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Abstract: In this paper, under certain conditions, the unique solution of a mixed integral equation (MIE) with a singular kernel in

position and a continuous kernel in time, in ( 2+1) dimensional is discussed and obtained in the space L2([a,b]× [c,d])×C[0,T ],T < 1.

After using a separation technique method, and Product Nystrom Method (PNM), we have a linear algebraic system (LAS) in two-

dimensional with time coefficients. The convergence of the unique solution of the LAS is studied. In the end, and with the aid of Maple

18, many applications when a singular term of position kernel takes a logarithmic form and Carleman function are solved numerically.

Moreover, the error is computed.

Keywords: Mixed integral equation, Fredholm integral equation, linear algebraic system, singular kernel, product Nystrom method,
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1 Introduction

Integral equations of all kinds play a prominent role in
solving many scientific problems in different sciences.
For example, in mathematical physics, many natural
phenomena have been explained by finding the spectral
relationships of some singular integral equations, in
different domains, see Abdou et al.,[1-3]. In
two-dimensional problems, in thermoelasticity, for an
elastic plate weakened by curvilinear holes, the problem
can be turned into a kind of singular integro differential
equations that can be solved using the integral equations
method ,see (Ismail1 et al., [4], Hamza et al., Abdou et
al., [6]). In two- dimensional problems, in quantum
mechanics, see Rehab et al., [7, 8], and in contact and
mixed mechanics problems, see ElBorai et al., [9,10]. The
numerical methods of integral equations play an
important role in solving these kinds. More applications
for using integral equations in some different sciences can
be found in Popov[11], Rahman [12]and Alhazmi [14].
The tremendous development in the various sciences led
the researchers of integral equations to search for
analytical and numerical methods in one, two, or more
dimensions to establish different solutions. Here, we
mention some of these works. For example, Mirzaee et
al., in [15,16] used the collocation method to solve some

two-dimensional MIE, in [15] and integral
Volterra-Fredholm equations with continuous kernels in
[16], respectively. The Toeplitz matrix method was used
to discuss a solution to a nonlinear integral equation when
the singular kernel takes different forms, see Abdou et al.,
[17,18]. One of the famous methods is the orthogonal
polynomial method, in which the researcher uses special
functions and derives the required solution in the form of
the convergent algebraic system; see Mirzaee et al., [19],
Abdou et al., [20, 21]and Al-Bugami [22]. Also, the
famous numerical methods that researchers have used to
solve integral equations when the kernel is continuous,
are the Adomian decomposition method and homotopy
perturbation method, see Almousa et al., [23], Abdou et
al., [24], Elzaki et al., [25] and Berenguer et al., [26].
Moreover, besides using these numerical methods, the
researchers were interested in studying the error resulting
from the use of these methods, as well as the error
resulting from computer programs, for example, see
Hetmaniok et al., [27, 28] and Abdou et al., [29, 30].

The importance of this research is evident in
obtaining a single solution to a mixed integral equation in
the space L2([a,b]× [c,d])×C[0,T ],(T < 1). It has been
assumed that the kernel of position has a singularity. The
researcher was able, under certain conditions, to prove the
existence of a unique solution. Using Product Nystrom
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Method, it is possible to obtain an algebraic system for
which a single solution has been studied. The
convergence of this algebraic system was also studied.
Using the mathematical programs Maple 18, it was
possible to obtain numerical solutions for the algebraic
system when the kernel of the position is in the form of a
logarithmic form or Carleman function.

Consider in the space L2([a,b]× [c,d])×C[0,T ],(T <
1), the (2+1) DMIE,

µΦ(x,y;t) = F(x,y;t)

+λ
∫ t

0

∫ d

c

∫ b

a
g(t,τ)k(x−ζ ,y−η)Φ(ζ ,η;τ)dζdηdτ,

(1)

under the condition
∫ d

c

∫ b

a
Φ(x,y, t)dxdy = M(t), t ∈ [0,T ] (2)

where F(x,y;t) is a known function, µ is constant defines the

kind of IE,λ is constant, may be complex and have physical

meaning, g(t,τ) is a function of time and represents the kernel

of Volterra integral term, while k(x − ζ ,y− η) is the position

kernel and have two singularities and Φ(x,y;t) is the unknown

function.

