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Abstract: This paper deals with a novel distribution defined as Alpha Power of the Power Ailamujia distribution (APPA). 
Using the power transformation technique, which incorporates an extra parameter of the distribution, the proposed 
distribution is obtained. The quantile function, moments, moment generating function, characteristics function, mode, 
median, order statistics, Shannon's entropy, survival measures and other properties have been studied for the newly developed 
distribution. The behavior of probability density function (pdf), cumulative distribution function (cdf), survival function and 
hazard rate function are illustrated through various plots. The method of maximum likelihood estimation has been used to 
estimate the parameters of this distribution. Finally, the APPA distribution is more suitable than other competing 
distributions, according to four real data, including two COVID-19 data in two countries that were taken into consideration 
to assess the utility of the established distribution. 

Keywords: COVID-19 pandemic, Power Ailamujia distribution, Alpha power transformation technique, Lambert function, 
Maximum likelihood estimation. 

1 Introduction 

The last few decades have seen a rise in the generalization of standard distributions in statistical literature. Generally, adding 
a new parameter involves combining the current distributions or generating new distributions using generators (see [1]). The 
purpose of this change is to increase the modelling flexibility of statistical distributions for data sets that arise in various 
disciplines. 

More recently, several authors have used an Ailamujia distribution due to its importance in modeling lifetime and designing 
the maintenance time in [2]. Researchers advanced a strategy for including a new parameter in established statistical 
distributions in [3, 4]. Size biased Ailamujia distribution was proposed by Rather et al. [5], and it used to analyze data from 
medical and engineering. Further, [6] gave a survey on the techniques for producing univariate continuous models. In [7, 8], 
authors suggested the statistical characteristics and applications of the inverse analogue of Ailamujia distribution and 
provided the Bayesian estimation of this distribution applying various loss functions. The concept of continuous distributions’ 
T-X family in which cdf of beta distribution was substituted by a function of cdf satisfying specific requirements and used 
the pdf of any continuous variable in place of the pdf was presented in [9]. Moreover, a comparison between Alpha Power 
Transformed Aradhana (APTA) distribution and other models such as Two Parameters Aradhana, Power Aradhana, Length 
Biased (LB) Garima, Exponential and Garima distributions was proposed in [10, 11].  

Alpha power transformation (APT), a new technique that combines skewness to the baseline distribution by introducing extra 
parameters in continuous model was proposed in [12]. The APT is defined as follow 

Definition 1.1. Let g(x) and G(x) be the pdf and cdf of any continuous random variable X, respectively, and then the pdf of 
the APT family with parameter Θ is defined as 

𝑔!"#(𝑥) = &	
𝑙𝑜𝑔𝛩
𝛩 − 1𝛩

$(&)𝑔(𝑥)	, 𝑖𝑓	𝛩 > 0, 𝛩 ≠ 1,

	𝑔(𝑥)																																				, 𝑖𝑓	𝛩 = 1.
																																																																																																																																(1) 

The cumulative distribution function is 

𝐺!"#(𝑥) = &
𝛩$(&) − 1
𝛩 − 1 , 𝑖𝑓	𝛩 > 0, 𝛩 ≠ 1,

𝐺(𝑥)																							, 𝑖𝑓	𝛩 = 1.
	 																																																																																																																																													(2) 

The preceding generator was used in [13, 1] to convert two parameters Weibull distribution into three parameters AP Weibull 
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distribution. In addition to applied the generator to transform one parameter exponential distribution into two parameter AP 
exponential distribution, researchers have studied the transformation to obtain APT distributions including APT generalized 
exponential [14], APT extended exponential [15], APT Lindly [16 ] and APT inverse Lindly [17]. 

On the other hand, the power Ailamujia (PA) distribution is a new two parameters lifetime distribution. It is an extension of 
the Ailamujia distribution in which adding a shape parameter β > 0 to the former Ailamujia distribution through the use of 
the power transform in order to increase its overall flexibility (see [18, 19, 20]).  

Definition 1.2. The probability density function (pdf) of the PA distribution with parameters Θ and β is expressed as 

𝑓(𝑥, 𝛩, 𝛽) = 4𝛩(𝛽𝑥()*+𝑒*(,&- , 𝑥 > 0, 𝛩, 𝛽 > 0.																																																																																																																																(3)	
The corresponding cumulative distribution function (cdf) is given as 

𝐹(𝑥, 𝛩, 𝛽) = 1 − ;1 + 2𝛩𝑥)=𝑒*(,&- , 𝑥 > 0, 𝛩, 𝛽 > 0.																																																																																																																						(4) 

Remark 1.1. If we set β = 1 in Eqs. (3) and (4), then the PA distribution is reduced to the former Ailamujia distribution. 

