑎𝑛𝑑	𝐾𝑃2 exhibit the best performance among all methods.  

5.3.2 Simulation Results for SM with Auxiliary Information 
In the second simulation, we compare the performance of the statistical matching methods using the auxiliary information 
suggested in Section 4.2 to the random hot deck method, LLM, MICE and Kim and Park method. To obtain auxiliary 
information, file C of size 200 with (X,Y,Z) variables, about 10% of the recipient file A, was sampled from the population. 
As in the previous simulation, the mean of 1000 values of Hellinger are shown in Table 6 in Appendix A.  
Table 6 in Appendix A shows that in all cases from Z1 to Z10, our proposed SM techniques MDA1 and MDA3 outperform 
all other methods in which auxiliary information is incorporated, when estimating the joint distribution of (Y,Z), based on 
the average of Hellinger’s distances calculated from 1000 simulations. The performance of MICE has a great improvement 
when auxiliary information is applied compared with its performance under CIA but it still has a bad performance among 
all approaches. As expected, the statistical matching method which is valid under CIA is sensitive to the level of 
association between Y and Z, while the methods using auxiliary information are relatively insensitive compared to the CIA. 
Figure 2 in Appendix B summarizes the performance for the other approaches (excluding MICE) existing in Table 6 in 
Appendix A.  

5.3.3 Simulation Results for Different Sizes of Auxiliary File 

Since MDA1 was found to have the best performance consistently among all methods, in the third simulation we compare 
the performance of MDA1 with various sample sizes of file C. We choose to compare the performance of the MDA1 
method when the size of file C is 50, 100, 150, 200, 250, and 300.  

Figure 3 in Appendix B shows that, the performance of MDA1 in estimating the joint distribution of (Y,Z) improves as the 
size of file C increases. See also Table 7 in Appendix A. However, the amount of gain obtained by increasing the size of 
file C decrease as the size of file C increase which is clearly obvious from figure 3 in Appendix B. Accordingly, almost no 
significant gain is obtained by increasing n = 150 to n = 300.  

6 Conclusions and Future Work 
 

The main goal of a statistical micro matching is to generate synthetic data which combines variables (Y,Z) that are not 
jointly found in the same data file and estimate the joint distribution of (Y,Z) and (or) (X,Y,Z). Throughout this paper, we 
introduced a number of methods based on Latent Class Models (LCM) to be used in the context of SM. we proposed 
several mixed matching methods using DPMPM for categorical variables. First, we proposed a statistical matching method 
without auxiliary information under CIA. Simulation studies showed that the performance of MICE is the worst among the 
eight methods under consideration. Unlike our proposed methods, which depend on latent class models, all existing 
methods performed poorly when CIA did not hold in the population. This is because latent class model has an advantage of 
being based on an assumption of conditional independence, that is, the scores of different items are independent of each 
other given latent classes. Whereas in cases where CIA holds, Random method had the best performance. Our proposed 
mixed method outperforms other methods in cases where CIA does not hold, and is thus more reliable. Second, we 
proposed a statistical matching method with auxiliary information when CIA does not hold. The performance of MICE had 
a great improvement when auxiliary information is applied compared with its performance under CIA but it still had a poor 
performance compared to other approaches. As expected, statistical matching methods that are valid under CIA are 
sensitive to the level of association between Y and Z, while the methods using auxiliary information are relatively 
insensitive compared to the CIA. Finally, the simulation result shows that the size of file C does not need to be large which 
means the cost to overcome the CIA would not be a serious concern in practice.    

As an application to the proposed mixed DPMPM approach, presented in this paper, the authors attempted to integrate data 
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from two real national surveys, namely the Egyptian Household Income Consumption Expenditure Survey (HICES), 
carried out by the Central Agency for Public Mobilization and Statistics, and the Egyptian Demographic Health Survey 
(EDHS), carried out by USAID. The proposed statistical matching technique was used to integrate the two national 
surveys, thus resulting in a combined dataset that includes data about income, together with data about domestic violence, a 
combination that has never been available beforehand which allows for the study of various inter-relationships. The quality 
of the resulting integrated data was validated and results were proved to show good performance. Details about this 
application are available in [50], currently under review.  
For future work, one may consider other types of LCM besides DPMPM and compare their performance within statistical 
matching. Many other applications can be considered to integrate surveys, applying different SM techniques.  
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 Appendix A:  

Table 1: Missing Pattern of SM.    
  

X  Y  Z  

File A  data  data  ?  

File B  data  ?  data  

   
Table 2: Probabilities for each category of X variables. 