In general, many different methods can be used to prove the

existence of a unique solution of the integral equation with

continuous or discontinuous kernel, see Abdou et al.,

[17,18,21].

2 The delayed Dalgaard and Strulik model

To discuss the existence of a unique solution of Eq. (1), in view of

Banach fixed point theorem, we write (1) in the integral operator

form

W̄ Φ(x,y;t) =
1

µ
F(x,y;t)+

λ

µ
W Φ(x,y;t), (3)

W Φ(x,y;t) =
∫ t

0

∫ d
c

∫ b
a g(t,τ)k(x− ζ ,y−η)Φ(ζ ,η;τ)dζdηdτ.

Then, assume the following conditions

(i) In L2([a,b]× [c,d]), the kernel of position satisfies

{

∫ d

c

∫ d

c

{

∫ b

a

∫ b

a
k2(x−u,y−v)dxdu

}

dydv

}
1
2

≤C,

(C is constant ).
(ii) The kernel of time g(t,τ) ∈C[0,T ] satisfies |g(t,τ)| ≤ M, M

is a constant. ∀t ∈ [0,T ],T < 1.

(iii) The function F(x,y;t), with its partial derivatives with

respect to x,y and t are continuous in

L2([a,b]× [a,b])×C[0,T ],T < 1, and for constant G, its norm is

‖F(x,y;t)‖L2([a,b]×[c,d])×C[0,T ] =

max
0=t≤T<1

∫ t

0

{

∫ d

c

∫ b

a
F(x,y;τ)2dxdy

}
1
2

dτ = G.

(iv) The unknown function Φ(x,y;t) behaves in

L2([a,b]× [c,d])×C[0,T ], as the free function F(x,y, t) and its

norm is defined as ‖Φ(x,y;t)‖ = Q.

Theorem 1. The MIE (1) has an existence and unique

solution, under the condition

|λ |MCT < |µ|. (4)

To prove the existence and uniqueness of the solution for the MIE

(1) the following two lemmas must be proven:

Lemma 1. In the space L2([a,b]× [c,d])×C[0,T ],T < 1,

and under the conditions (i) −( iv), the operator W̄ maps the

space into itself.

Proof: In the light of (3), after using the conditions (ii) and

(iii), and then applying Hölder inequality, we have

‖W̄ Φ(x,y, t)‖ ≤
G

|µ|

+
|λ |

|µ|
M · max

0≤t≤T
|
∫ d

c

∫ d

c

(

∫ b

a

∫ b

a
|k(x−u,y−v)|2dxdu

)

dydv |

× max
0≤t≤T

∫ t

0

{

∫ d

c

∫ b

a
|Φ(ζ ,η,τ)|2dζdη

}
1
2

dτ‖.

Then, in the light of the conditions (i) and (iv), we obtain

‖W̄ Φ(x,y, t)‖ ≤
G

‖µ‖
+σ‖Φ(x,y, t)‖,

(

σ =

∣

∣

∣

∣

λ

‖µ

∣

∣

∣

∣

MCT

)

.

(5)

From inequality (5) we deduce that the operator W̄ maps the ball

Sρ into itself, where

ρ =
G

[|µ|− |λ |MCT ]
. (6)

Since ρ > 0, therefore we get σ < 1. Moreover, the inequality (5)

includes the limitation of the integral operator W , where

‖W Φ(x,y;t)‖= ‖W‖‖Φ(x,y;t)‖ ≤ σ‖Φ(x,y;t)‖. (7)

Lemma 2. Under the conditions (i), (ii) and (iv), W̄ is a

contraction in the space L2([a,b]× [a,b])×C[0,T ].
Proof: Assume {Φ1(x,y;t),Φ2(x,y;t)} ∈ L2([a,b] × [a,b])
×C[0,T ], then we have

‖W̄ Φ1(x,y;t)−W̄ Φ2(x,y;t)‖ ≤
|λ |

|µ|

∥

∥

∥

∥

∫ t

0

∫ d

c

∫ b

a
|g(t,τ)

×|k(x−ζ ,y−η)| |Φ1(ζ ,η;τ)−Φ2(ζ ,η;τ)|dζdηdτ‖ .

With the aid of conditions (ii) and (iv), the above inequality

becomes

‖W̄Φ1(x,y;t)−W̄ Φ2(x,y;t)‖ ≤
|λ |

|µ|
M‖k(x−ζ ,y−η)|

×

∫ t

0

∫ d

c

∫ b

a
|Φ1(ζ ,η;τ)−Φ2(ζ ,η;τ)|dζdηdτ

∥

∥

∥

∥

.