This research aims to introduce a novel and flexible distribution, which is called alpha power of the power Ailamujia (APPA) 
distribution, by adding a new parameter to the basic power Ailamujia distribution in order to get a good fit.  Section 2 includes 
many characteristics of the APPA distribution and expressions for pdf, cdf, survival and hazard rate functions. Section 3 
contains the APPA model's statistical properties including moments, quantile function, median, mode, moment generating 
function, characteristic function, Shannon's entropy and order statistics. Method of maximum likelihood estimation of 
parameters for APPA model is obtained in Section 4. Section 5 provides simulation results for the APPA distribution. Four 
real data analyses are explained in Section 6 to assess the efficiency of the suggested distribution. The final Section provides 
the conclusions. 

2 Alpha Power of the Power Ailamujia (APPA) Distribution 

Definition 2.1. The random variable X has the following cumulative distribution function (cdf) and probability density 
function (pdf) of APPA distribution and are respectively given by 

𝐹!""!(𝑥) = >	
𝜆.+*/+0(1&

-234567
-
8 − 1

𝜆 − 1 								 , 𝑖𝑓	𝑥 > 0, 𝛼, 𝛽, 𝜆 > 0, 𝜆 ≠ 1,

	1 − ;1 + 2𝛼𝑥)=𝑒*(1&- 																																					, 𝑖𝑓	𝜆 = 1.

																																																																																					(5) 

𝑓!""!(𝑥) =

⎩
⎨

⎧	4𝛼(𝛽 E
𝑙𝑜𝑔𝜆
𝜆 − 1F𝜆

.+*/+0(1&-234567
-8𝑒*(1&-𝑥()*+			, 𝑖𝑓	𝛼, 𝛽, 𝜆 > 0, 𝜆 ≠ 1,

	4𝛼(𝛽𝑥()*+𝑒*(1&- 																																																																												, 𝑖𝑓	𝜆 = 1,
		0																																																																																																								, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

		 																																																										(6) 

The APPA pdf and cdf are displayed in Fig. (1) and Fig. (2), respectively. Clearly, pdf is positively skewed, symmetric and 
slightly negatively skewed for various values of parameters. 

 
                                (a)                                                              (b)                                                              (c) 

Fig. 1: Plots (a), (b) and (c) illustrates various shapes of the pdf of APPA distribution. 
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                                 (d)                                                            (e)                                                             (f) 

Fig. 2: Plots (d), (e) and (f) illustrates various shapes of the cdf of APPA distribution. 

Definition 2.2. The reliability (Survival) function and hazard rate function (HF) of APPA distribution are obtained, 
respectively, as follows: 

𝑆!""!(𝑥) =

⎩
⎪
⎨

⎪
⎧
	
𝜆 − 𝜆.+*/+0(1&

-234567
-
8

𝜆 − 1 											 , 𝜆 ≠ 1,
	

	;1 + 2𝛼𝑥)=𝑒*(1&- 																				, 𝜆 = 1.

																																																																																																																									(7) 

𝐻𝐹 = 𝐻!""!(𝑥) =

⎩
⎪
⎨

⎪
⎧
	
4𝛼(𝛽(𝑙𝑜𝑔𝜆)𝜆.+*/+0(1&

-234567
-
8𝑒*(1&-𝑥()*+

𝜆 − 𝜆9+*/+0(1&
-234567-:

			 , 𝜆 ≠ 1,

	
4𝛼(𝛽𝑥()*+

(1 + 2𝛼𝑥))																																																																	 , 𝜆 = 1.

																																																																													(8) 

The survival function and HF of the APPA distribution are displayed in Fig. (3). Clearly that, the hazard rate function for 
various parameters exhibits increasing, decreasing, bathtub and J- shaped.  

             
                                (g)                                                             (h)                                                              (i) 

 
   (j) 

Fig. 3: Plots (g), (h), (i) and (j) illustrates various shapes of the survival function and the HF of APPA distribution. 
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3 Statistical Properties of APPA Model 

3.1 Expansion of the Density Function of APPA Distribution 
The pdf in Eq. (6) can be rewritten by making the substitution	𝑥) = 𝑡 as follows 