 
  Category 1  Category 2  Category 3  Category 4  

X1  0.3  0.3  0.3  0.1  

X2  0.3  0.3  0.4  -  

X3  0.4  0.6  -  -  

 
Table 3: Cramer’s V with Y under CIA. 

 
Variables  Cramer’s V with Y    

  

Variables  Cramer’s V with Y  

Z1  0.005163  Z6  0.005835  

Z2  0.04815  Z7  0.04769  

Z3  0.08354  Z8  0.07503  

Z4  0.1356  Z9  0.1335  

Z5  0.1812  Z10  0.1781  
     

 
Table 4: Coefficients 𝛽\Y  and 𝜆\Y  in 5.3. 

  
  

h β`Y  coefficients of x’s        λ`Y 	coefficients of y’s  

Z1 1 
2 
3 

(0,0,0,0,0,0,0,0,0)  
(0,0,0,0,0,0,0,0,0)  
(0,0,0,0,0,0,0,0,0)  

(0,0,0)  
(0,0,0)  
(0,0,0)  

Z2 1 
2 
3 

(0,0,0,0,0,0,0,0,0)  
(0,0,0,0,0,0,0,0,0)  
(0,0,0,0,0,0,0,0,0)  

(0.3,0,0.3)  
(0,0.3,0)  
(0,0.3,0)  
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Z3 1 
2 
3 

(0,0,0,0,0,0,0,0,0)  
(0,0,0,0,0,0,0,0,0)  
(0,0,0,0,0,0,0,0,0)  

(0.5,0,0.5)  
(0,0.5,0)  
(0,0.5,0)  

Z4 1 
2 
3 

(0,0,0,0,0,0,0,0,0)  
(0,0,0,0,0,0,0,0,0)  
(0,0,0,0,0,0,0,0,0)  

(0.8,0,0.8)  
(0,0.8,0)  
(0,0.8,0)  

Z5 1 
2 
3 

(0,0,0,0,0,0,0,0,0)  
(0,0,0,0,0,0,0,0,0)  
(0,0,0,0,0,0,0,0,0)  

(1,0,1)  
(0,1,0)  
(0,1,0)  

Z6 1 
2 
3 

(0.2,0,0.2,0,0.2,0,0.2,0,0.2)  
(0,−0.2,0,−0.2,0,−0.2,0,−0.2,0)  

(0.2,0,0.2,0,0.2,0,0.2,0,0.2)  

(0,0,0)  
(0,0,0)  
(0,0,0)  

Z7 1 
2 
3 

(0.2,0,0.2,0,0.2,0,0.2,0,0.2)  
(0,−0.2,0,−0.2,0,−0.2,0,−0.2,0)  

(0.2,0,0.2,0,0.2,0,0.2,0,0.2)  

(0.3,0,0.3)  
(0,0.3,0)  
(0,0.3,0)  

Z8 1 
2 
3 

(0.2,0,0.2,0,0.2,0,0.2,0,0.2)  
(0,−0.2,0,−0.2,0,−0.2,0,−0.2,0)  

(0.2,0,0.2,0,0.2,0,0.2,0,0.2)  

(0.5,0,0.5)  
(0,0.5,0)  
(0,0.5,0)  

Z9 1 
2 
3 

(0.2,0,0.2,0,0.2,0,0.2,0,0.2)  
(0,−0.2,0,−0.2,0,−0.2,0,−0.2,0)  

(0.2,0,0.2,0,0.2,0,0.2,0,0.2)  

(0.8,0,0.8)  
(0,0.8,0)  
(0,0.8,0)  

Z10 1 
2 
3 

(0.2,0,0.2,0,0.2,0,0.2,0,0.2)  
(0,−0.2,0,−0.2,0,−0.2,0,−0.2,0)  

(0.2,0,0.2,0,0.2,0,0.2,0,0.2)  

(1,0,1)  
(0,1,0)  
(0,1,0)  

 
  

Table 5: Simulation Results for SM Under CIA. 
 