Applying Hölder inequality, and then using condition (i), we

finally get

‖W̄ Φ1(x,y;t)−W̄ Φ2(x,y;t)‖ ≤ σ ‖Φ1(x,y;t)−Φ2(x,y;t)‖ .
(8)

The inequality (8) leads us to decide that :the integral operator

W̄ is continuous in the space of integration, and then W̄ is a

contraction operator, under the condition σ < 1. So, from

Banach fixed point theorem, W̄ has a unique fixed point which is

the unique solution of equation (3).
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3 Convergence of solution

Lemma 3. Besides the conditions (i)-(iii), the infinite series

∑∞
i=0Ψ(x,y; t) is uniformly convergent to a continuous solution

function Φ(x,y; t)
Proof: We construct the sequence of functions Φn(x,y; t) as

rµΦn(x,y;t) = F(x,y;t)

+λ
∫ t

0

∫ d

c

∫ b

a
g(t,τ)k(x−ζ ,y−η)Φn(ζ ,η;τ)dζdηdτ,

{Φ0(x,y;t) = F(x,y;t)} .

(9)

For ease of manipulation, introduce

Ψn(x,y;t) = Φn(x,y;t)−Φn−1(x,y;t)

,{Ψ0(x,y;t) = F(x,y;t)} ,
(10)

where

Φn(x,y;t) =
n

∑
i=0

Ψi(x,y;t),n = 1,2, . . . , (11)

Using the properties of the modulus, and then with the aid

formula (10), we have

‖Ψn(x,y, t)‖≤
|λ |

|µ|
M

· max
0≤t≤T

∣

∣

∣

∣

∫ d

c

∫ d

c

{

∫ b

a

∫ b

a
k2(x−ζ ,y−η)dxdζ

}

dydη

∣

∣

∣

∣

×‖
t

max
0≤≤≤T

∫ d

0

∫ b

c

∫ b

a

∣

∣

∣

∣

Ψn−1(ζ ,η;τ)

∣

∣

∣

∣

2

dζdη

}
1
2

dτ‖.

Hence, we obtain

‖Ψn(x,y;t)‖L2([a,b]×[c,d])×C[0,T ] ≤σ ‖Ψn−1(x,y, t)‖ ,
(

σ =

∣

∣

∣

∣

λ

µ

∣

∣

∣

∣

MCT

)

.
(12)

Using the conditions (i), (ii), and mathematical induction

method, we get

‖Ψn(x,y;t)‖L2([a,b]×[a,b])×C[0,T ] ≤ αnM,

(

α =

∣

∣

∣

∣

λ

µ

∣

∣

∣

∣

CT

)

. (13)

This bound makes the sequence {Ψn(x,y;t)} converges and then,

the sequence {Φn(x,y;t)} converges. Hence, the infinite series

Φ(x,y;t) =
∞

∑
i=0

Ψi(x,y;t),∀t ∈ [0,T ],

is uniformly convergent since the terms Ψi(x,y;t) are dominated

by α i

4 Method of solution:

Assume the unknown and known functions, respectively take the

forms

Φ(x,y;t) = ϕ(x,y)A(t), F(x,y;t) = f (x,y)A(t). (14)

Hence, the formula (1) yields,

µϕ(x,y) = f (x,y)+λ (t)
∫ d

c

∫ b
a k(x−ζ ,y−η)ϕ(ζ ,η)dζdη,

(

λ (t) = 1
A(t)

∫ t
0 g(t,τ)A(τ)dτ;A(0) 6= 0

)

.

(15)

Through the separation method, we were able to obtain directly,

Fredholm integral equation in two-dimensional with coefficients

time-related. With a scientific view of these coefficients, we find

that they have become a time function of a time integral operator

that can be explicitly calculated at any time points.