𝑓!""!(𝑥) = 𝑓!""! E𝑡
;
-F = 4𝛼(𝛽	𝜆 E

𝑙𝑜𝑔𝜆
𝜆 − 1F 𝜆

*(+0(1<)3456=𝑒*(1<𝑡(*
;
-, 

by using the following series representation 𝛼*> = ∑ (* ?@A1)B>B

C!
E
CFG  for 𝜆*(+0(1<)3456= ,	then 

𝑓!""! E𝑡
;
-F = 4𝛼(𝛽	𝜆 E

𝑙𝑜𝑔𝜆
𝜆 − 1FS

(− log 𝜆)C

𝑘!
(1 + 2𝛼𝑡)C

E

CFG

𝑒*((1C0(1)<	𝑡(*
;
-, 

finally, we get the expansion of 𝑓!""!(𝑥) by using the binomial theory of	(1 + 2𝛼𝑡)C as follows 

𝑓!""! E𝑡
;
-F = 4𝛼(𝛽	𝜆 E

𝑙𝑜𝑔𝜆
𝜆 − 1FSSE

𝑘
𝑛F
(− 𝑙𝑜𝑔 𝜆)C

𝑘!
(2𝛼)H

C

HFG

𝑒*((1C0(1)<	𝑡H*
;
-0(

E

CFG

,																																																																							(9) 

where	𝑡 > 0, 𝛼, 𝛽, 𝜆 > 0, 𝜆 ≠ 1, 0 < 𝑘 < ∞ and	0 < 𝑛 < 𝑘 < ∞. 

3.2 Moments of APPA Distribution 
Theorem 3.2.1.  

For 𝑥 > 0 and let X be a random variable follow APPA distribution, then the rth moment is given by 

𝜇I
׳ =

𝜆

(2𝛼)
J
-
E
log 𝜆
𝜆 − 1FSS

(− log 𝜆)C

𝑛! (𝑘 − 𝑛)!

E

CFH

E

HFG

𝛤 _𝑛 + I
)
+ 2`

(𝑘 + 1)H0
J
-0(

,																																																																																																																		(10) 

where 𝛼, 𝛽, 𝜆 > 0	and	𝜆 ≠ 1. 

Proof. From Eq. (6), we have 

𝜇I
׳ = 𝐸(𝑋I) = f 𝑥I

E

G

𝑓(𝑥; 	𝛼, 𝛽, 𝜆)𝑑𝑥,										

						= 4𝛼(𝛽 E
log 𝜆
𝜆 − 1Ff 𝑥I0()*+

E

G

𝑒*(1&-𝜆.+*/+0(1&
-234567

-
8𝑑𝑥.					 

Making the substitution 𝑥) = 𝑡 and using Eq. (9), then we get Eq. (10). 

Remark 3.2.1.  

By substituting 𝑟 = 1 and 2, the first two moments of the APPA distribution about origin are obtained 

𝜇+
׳ =

𝜆

(2𝛼)
;
-

E
log 𝜆
𝜆 − 1FSS

(− log 𝜆)C

𝑛! (𝑘 − 𝑛)!

E

CFH

E

HFG

𝛤 _𝑛 + +
)
+ 2`

(𝑘 + 1)H0
;
-0(

	.																																																																																																																	(11) 

𝜇(
׳ =

𝜆

(2𝛼)
5
-

E
log 𝜆
𝜆 − 1FSS

(− log 𝜆)C

𝑛! (𝑘 − 𝑛)!

E

CFH

E

HFG

𝛤 _𝑛 + (
)
+ 2`

(𝑘 + 1)H0
5
-0(

.																																																																																																																		(12) 

Remark 3.2.2.  

The mean and the variance of APPA distribution are respectively given by 

𝜇 = 𝜇+
׳ =

𝜆

(2𝛼)
;
-

E
log 𝜆
𝜆 − 1FSS

(− log 𝜆)C

𝑛! (𝑘 − 𝑛)!

E

CFH

E

HFG

𝛤 _𝑛 + +
)
+ 2`

(𝑘 + 1)H0
;
-0(

.																																																																																																										(13) 
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𝜎( = 𝜇(
׳ − _𝜇+

׳ `
(
, 

𝜎( =
𝜆 𝑙𝑜𝑔 𝜆

(2𝛼)
5
-(𝜆 − 1)(

j(𝜆 − 1)SS
(−𝑙𝑜𝑔 𝜆)C

𝑛! (𝑘 − 𝑛)!

E

CFH

E

HFG

𝛤 _𝑛 + (
)
+ 2`

(𝑘 + 1)H0
5
-0(

	− 𝜆	𝑙𝑜𝑔 𝜆	kSS
(−𝑙𝑜𝑔 𝜆)C

𝑛! (𝑘 − 𝑛)!

E

CFH

E

HFG

𝛤 _𝑛 + +
)
+ 2`

(𝑘 + 1)H0
;
-0(

l

(

m . (14) 

The plots in Fig. (4), it is apparent that mean and variance of APPA model have bounds. 