Loglinear MICE Random 
Hotdeck 

KP1 KP2 MDC1 MDC2 MDC3 MVR 

Z1 0.067916 
0.082277 
0.043554 

0.63703 
0.671413 
0.56279 

0.046298 
0.5989861 
0.03269765 

 

0.03728109 
0.04499786 
0.03056432 

0.03849114 
0.04555581 
0.03142646 

0.03785468 
0.04108886 
0.02686671 

0.04079668 
0.04472665 
0.02894818 

0.04203552 
0.04834557 
0.02572548 

0.0499349 
0.053764 
0.038223 

 

Z2 0.077717 
0.099238 
0.056196 

0.635212 
0.658184 
0.566535 

0.04369243 
0.06617226 
0.02121259 

0.0314322 
0.03900372 
0.02886069 

0.02930849 
0.04259478 
0.02602221 

0.0352827 
0.04119779 
0.02936762 

0.077717 
0.099238 
0.056196 

0.635212 
0.658184 
0.566535 

0.04369243 
0.06617226 
0.02121259 

Z3 0.11036802 
0.13584062 
0.08489542 

0.630323 
0.676064 
0.492603 

0.05084272 
0.08281083 
0.04187461 

0.05465757 
0.07046931 
0.04884582 

0.05536806 
0.07614948 
0.04458664 

0.03958162 
0.04588188 
0.03428136 

0.0412471 
0.05234978 
0.03014441 

0.0426692 
0.05883201 
0.03870183 

0.06012001 
0.0810091 
0.04613911 

Z4 0.08131489 
0.16040252 
0.04222727 

0.61790 
0.693001 
0.534036 

0.0819831 
0.1332374 
0.064247 

0.06966446 
0.07702479 
0.06230413 

0.06811114 
0.07752968 
0.0586926 

0.05188 
0.054162 
0.048136 

0.052471 
0.0584978 
0.0414441 

0.0426692 
0.04883201 
0.040183 

0.0823043 
0.14320842 
0.07325244 
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Z5 0.12077104 
0.15098475 
0.09055734 

0.67794 
0.709662 
0.632049 

0.10021642 
0.18101031 
0.08942254 

0.0992836 
0.19242963 
0.08613756 

0.09908646 
0.17781276 
0.0836015 

0.0602015 
0.067453 

0.05456577 

0.06006326 
0.06508155 
0.0554496 

0.060843 
0.065134 

0.05718068 

0.0837041 
0.16328443 
0.07345638 

Z6 0.07289756 
0.11490919 
0.04088594 

0.569763 
0.66106 
0.314710 

0.03516833 
0.05172303 
0.02861364 

0.02755114 
0.03085608 
0.01424619 

0.02620426 
0.03075644 
0.01165209 

0.03916137 
0.04102168 
0.02730106 

0.04414645 
0.06467827 
0.02361462 

0.03881842 
0.05442842 
0.03320842 

0.05684898 
0.0717183 
0.04652613 

Z7 0.08526856 
0.11024027 
0.05029685 

0.615340 
0.668350 
0.506462 

0.04663235 
0.06205305 
0.03121164 

0.03151987 
0.04573381 
0.02730594 

0.03277866 
0.04073465 
0.02482267 

0.04168211 
0.06632415 
0.03704007 

0.03551746 
0.04318987 
0.02784506 

0.04934159 
0.05240422 
0.02627895 

0.04279541 
0.04552737 
0.04006346 

Z8 0.09463486 
0.12712072 
0.052149 

0.595460 
0.648939 
0.425084 

0.07553193 
0.08685231 
0.0621156 

0.0552034 
0.07022461 
0.05018219 

0.063564 
0.0756431 
0.0502557 

0.05194293 
0.05528485 
0.04860102 

0.04458001 
0.05069987 
0.03846015 

0.04835613 
0.05882636 
0.03788589 

0.05912837 
0.07118472 
0.03707203 

Z9 0.12489024 
0.14602452 
0.0875595 

0.602766 
0.69391 
0.15299 

0.083206 
0.121167 
0.0694295 

0.08457138 
0.0932902 
0.06481373 

0.08665002 
0.09405619 
0.07924385 

0.0590296 
0.0611483 
0.05703109 

0.06377618 
0.0703394 
0.05991842 

0.06075612 
0.070992 
0.0541304 

0.08391172 
0.0975727 
0.06025073 

Z10 0.12041956 
0.19095544 
0.07988368 

0.586799 
0.710990 
0.308525 

0.0869765 
0.11145372 
0.07249929 

0.09682839 
0.18794658 
0.0857102 

0.09480808 
0.19174123 
0.07787492 

0.08172354 
0.09456929 
0.06887778 

0.07462893 
0.08261829 
0.07063957 

0.07266273 
0.0816315 
0.06369395 

0.093989 
0.185872 
0.081776 

  
Mean of Hellinger distance is the first value in each cell. Max is the second value in each cell and min is the third value 
in each cell. 

Table 6: Simulation Results for SM with Auxiliary Information. 
 