4.1 The numerical method for solving T-DFIE

In this section, the numerical solution of the T-DFIE of the

second kind of equation (15) will be discussed using the PNM,

see Delves [31] and Atkinson [32]. For this aim, consider the

position kernel k(x − ζ ,y − η) of (10) has two singularities

within the range of integration. i.e, we can often factor out the

singularity in k(x−ζ ,y−η) by writing

k(x−ζ ,y−η) = k̄(x,ζ ;y,η)p(x−ζ ,y−η). (16)

Here, p(x−ζ ,y−η) and k̄(x,ζ ;y,η) are badly behaved and well

behaved functions, respectively. Therefore, rewrite (15) to take

the form

µϕ(x,y) = f (x,y)

+λ (t)
∫ d

c

∫ b

a
k̄(x,ζ ;y,η)p(x−ζ ,y−η)ϕ(ζ ,η)dζdη,

(17)

Let x = xi,xi = ζi = a + ih,(0 ≤ i ≤ J),h = b−a
J

, and

y = yn = ηn = c + nh′,(0 ≤ n ≤ M), h′ = d−c
M

. Then,

approximate the integral term in (17), for even values of J and

M, by product integration from of Simpson’s rule, in the form

∫ d

c

∫ b

a
k̄ (xi,ζ ;yn,η) p(xi −ζ ,yn −η)ϕ(ζ ,η)dζdη

=
(m=M−2

2 )

∑
m=0

( j= J−2
2 )

∑
j=0

∫ η2m+2

η2m

∫ ζ2 j+2

ζ2 j

k̄ (xi,ζ ;yn,η)

× p(xi −ζ ,yn −η)ϕ(ζ ,η)dζdη.

(18)

After this, approximate the nonsingular part of the integrand

over each interval
[

ζ2 j,ζ2 j+2

]

; [η2m,η2m+2] by the second

degree Lagrange interpolation polynomial which interpolates it

at the points ζ2 j,ζ2 j+1,ζ2 j+2;η2m,η2m+1,η2m+2, to find
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∫ d

c

∫ b

a
p(ζi −ζ ;ηn −η) k̄ (ζi,ζ ;ηn,η)ϕ(ζ ,η)dζdη =

(M−2)/2

∑
m=0

(J−2)/2

∑
j=0

∫ η2m+2

η2m

∫ ζ2 j+2

ζ2 j

p(ζi −ζ ;ηn −η)

{

(

ζ2 j+1 −ζ
)(

ζ2 j+2 −ζ
)

(η2m+1 −η) (η2m+2 −η)
(

2h2
)(

2h′2
) ϕ

(

ζ2 j;η2m

)

+

(

ζ2 j −ζ
)(

ζ2 j+2 −ζ
)

(η2m −η) (η2m+2 −η)
(

h2
)(

h′2
)

×ϕ
(

ζ2 j+1;η2m+1

)

+

(

ζ2 j −ζ
)(

ζ2 j+1 −ζ
)

(η2m −η) (η2m+1 −η)
(

2h2
)(

2h′2
) ϕ

(

ζ2 j+2;η2m+2

)

}

dζdη

=
M

∑
m=0

J

∑
j=0

un,mwi, j k̄
(

xi,ζ j;yn,ηm

)

ϕ
(

ζ j,ηm

)

,

(19)

where ζ j = jh,ζ j+1 −ζ j = h;ηm = mh′,ηm+1 −ηm = h′ and the weight functions un,mwi, j are given by

ui,0wn,0 =
1

4h2h′2

∫ η2

η0

∫ ζ2

ζ0

p(ζi −ζ ;ηn −η) (ζ1 −ζ ) (ζ2 −ζ ) (η1 −η) (η2 −η)dζdη

ui,2 j+1wn,2m+1 =
1

h2h′2

∫ η2m+2

η2m

∫ ζ2 j+2

ζ2 j

p(ζi −ζ ;ηn −η)
(

ζ2 j −ζ
)(

ζ2 j+2 −ζ
)

(η2m −η) (η2m+2 −η)dζdη

ui,2 jwn,2m =
1

4h2h′2

∫ η2m

η2m−2

∫ ζ2 j

ζ2 j−2

p(ζi −ζ ;ηn −η)
(

ζ2 j−2 −ζ
)(

ζ2 j−1 −ζ
)

(η2m−2 −η) (η2m−1 −η)dζdη

+
1

4h2h′2

∫ η2m+2

η2m

∫ ζ2 j+2

ζ2 j

p(ζi −ζ ;ηn −η)
(

ζ2 j+1 −ζ
)(

ζ2 j+2 −ζ
)

(η2m+1 −η) (η2m+2 −η)dζdη

ui,Jwn,M =
1

4h2h′2

∫ ηM

ηM−2

∫ ζJ

ζJ−2

p(ζi −ζ ;ηn −η) (ζJ−2 −ζ ) (ζJ−1 −ζ ) (ηM−2 −η) (ηM−1 −η)dζdη.