                                                                                               
                               (k)                                                               (l)                                                                (m) 

                                                                                            
                                (n)                                                                (o)                                                               (p) 

Fig. 4: Plots (k), (l), (m), (n), (o) and (p) illustrates various shapes of the mean and the variance of APPA distribution. 

3.3 Moment Generating Function (M.G.F.) of APPA Distribution      
Theorem 3. 3. 1.  

For 𝑥 > 0 and let X be a random variable follow APPA distribution, then the M.G.F. is obtained as 

𝑀K(𝑡) = E
𝜆	 log 𝜆
𝜆 − 1 FSSS

𝑡I(− log 𝜆)C

𝑟! 𝑛! (𝑘 − 𝑛)!

E

CFH

E

HFG

𝛤 _𝑛 + I
)
+ 2`

(2𝛼)
J
-(𝑘 + 1)H0

J
-0(

E

IFG

,																																																																																															(15) 

it is convergent for 𝛼, 𝛽, 𝜆 > 0	and	𝜆 ≠ 1. 

Proof. From Eq. (6), we have 

𝑀K(𝑡) = 𝐸(𝑒<&) = f 𝑒<&
E

G

𝑓(𝑥; 	𝛼, 𝛽, 𝜆)𝑑𝑥, 

using Taylor's theorem, then 
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𝑀K(𝑡) = f o1 + 𝑡𝑥 +
(𝑡𝑥)(

2! +
(𝑡𝑥)L

3! +⋯q
E

G

𝑓(𝑥; 	𝛼, 𝛽, 𝜆)𝑑𝑥	

													= fS
𝑡I

𝑟!

E

IFG

E

G

𝑥I𝑓(𝑥; 	𝛼, 𝛽, 𝜆)𝑑𝑥, 

												= S
𝑡I

𝑟!

E

IFG

f 𝑥I
E

G

𝑓(𝑥; 	𝛼, 𝛽, 𝜆)𝑑𝑥.	

By using Theorem 3. 2. 1., then we get Eq. (15).  

3.4 Quantile Function of APPA Distribution 
The APPA model of a random variable X can be expressed utilizing its quantile function (QF). The QF can be obtained as 
the distribution function's inverse, and it can be used to compute the distribution's median, mode, skewness, and kurtosis 
using well-known relationships. 

Theorem 3. 4. 1.  

For 𝑥 > 0, 𝛼, 𝛽, 𝜆 > 0	and	𝜆 ≠ 1, the QF of APPA distribution is defined as  

𝑋M =

⎝

⎜
⎛
1 +𝑊*+ v_

?@A(M(N*+)0+)
?@A N

− 1` 𝑒*+w

−2𝛼

⎠

⎟
⎞

;
-

,																																																																																																																																		(16) 

where q ~ uniform (0, 1) and 𝑊*+ denotes the negative branch of the Lambert W function (𝑊(𝑧)𝑒O(>) = 𝑧), and z is a 
complex number (see [19]).  

Proof. Let		𝑞 = 𝐹(𝑥), then 

𝑞 = 𝐹!""!(𝑥) =
𝜆.+*/+0(1&

-234567
-
8 − 1

𝜆 − 1  

 

−;1 + 2𝛼𝑥)=𝑒*/+0(1&-2 = v
𝑙𝑜𝑔(𝑞(𝜆 − 1) + 1)

𝑙𝑜𝑔 𝜆 − 1w𝑒*+, 

from the above equation, we can see that _−;1 + 2𝛼𝑥)=` is the Lambert W function of the real number       

_PQR(M(N*+)0+)
PQR N

− 1`𝑒*+. Moreover, for any 𝑥 > 0, 𝛼, 𝛽, 𝜆 > 0	𝑎𝑛𝑑	𝜆 ≠ 1 we can check that 	;1 + 2𝛼𝑥)= > 0	and     

−;1 + 2𝛼𝑥)=𝑒*/+0(1&-2 = _PQR(M(N*+)0+)
PQR N

− 1`𝑒*+ ∈ _*+
3
, 0`. Then, 

−;1 + 2𝛼𝑥)= = 𝑊*+ �v
𝑙𝑜𝑔(𝑞(𝜆 − 1) + 1)

𝑙𝑜𝑔 𝜆 − 1w𝑒*+� ; 	0	 < 	𝑞	 < 	1, 

where 𝑊*+ denotes the well-known negative branch of the Lambert W function, then we get Eq. (16). 

Remark 3. 4. 1.  