Loglinear  MICE  Random hotdeck  KP1  KP2  MDA1  MDA2  MDA3  MVR 

Z1  0.05860018 
0.15651979 
0.04068057 

0.21849771 
0.42435584 
0.11263958 

0.08678879 
0.09678879 
0.0788536 

0.07497618 
0.09255556 
0.0473968 

0.04707412 
0.07252511 
0.02762313 

0.03093397 
0.04512779 
0.01988734 

0.26432687 
0.30256828 
0.12608546 

0.03882768 
0.0539806 
0.02252758 

0.081709 
0.184082 
0.069934 

Z2  0.07294898 
0.14665598 
0.05924198 

0.17046792 
0.34211482 
0.0882102 

0.07294898 
0.14665598 
0.05924198 

0.08517152 
0.13830146 
0.05204158 

0.0539654 
0.08735677 
0.03057403 

0.03732575 
0.0507664 
0.0208851 

0.14342608 
0.27527641 
0.08157576 

0.04838788 
0.06379936 
0.03297639 

0.170433 
0.274067 
0.09468 

Z3  0.07774732 
0.18115698 
0.05433765 

0.271485 
0.327849 

0.11512181 

0.089274 
0.181642 
0.061642 

0.08617857 
0.1126907 
0.06383794 

0.07136818 
0.09188031 
0.05085604 

0.04372872 
0.05890749 
0.02754995 

 

0.15133253 
0.17492825 
0.12773681 

0.0534728 
0.07215524 
0.04153931 

0.13603469 
0.196704 

0.08536468 

Z4  0.07201562 
0.09082011 
0.04321114 

0.20639037 
0.30864942 
0.10413132 

0.0962756 
0.199735 
0.083161 

0.07243384 
0.18935663 
0.04551105 

0.08206373 
0.09424444 
0.05988303 

0.04603707 
0.0563539 
0.03572023 

0.2959781 
0.47095177 
0.12100443 

0.0594377 
0.07947586 
0.04241168 

0.230031 
0.32441 
0.14762 

Z5  0.07496258 
0.08482725 
0.03509791 

0.2921363 
0.39798472 
0.18628788 

0.081572 
0.1881567 
0.062518 

0.06633839 
0.07992855 
0.05274823 

0.09539153 
0.19329497 
0.0648808 

0.03679873 
0.05102797 
0.03080034 

0.21363374 
0.4884706 
0.17842041 

0.0552615 
0.07565079 
0.0348722 

0.221093 
0.36192 
0.115994 
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Z6  0.07333214 
0.1440407 
0.05262357 

0.2713763 
0.38672354 
0.09560290 

0.083566 
0.095543 
0.070431 

0.08229237 
0.09164205 
0.0629427 

0.05080219 
0.09710279 
0.0445016 

0.03338099 
0.04108732 
0.02567465 

0.20381926 
0.38679704 
0.12084149 

0.04417221 
0.05330034 
0.03904407 

0.18145111 
0.254045 

0.09536176 

Z7  0.0843678 
0.0953985 
0.06919576 

0.25810676 
0.39634087 
0.11987266 

0.0711378 
0.091367 
0.061962 

0.06501911 
0.1256244 
0.04251382 

0.05690486 
0.0717694 
0.03204033 

0.0486462 
0.05971151 
0.02758089 

0.29778225 
0.36194741 
0.13361709 

0.05417467 
0.07614986 
0.03219948 

0.18420716 
0.2215117 
0.13126316 

Z8  0.07333214 
0.1440407 
0.05262357 

0.2713763 
0.38672354 
0.09560290 

0.083566 
0.095543 
0.070431 

0.08229237 
0.09164205 
0.0629427 

0.05080219 
0.09710279 
0.0445016 

0.03338099 
0.04108732 
0.02567465 

0.20381926 
0.38679704 
0.12084149 

0.04417221 
0.05330034 
0.03904407 

0.18145111 
0.254045 

0.09536176 

Z9  0.0843678 
0.0953985 
0.06919576 

0.25810676 
0.39634087 
0.11987266 

0.0711378 
0.091367 
0.061962 

0.06501911 
0.1256244 
0.04251382 

0.05690486 
0.0717694 
0.03204033 

0.0486462 
0.05971151 
0.02758089 

0.29778225 
0.36194741 
0.13361709 

0.05417467 
0.07614986 
0.03219948 

0.18420716 
0.2215117 
0.13126316 

Z10  0.06993457 
0.0979791 
0.04189004 

0.14871528 
0.26682716 
0.08060339 

0.084336 
0.153453 
0.075228 

0.08373355 
0.16495026 
0.05551684 

0.07418653 
0.09708243 
0.05129064 

0.04477651 
0.05701776 
0.03253526 

0.22176578 
0.35553861 
0.18799296 

0.0598455 
0.07004128 
0.04192781 

0.182517 
0.238547 
0.11184 

 
Mean of Hellinger distances is the first value in each cell. Max is the second value in each cell and min is the third value 
in each cell.  