(20)

If we define the following notations

U j,m (ζi;ηn) =
1

4h2h′2

∫ η2m

η2m−2

∫ ζ2 j

ζ2 j−2

p(ζi −ζ ;ηn −η)
(

ζ2 j−2 −ζ
)(

ζ2 j−1 −ζ
)

(η2m−2 −η) (η2m−1 −η)dζdη,

V j,m (ζi;ηn) =
1

4h2h′2

∫ η2m

η2m−2

∫ ζ2 j

ζ2 j−2

p(ζi −ζ ;ηn −η)
(

ζ2 j−1 −ζ
)(

ζ2 j −ζ
)

(η2m−1 −η) (η2m −η)dζdη,

Wj,m (ζi;ηn) =
1

4h2h′2

∫ η2m

η2m−2

∫ ζ2 j

ζ2 j−2

p(ζi −ζ ;ηn −η)
(

ζ2 j−2 −ζ
)(

ζ2 j −ζ
)

(η2m−2 −η) (η2m −η)dζdη,

(21)

we can rewrite (20) as the following

V1,1 (ζi;ηn) = ui,0wn,0, 4Wj+1,m+1 (ζi;ηn) = ui,2 j+1wn,2m+1

U j,m (ζi;ηn)+V j+1,m+1 (ζi;ηn) = ui,2 jwn,2m

UJ/2,M/2 (ζi;ηn) = ui,Jwn,M .

(22)

To rewrite the integral interval of (15) from [0,2], we assume ζ = ζ2 j−2 +αh, (0 ≤ α ≤ 2);
η = η2m−2 +βh′,(0 ≤ β ≤ 2). And then letting ζi −ζ2 j−2 = (i−2 j+2)h;

ηn −η2m−2 = (n−2m+2)h′ . Finally, consider the following integral formula

χk =

∫ 2

0

∫ 2

0
αkβ k p

(

(z−α)h,(g−β )h′
)

dαdβ ,

(k = 0,1,2;z = i−2 j+2;g = n−2m+2).

(23)

Hence, the system (20) yields

ui,0wn,0 =
hh′

4
[2χ0(z;g) −3χ1(z;g)+χ2(z;g)] ,(z = i;g = n),

ui,2 j+1wn,2m+1 = hh′ [2χ1(z;g)−χ2(z;g)] ,(z = i−2 j;g = n−2m),

ui,2 jwn,2m =
hh′

4
[χ2(z;g)−χ1(z;g)+2χ0(z−2;g−2)

−3χ1(z−2;g−2)+ χ2(z−2;g−2)] , (z = i−2 j+2;g = n−2m+1),

ui,Jwn,M =
hh′

4
[χ2(z;g)−χ1(z;g)] .

(24)
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Now, in view of (24), rewrite (17) to obtain the following

LAS:

µϕ (xi,yn)−λ (t)
M

∑
m=0

J

∑
j=0

un,mwi, j k̄
(

xi,x j;yn,ym

)

ϕ
(

x j,ym

)

= f (xi,yn) ,∀t ∈ [0,T ],T < 1

(25)

For all values of time t ∈ [0,T ],T < 1, the two- dimensional LAS

(25) can be written in the following matrix form

(µ −λWW̄ )H = K, (λ = λ (t))

with the solution

H = [µI −λWW̄ ]−1 K, det |µI −λWW̄ | 6= 0, (26)

where I is the identity matrix.

The formula (25), or its equivalent formula (26), represents

an approximate solution of the MIE (I) in (2+1) - dimensional in

the space of integration L2([a,b]× [c,d])×C[0,T ],T < 1.

5 The existence of a unique solution of the

LAS (25).

To prove the existence of a unique solution of (25), we write it in

the operator sum form

Ēϕ (xi,yn) = Eϕ (xi,yn)+
1

µ
f (xi,yn)

Eϕ (xi,yn) =
λ (t)

µ

M

∑
m=0

J

∑
j=0

un,mwi, jk̄
(

xi,x j;yn,ym

)

ϕ
(

x j,ym

)

(27)

where

(1) Supi;n | f (xi;yn)| < Q1, (2) Supi;n

∣

∣k̄
(

xi,x j;yn,ym

)
∣

∣ <
ξ1, (Q Q1,ξ1− cons tan ts)

Then, the following lemma must hold.