The lower quartile, the median and the upper quartile of APPA distribution can be obtained by setting q= 0.25, 0.5 and 0.75, 
respectively. Then, the median (Md) of APPA distribution is given by   

𝑀S = 𝑥G.U =

⎝

⎜
⎛
1 +𝑊*+ v_

?@A(G.U(N*+)0+)
?@A N

− 1` 𝑒*+w

−2𝛼

⎠

⎟
⎞

;
-

.																																																																																																																		(17) 
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Also, the mode (Mo) of APPA distribution is obtained by using the empirical formula for median, then 

𝑀Q = 3	𝑀S − 2	𝜇+
׳ , 

from Eq. (17), gives 

𝑀Q = 3j
1 +𝑊*+ E_log _

N0+
(N
`−log 𝜆` 𝑒*+F

−2𝛼 m

;
-

−
2𝜆

(2𝛼)
;
-

E
log 𝜆
𝜆 − 1FSS

(− log 𝜆)C

𝑛! (𝑘 − 𝑛)!

E

CFH

E

HFG

𝛤 _𝑛 + +
)
+ 2`

(𝑘 + 1)H0
;
-0(

.																																(18) 

In particular, we use a 𝑥M to obtain the Galton skewness coefficient described as 

𝑆C =
𝑥G.VU − 2𝑥G.U + 𝑥G.(U

𝑥G.VU − 𝑥G.(U
.																																																																																																																																																																						(19) 

The following Moors kurtosis coefficient is used to evaluate the kurtosis as 

𝐾W =
𝑥G.XVU − 𝑥G.Y(U + 𝑥G.LVU + 𝑥G.+(U

𝑥G.VU − 𝑥G.(U
.																																																																																																																																																(20)	 

Figs. (5), (6) and (7), represents the plots of skewness and kurtosis for various values of parameters. Clearly, the APPA 
distribution is symmetric, positively skewed and slightly negatively skewed. In addition, it may also be mesokurtic, 
platykurtic, or leptokurtic. 

 

    

   
Fig. 5: Illustrate the plots of skewness and kurtosis for selected value of APPA model versus parameter α. 
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Fig. 6: Illustrate the plots of skewness and kurtosis for selected value of APPA model versus parameter β. 

 

 
Fig. 7: Illustrate the plots of skewness and kurtosis for selected value of APPA model versus parameter λ. 
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3.5 Characteristic Function of APPA Distribution 
Theorem 3. 5. 1.  

For 𝑥 > 0 and let X be a random variable follow APPA distribution, then the characteristic function is given by 

𝜑K(𝑡) = E
𝜆	𝑙𝑜𝑔 𝜆
𝜆 − 1 FSSS

(𝑖𝑡)I(− 𝑙𝑜𝑔 𝜆)C

𝑟! 𝑛! (𝑘 − 𝑛)!

E

CFH

E

HFG

𝛤 _𝑛 + I
)
+ 2`

(2𝛼)
J
-	(𝑘 + 1)H0

J
-0(

E

IFG

,																																																																																										(21) 

where 𝛼, 𝛽, 𝜆 > 0	and	𝜆 ≠ 1. 

Proof. Let 

𝜑K(𝑡) = 𝐸(𝑒Z<&) = f 𝑒Z<&
E

G

𝑓(𝑥; 	𝛼, 𝛽, 𝜆)𝑑𝑥, 

using Taylor's theorem, then 

𝜑K(𝑡) = f o1 + 𝑖𝑡𝑥 +
(𝑖𝑡𝑥)(

2! +
(𝑖𝑡𝑥)L

3! +⋯q
E

G

𝑓(𝑥; 	𝛼, 𝛽, 𝜆)𝑑𝑥 

												= fS
(𝑖𝑡)I

𝑟!

E

IFG

E

G

𝑥I𝑓(𝑥; 	𝛼, 𝛽, 𝜆)𝑑𝑥, 

												= S
(𝑖𝑡)I

𝑟!

E

IFG

f 𝑥I
E

G

𝑓(𝑥; 	𝛼, 𝛽, 𝜆)𝑑𝑥. 

By using Theorem 3. 2. 1., then we get Eq. (21). 

3.6 Shannon's Entropy of APPA Distribution 
Entropy is a measure of the variance of uncertainty of a random variable and is used in various sciences. Also, it may be 
described as the average rate where the information is generated by a stochastic source of data. 