Table 7: Simulation Results for Different Sizes of Auxiliary File. 
 

  MDA1  
(50)  

MDA1  
(100)  

MDA1  
(150)  

MDA1  
(200)  

MDA1  
(250)  

MDA1  
(300)  

Z1  
0.098109368  
0.160126571  
0.073341718  

0.071061779  
0.131270529  
0.04060588  

0.051248922  
0.077334062  
0.027285611  

0.043278719  
0.060839894  
0.02982578  

0.037352552  
0.054399649  
0.0257082  

0.037030207  
0.04802272  

0.022063264  

Z2  
0.103272073  
0.197755475  
0.05625384  

0.06799996  
0.091258791  
0.048993396  

0.059121331  
0.075890099  
0.038639812  

0.053013808  
0.065143537  
0.044968045  

0.050141797  
0.06148519  

0.041850571  

0.047689362  
0.07206718  

0.034132988  

Z3  
0.094458412  
0.144034225  
0.072102415  

0.078307309  
0.107005078  
0.039411749  

0.060703085  
0.072439343  
0.038704251  

0.054983171  
0.065081818  
0.043513728  

0.04934298  
0.063396294  
0.036986699  

0.04526447  
0.063167138  
0.034396257  

Z4  
0.133150681  
0.227618346  
0.082778178  

0.085808109  
0.114923109  
0.055122075  

0.070462961  
0.085938214  
0.058602386  

0.064636378  
0.082877845  
0.050550607  

0.067026812  
0.095525106  
0.043829276  

0.066590987 
0.086764917  
0.047186441  

Z5  0.11906136  
0.142469812  
0.073604721  

0.090863698 
0.148703532  
0.060961913  

0.079767331 
0.104160207  
0.04252481  

0.077711 
0.111021  
0.051708  

0.075800624 
0.098870823  
0.039853513  

0.070156669 
0.091510174  
0.033731452  



J. Stat. Appl. Pro. 12, No. 2, 247- 265 (2023) / http://www.naturalspublishing.com/Journals.asp                                                      263 
  

 
 
         © 2023 NSP 
           Natural Sciences Publishing Cor. 

 

Z6  0.097600913  
0.147806324  
0.063088474  

0.077459382  
0.102661443  
0.047053785  

0.057169133  
0.074209599  
0.038019592  

0.055738205  
0.083230584  
0.037980021  

0.055096824  
0.076324005  
0.03721917  

0.047885603  
0.069021589  
0.025097529  

Z7  0.100043673  
0.219532314  
0.054407544  

0.081219987  
0.136969003  
0.047275786  

0.069940363  
0.10613925  

0.038348415  

0.058548493  
0.085921233  
0.038924989  

0.057921688  
0.075299801  
0.038168056  

0.049499607  
0.069985869  
0.027358598  

Z8  0.121700648 
0.164643972  
0.07622247  

0.081901793 
0.131927022  
0.031632467  

0.070446854 
0.091915559  
0.043748742  

0.056288776 
0.078801894  
0.03820131  

0.053665943 
0.080037957  
0.037915987  

0.050043616 
0.083172389  
0.036208435  

Z9  0.103835753  
0.134886387  
0.067249566  

0.077011004  
0.101920568  
0.029219054  

0.076564874  
0.094090749  
0.053889218  

0.073217681  
0.083289272  
0.055793291  

0.06799713  
0.085232831  
0.05383064  

0.066710014  
0.081322874  
0.049416539  

Z10  0.091240012  
0.146050281  
0.052897858  

0.079894186  
0.095169789  
0.052502195  

0.080329596  
0.109051814  
0.044910685  

0.073708494  
0.104277657  
0.034529324  

0.07051435  
0.101543175  
0.035368397  

0.069377981  
0.096908817  
0.040682222  

Mean of Hellinger distance is the first value in each cell. Max is the second value in each cell and min is the third value 
in each cell.  
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Appendix B: 

 

 
Fig.1: Comparison between different approaches under CIA. 

  
 

 

 
 

Fig. 2: Comparison between different approaches with Auxiliary Information.   
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Fig. 3: Comparison of Hellinger distance between MDA1 with various sample size of file. 

 
  