Lemma 4 (without proof): If the badly kernel of equation

(16) satisfies the conditions

(3) k(x − ζ ;y − η) ∈ L2([a,b]× [c,d]),k(x − ζ ;y − η) =
k̄
(

xi,x j;yn,ym

)

p(x−ζ ;y−η)

(4) limx→x′;y→y′ ‖k(x−ζ ;y−η)−k (x′−ζ ;y′−η)‖ →
0,(x,x′) ∈ [a,b];(y,y′) ∈ [c,d],

then

(5) Sup∑M
m=0 ∑J

j=0

∣

∣un,mwi, j k̄
(

xi,x j;yn,ym

)
∣

∣ < ξ2,(ξ2−

cons tan t) .

(6) lim
i→i;n→m′

Sup j;m

M

∑
m=0

J

∑
j=0

∣

∣un,mwi, jk̄
(

xi,x j;yn,ym

)

−un′,mwi, j k̄
(

xi,x j;yn,ym

)
∣

∣→ 0

(28)

The first condition of (28) leads to decide that the operator

sum Ẽϕ (xi,yn) is bounded, while the second condition leads to

the continuity of Ẽϕ (xi,yn).

6 Convergence of the linear algebraic system:

To discuss the convergence solution of the system (25), we state

the following:

Theorem 2. The LAS (25) for all values of time

t ∈ [0,T ],T < 1, is convergent in the Banach space ℓ2

Proof: We must prove that the infinite series ∑∞
s=0Ψs (xi;yn)

is uniformly convergent to a continuous function ϕ(x;y). For this,

we construct the following two sequence

f (xi,yn) = µϕs (xi,yn)
−λ (t)∑M

m=0 ∑J
j=0 un,mwi, j k̄

(

xi,x j;yn,ym

)

ϕs−1

(

x j,ym

)

,

f (xi,yn) = µϕs−1 (xi,yn)
−λ (t)∑M

m=0 ∑J
j=0 un,mwi, j k̄

(

xi,x j;yn,ym

)

ϕs−2

(

x j,ym

)

,

f (xi,yn) = µϕ0 (xi,yn) .

(29)

It is convenient to introduce

Ψs (xi,yn) = ϕs (xi,yn)−ϕs−1 (xi,yn) (30)

with

Using (25) in (30), we get

ϕR (xi,yn) =
R

∑
s=0

Ψs (xi;yn) ,Ψ0 (xi;yn) = f (xi;yn) .

Ψs (xi,yn) =−
λ (t)

µ

M

∑
m=0

J

∑
j=0

un,mwi, jk̄
(

xi,x j;yn,ym

)

Ψs−1 (xi,yn)

(31)

After using (30) and the properties of the modulus, the formula

(31) gives

|Ψs (xi,yn)| ≤

∣

∣

∣

∣

λ (t)

µ

∣

∣

∣

∣

M

∑
m=0

J

∑
j=0

∣

∣un,mwi, jk̄
(

xi,x j;yn,ym

)
∣

∣ |Ψs−1 (xi,yn)|

(32)

Using (27-1), (28-5) and with the aid of the mathematical

induction method, the formula (32) becomes

‖Ψs (xi,yn)‖ ≤σ sQ1,‖Ψs (xi,yn)‖= Supi,n |Ψs (xi,yn)| ;

σ =

∣

∣

∣

∣

λ (t)

µ

∣

∣

∣

∣

ξ < 1,ξ = max .(ξ1,ξ2) .
(33)

Which makes the sequence {Ψs (xi,yn)} converges under the

condition σ < 1 and hence, the sequence {ϕs (xi,yn)} is

uniformly converges. So we can write

ϕ (xi,yn) = ϕR→∞ (xi,yn) =
∞

∑
s=0

Ψs (xi;yn) . (34)

Thus, the function ϕ (xi,yn) satisfies the LAS of (29).