Theorem 3. 6. 1. For 𝑥 > 0, 𝛼, 𝛽, 𝜆 > 0	and	𝜆 ≠ 1, Shannon's entropy of APPA distribution is defined as 

𝐻(𝑥; 	𝛼, 𝛽, 𝜆) =
𝜆	𝑙𝑜𝑔𝜆
𝜆 − 1 SS

(− log 𝜆)C

𝑛! (𝑘 − 𝑛)!
𝛤(𝑛 + 2)
(𝑘 + 1)H0(

E

CFH

E

HFG

Elog E
𝜆 − 1

4𝛼(𝛽	𝑙𝑜𝑔𝜆F

+ E2 −
1
𝛽F log 2𝛼−_1 − ;1 + 2𝛼𝑥

)=𝑒*(1&-` 𝑙𝑜𝑔 𝜆 + E
𝑛 + 2
𝑘 + 1Fw.																																																														

(22) 

Proof. Let 

𝐻(𝑥; 	𝛼, 𝛽, 𝜆) = −𝐸(log 𝑓(𝑥; 	𝛼, 𝛽, 𝜆)) 

																									= −𝐸 vlog v4𝛼(𝛽 E
𝑙𝑜𝑔𝜆
𝜆 − 1F 𝑥

()*+𝑒*(1&-𝜆.+*/+0(1&
-234567

-
8ww 

																									= −𝐸 Elog 4𝛼(𝛽 E
𝑙𝑜𝑔𝜆
𝜆 − 1FF −

(2𝛽 − 1)𝐸(log 𝑥) + 2𝛼𝐸;𝑥)= − _1 − ;1 + 2𝛼𝑥)=𝑒*(1&-`𝐸(log 𝜆).										(23) 

𝐸(log 𝑥) = f(log 𝑥)	𝑓(𝑥; 	𝛼, 𝛽, 𝜆)𝑑𝑥
E

G

 

																	= 4𝛼(𝛽 E
𝑙𝑜𝑔𝜆
𝜆 − 1Ff

(log 𝑥)	𝑥()*+𝑒*(1&-𝜆.+*/+0(1&
-234567

-
8	𝑑𝑥

E

G

, 
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making substitution	2𝛼𝑥) = 𝑧, then 

𝐸(log 𝑥) =
1
𝛽 E

𝑙𝑜𝑔𝜆
𝜆 − 1Ff log _

𝑧
2𝛼` 	𝑧	𝑒

*>𝜆(+*(+0>)34[)𝑑𝑧
E

G

, 

after solving the integral, then 

𝐸(log 𝑥) =
−𝜆 log 2𝛼

𝛽 E
𝑙𝑜𝑔𝜆
𝜆 − 1FSS

(− log 𝜆)C

𝑛! (𝑘 − 𝑛)!
𝛤(𝑛 + 2)
(𝑘 + 1)H0(

E

CFH

E

HFG

.																																																																																																					(24) 

𝐸;𝑥)= = f 𝑥)	𝑓(𝑥; 	𝛼, 𝛽, 𝜆)𝑑𝑥
E

G

 

													=
𝜆
2𝛼 E

𝑙𝑜𝑔𝜆
𝜆 − 1FSS

(− log 𝜆)C

𝑛! (𝑘 − 𝑛)!
𝛤(𝑛 + 3)
(𝑘 + 1)H0L

E

CFH

E

HFG

.																																																																																																																							(25) 

𝐸(log 𝜆) = f(log 𝜆)	𝑓(𝑥; 	𝛼, 𝛽, 𝜆)𝑑𝑥
E

G

 

																	=
𝜆(𝑙𝑜𝑔𝜆)(

𝜆 − 1 SS
(− log 𝜆)C

𝑛! (𝑘 − 𝑛)!
𝛤(𝑛 + 2)
(𝑘 + 1)H0(

E

CFH

E

HFG

.																																																																																																																						(26) 

𝐸 Elog 4𝛼(𝛽 E
𝑙𝑜𝑔𝜆
𝜆 − 1FF = f Elog 4𝛼(𝛽 E

𝑙𝑜𝑔𝜆
𝜆 − 1FF 	𝑓

(𝑥; 	𝛼, 𝛽, 𝜆)𝑑𝑥
E

G

, 

																																								=
𝜆	𝑙𝑜𝑔𝜆
𝜆 − 1 	logv

4𝛼(𝛽	𝑙𝑜𝑔𝜆
𝜆 − 1 wSS

(− log 𝜆)C

𝑛! (𝑘 − 𝑛)!
𝛤(𝑛 + 2)
(𝑘 + 1)H0(

E

CFH

E

HFG

.																																																																		(27) 

Now substituting equations (24), (25), (26) and (27) in (23), then we get Eq. (22). 