To prove that ϕ (xi,yn) is the only unique solution, we

assume another solution ϕ (xi,yn) satisfies equation (29), hence

∣

∣

∣
ϕ (xi,yn)−ϕ (xi,yn)

∣

∣

∣
≤

∣

∣

∣

∣

λ (t)

µ

∣

∣

∣

∣

M

∑
m=0

J

∑
j=0

∣

∣un,mwi, j k̄
(

xi,x j;yn,ym

)
∣

∣

×Supi,n

∣

∣

∣
ϕ (xi,yn)−ϕ (xi,yn)

∣

∣

∣
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Finally, we have

∥

∥

∥
ϕ (xi,yn)−ϕ (xi,yn)

∥

∥

∥
≤ σ

∥

∥

∥
ϕ (xi,yn)−ϕ (xi,yn)

∥

∥

∥
,(σ < 1). (35)

Since σ < 1 then the inequality (35) is true only if ϕ (xi,yn) = ϕ (xi,yn) that is the solution of the system (25) is unique.

7 The equivalence between the LT-DFIE and LAS of PNM.

The equivalence between the algebraic system and the integral equation can be proved by the error equation. Or by finding the sequence

of solutions and proving that they converge to the solution of the integral equation.

The estimated error of the method used can be calculated from the equation

Ri,n =

∣

∣

∣

∣

∣

∫ d

c

∫ b

a
k(x−ζ ,y−η)ϕ(ζ ,η)dζdη −

M

∑
m=0

J

∑
j=0

un,mwi, j k̄
(

xi,x j;yn,ym

)

ϕ (xi,yn)

∣

∣

∣

∣

∣

(36)

When Limi; j→∞ Ri,n → 0 and

M

∑
m=0

J

∑
j=0

un,mwi, jk̄
(

xi,x j;yn,ym

)

ϕ (xi,yn)→
∫ d

c

∫ b

a
k(x−ζ ,y−η)ϕ(ζ ,η)dζdη

The approximate solution of the LAS (25) is equivalent to the exact solution of (10) in the space L2([a,b]× [c,d])×C[0,T ],T < 1. .

Theorem 3. If the sequence of the continuous functions { f ∗ (xi,yn)} converges uniformly to the function f (x,y) as (i;n)→ ∞, then

the sequence of approximate solution {ϕ∗ (xi,yn)} convergences uniformly to the exact solution ϕ(x,y) of equation (15)

Proof: The MIE (15) with its approximate solution gives

‖ϕ(x,y)−ϕ∗ (xi,yn)‖

≤

∣

∣

∣

∣

λ (t)

µ

∣

∣

∣

∣

∫ d

c

∫ b

a
|k(x−ζ ,y−η)|‖ϕ(x,y)−ϕ∗ (xi,yn)‖dζdη +

∣

∣

∣

∣

1

µ

∣

∣

∣

∣

‖ f (x,y)− f ∗ (xi,yn)‖

Then, after using the conditions (i) and (iii), we get

‖ϕ(x,y)−ϕ∗ (xi,yn)‖ ≤

∣

∣

∣

∣

1

µ −λ (t)AC

∣

∣

∣

∣

‖ f (x,y)− f ∗ (xi,yn)‖ (37)

Finally, we have

‖ϕ(x,y)−ϕ∗ (xi,yn)‖→ 0 Since ‖ f (x,y)− f ∗ (xi,yn)‖→ 0 as (i;n)→ ∞

Also, the error can be determined using the following formula

Rq =
[

ϕ(x,y)− (ϕ∗ (xi,yn))q

]

−
M

∑
m=0

J

∑
j=0

un,mwi, j k̄
(

xi,x j;yn,ym

)

[

ϕ(x,y)− (ϕ∗ (xi,yn))q

]

(38)

8 Applications and numerical results

In this section we applied PNM, to obtain the numerical solution of (15) when the kernel k(x− u,y− v) has a singular term in a

logarithmic form in (2+1)-dimensional.

Example 1-1. (Logarithmic kernel): Solve the integral equation:

(0.99)Φ(x,y;t)− (0.2)
∫ t

0

∫ 1
−1

∫ 1
−1 ζ 2ηtτ2 ln |x−ζ | ln |y−η|Φ(ζ ,η;τ)dζdηdτ = F(x,y;t),−1 ≤ x;y ≤ 1

(E.S. Φ(x,y;t) = xy
6

(

1−2t2
))

(35)

Here PNM is used to get numerical solution for different two times T = 0.3,T = 0.5
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Table (1): The results of logarithmic kernel of example1-1, when N = 21, 41and at T = 0.3,T = 0.5

Figure (1): The error values of logarithmic kernel of example 1-1 at T = 0.3

Figure (2): The error values of logarithmic kernel of example 1-1 at T = 0.5
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Example (1-2): Solve the integral equation:

Φ(x,y;t)− (0.01)
∫ t

0

∫ 1

−1

∫ 1

−1
ζ 2η2t3τ2 ln |x−ζ | ln |y−η|Φ(ζ ,η;τ)dζdηdτ = F(x,y;t),−1 ≤ x;y ≤ 1

(

E.S.Φ(x,y;t) = xy
50

(

1− t2
))

.

Table (2): The approximate solution and corresponding error of logarithmic kernel, of example 1-2 at T = 0.3,T = 0.5.

Figure (3): the error values of logarithmic kernel of example 1−1 at T = 0.3

Figure (4): The error values of logarithmic kernel example 1-1 at T = 0.5
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From the above our results obtained, in general we note that:

1- If λ has a fixed value, the error is decreasing as well as N and time increase

2-If the value of N is fixed, the error values are increase.

3- The error has a maximum value at the ends when x = y ≃±1 and a minimum at the middle when x = 0,y = 0.

9 Application 2-1 ( Carleman kernel)

Example (2-1): consider the mixed integral equation:

µΦ(x,y;t)−λ
∫ t

0

∫ 1
−1

∫ 1
−1 ζ 2ηtτ2|x−ζ |−v · |y−η|−vΦ(ζ ,η;τ)dζdηdτ = F(x,y;t),−1 ≤ x;y ≤ 1

(E.S. Φ(x,y;t) = xy
6

(

1−2t2
))

. We divided the position interval by N = 21,41 units. In the case (2-1) we assumed v = 0.35,v = 0.37;λ = 0.039. In the case (2-2) we

considered v = 0.38,v = 0.42;λ = 0.022.

Case (2-1): v = 0.35,v = 0.37;λ = 0.039,T = 0.4

Table (3): The results for Carleman kernel, when v = 0.35,v = 0.37;λ = 0.039,T = 0.4

Figure (5): The error values whenv = 0.35, λ = 0.039,T = 0.4.
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Figure (6): The error values when v = 0.37;λ = 0.039,T = 0.4

Example (2-2): consider the mixed integral equation:
µΦ(x,y;t)−λ

∫ t
0

∫ 1
−1

∫ 1
−1 ζ 2η2t3τ2|x−ζ |v|y−η|v

×Φ(ζ ,η;τ)dζdηdτ = F(x,y;t),−1 ≤ x;y ≤ 1

(E.S. Φ(x,y;t) = xy
50

(

1− t2
))

Case (2-2) v = 0.38,v = 0.42;λ = 0.022,T = 0.4 :

Table (3): The results for Carleman kernel, when

v = 0.38,v = 0.42;λ = 0.022,T = 0.4

Figure (7): The error values when v = 0.38,λ = 0.022,T = 0.4

Figure (8): The error values when v = 0.42;λ = 0.022,T = 0.4

From the above our results obtained, in general, we note that:

1- In the theory of elasticity, the relation between µ,v,λ are

given by λ = 2µv
1−2v where v is called Poisson ratio, and λ ,µ are

called Lame constants 2- If the values of λ and v are fixed, the

error values are decrease as well as N increase for the two

different materials

(v1 = 0.42,v2 = 0.38) ,(v1 = 0.37,v2 = 0.35), 3- As x and y are

increasing in [−1,1], the error has a maximum at the two ends

x = y ≃±1 and minimum at the middle when x,y = 0.

4-If the values of N are fixed, the error values increase with

the increasing of v and λ , for each materials

10 Conclusions

1- The importance of the mixed integral equation (1) appears in

different sciences, whether in basic sciences or in plant diseases,

which treat cracks in bodies of all kinds in two dimensions. Its

importance becomes clear if these cracks are linked to time.

2- By studying numerical methods for solving singular integral

equations, it can be concluded that the PNM is one of the best

methods for dealing numerically. As the singular part in the

kernel turns into an integral system in one period [0, 2], and

during this period all the integrals can be calculated in a simple

and easy way.

3- In general, as the time increases the error is also increases.

4- The maximum error at the ends of the points, while the

minimum error at the origin.
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