3.7 Order Statistics of APPA Distribution 
Theorem 3. 7. 1. 

 Let 𝑋+:H, 𝑋(:H, . . . , 𝑋H:H denote the order statistics obtained from a random samples	𝑋+, 𝑋(, . . . , 𝑋H of size n of APPA 
distribution with pdf 𝑓(𝑥)	and cdf		𝐹(𝑥), where 𝑋+:H < 𝑋(:H <. . . < 𝑋H:H		in which 𝑋+:H = 𝑚𝑖𝑛{	𝑋+, 𝑋(, . . . , 𝑋H} and    	𝑋H:H =
𝑚𝑎𝑥{	𝑋+, 𝑋(, . . . , 𝑋H} are the first and last order statistics respectively. Then the pdf of 𝑘<] order statistics is obtained as 

𝑓KB(𝑥) =
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!k
𝜆.+*/+0(1&

-234567
-
8 − 1

𝜆 − 1 l

C*+

	k
𝜆 − 𝜆.+*/+0(1&

-234567
-
8

𝜆 − 1 l

H*C

	

																	4𝛼(𝛽 E
𝑙𝑜𝑔𝜆
𝜆 − 1F𝑥

()*+𝑒*(1&-𝜆.+*/+0(1&
-234567

-
8, 𝑘 = 1,2, . . . , 𝑛.																																																																											(28) 

Proof. Let 

𝑓KB(𝑥) =
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)! ;𝐹
(𝑥)=C*+;1 − 𝐹(𝑥)=H*C𝑓(𝑥), 𝑘 = 1,2, . . . , 𝑛.																																																																																(29) 

By substituting equations (5) and (6) in (29), then we get the probability of	𝑘<] order statistics of APPA distribution in    Eq. 
(28). 

Remark 3. 7. 1.  

The pdf of the first order statistics X1 and the nth order statistics Xn of APPA distribution are respectively given by 
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𝑓K;(𝑥) = 4𝑛𝛼(𝛽 E
𝑙𝑜𝑔𝜆
𝜆 − 1F𝑥

()*+𝑒*(1&-𝜆.+*/+0(1&
-234567

-
8 k
𝜆 − 𝜆.+*/+0(1&

-234567
-
8

𝜆 − 1 l

H*+

.																																																(30) 

𝑓K^(𝑥) = 4𝑛𝛼(𝛽 E
𝑙𝑜𝑔𝜆
𝜆 − 1F𝑥

()*+𝑒*(1&-𝜆.+*/+0(1&
-234567

-
8 k
𝜆.+*/+0(1&

-234567
-
8 − 1

𝜆 − 1 l

H*+

.																																																(31) 

4 Parameters Estimation  

4.1 Maximum Likelihood Method (MLE) 
The parameters estimation of APPA model is derived by using the method of MLE. Let X1, X2, X3, . . ., Xn be a random 
sample from APPA (α, β, λ). The likelihood function is then defined as 

𝐿(𝑥; 𝛼, 𝛽, 𝜆) =�𝑓(𝑥; 	𝛼, 𝛽, 𝜆)
H

ZF+

 

																							=�4𝛼(𝛽 E
log 𝜆
𝜆 − 1F

H

ZF+

𝑥()*+𝑒*(1&-𝜆.+*/+0(1&
-234567

-
8 

																							= (2𝛼)(H𝛽H E
log 𝜆
𝜆 − 1F

H

𝑒*(1 ∑ &`
-^

`a; 𝜆
bH*9+0(1 ∑ &`

-^
`a; :3456∑ 7`

-^
`a; c

S𝑥Z
()*+

H

ZF+

,																																																								(32) 

where 𝑥 > 0, 𝛼, 𝛽, 𝜆 > 0,	and		𝜆 ≠ 1. 

Thus, the log-likelihood function is  

ℓ = log 𝐿(𝑥; 𝛼, 𝛽, 𝜆) = 2𝑛 log 2𝛼+𝑛 log𝛽+𝑛 log E
log 𝜆
𝜆 − 1F +

(2𝛽 − 1)Slog 𝑥Z

H

ZF+

− 2𝛼S𝑥Z
)

H

ZF+

	+	 

																																								�𝑛 − �1 + 2𝛼S𝑥Z
)

H

ZF+

� 𝑒*(1 ∑ &`
-^

`a; � log 𝜆	.																																																																																																(33) 

The following equations are formed by taking the derivatives of the previous equation with respect to the three parameters 
and equating it to zero 

𝜕ℓ
𝜕𝛼 =

2𝑛
𝛼 − 2S𝑥Z

)
H

ZF+

+ 4𝛼 log 𝜆 	𝑒*(1 ∑ &`
-^

`a; 	S𝑥Z
()

H

ZF+

	= 0.																																																																																																													(34) 

𝜕ℓ
𝜕𝛽 =

𝑛
𝛽 + 2Slog 𝑥Z

H

ZF+

− 2𝛼S𝑥Z
)

H

ZF+

Slog𝑥Z

H

ZF+

+ 4𝛼( log 𝜆	𝑒*(1 ∑ &`
-^

`a; Slog𝑥Z

H

ZF+

S𝑥Z
()

H

ZF+

= 0.																																															(35) 

𝜕ℓ
𝜕𝜆 =

𝑛(𝜆 − 1 − 𝜆 log 𝜆)
𝜆(𝜆 − 1) log 𝜆 +

_𝑛 − ;1 + 2𝛼∑ 𝑥Z
)H

ZF+ =𝑒*(1 ∑ &`
-^

`a; `
𝜆 = 0.																																																																																									(36) 

The system of non-linear equations is numerically solved using the Newton-Raphson method to give estimates for the 
parameters α, β, and λ. Also, R packages can be applied to optimize log-likelihood. 

5 Simulation Study 
The efficiency of the MLE technique is assessed by simulation analysis utilizing various criteria, including mean square 
errors (MSEs), root mean square errors (RMSEs), and average bias (AB) values, as well as their convergent performance in 
finite samples [21]. 

It is possible to simulate the APPA model using two different sets of parameters ((α = 1.1, β = 0.3, λ = 0.02) and (α = 0.07, 
β = 0.55, λ = 0.009)). We consider different samples of sizes n= 50, 100, 200, 400, 500, 700, 800, 1000, and also conducted 
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1000 iterations to compute the ML estimates (MLEs), (MSEs), (RMSE) and (AB) by the following formulas 

𝐵𝑖𝑎𝑠d(𝑛) =
1

1000 S
(𝜑�C − 𝜑)

+GGG

CF+

.																																																																																																																																																											(37) 

𝑀𝑆𝐸d(𝑛) =
1

1000 S
(𝜑�C − 𝜑)(

+GGG

CF+

.																																																																																																																																																									(38) 

𝑅𝑀𝑆𝐸d(𝑛) = �
1

1000 S
(𝜑�C − 𝜑)(

+GGG

CF+

.																																																																																																																																																		(39) 

Where	𝜑 = (𝛼, 𝛽, 𝜆) and 𝜑�C = ;𝛼�C , 𝛽�C , 𝜆�C= for 𝑘 = 1, 2,⋯ ,1000. 

Furthermore, R software has been used to investigate the goodness of estimates. Tables (1) and (2) are listed the observed 
outcomes and illustrate the MSE, RMSE, and AB values of the parameters (Ps) for various sample sizes. 

According to Tables (1) and (2), the mean square error and bias for the MLEs, decrease as sample sizes rise such that MSE 
and all bias for all parameters approaches zero, this demonstrates the precision of estimation methodologies and meets the 
standard criteria for convergent qualities for MLEs. 

The results indicate that the estimates are nearer with the actual values for various samples, confirming the efficiency of 
MLEs in estimating parameters. 

Table 1: MLEs, MSEs and average biases for APPA distribution' simulation when (α = 1.1, β = 0.3, λ = 0.02). 
n Ps MLEs MSEs RMSE AB 
50 α                    

β                     
λ 

2.272         
0.329            
0.75 

0.369       
0.0016       
16.84 

0.608          
0.0410    
4.103668 

0.368999       
0.0080           
0.5225 

100 α                    
β                     
λ 

2.28           
0.368         
0.416 

0.2534     
0.0006     
16.548 

0.503            
0.026            
4.067 

0.2344             
0.003           
0.27134 

200 α                    
β                     
λ 

1.72           
0.302          
0.218 

0.208       
0.0004         
1.479 

0.4561        
0.0208           
1.216 

0.174           
0.00037         
0.1184 

400 α                    
β                     
λ 

1.42           
0.324          
0.045 

0.127     
0.00028 
0.01164 

0.357            
0.016             
0.107 

0.079                       
- 0.001203      
0.0392 

500 α                    
β                      
λ 

1.098         
0.307            
0.012 

0.1138    
0.00023   
0.0076 

0.337             
0.015             
0.087 

0.0729                     
- 0.00133        
0.0341 

800 α                    
β                      
λ 

1.2               
0.31              
0.20 

0.069     
0.00014      
0.003 

0.264             
0.012               
0.055 

0.0485                     
- 0.00182        
0.0222 

1000 α                    
β                     
λ 

1.1               
0.29             
0.02 

0.062      
0.00013     
0.0024 

0.25              
0.011            
0.049 

0.0405                     
- 0.0006          
0.0169 
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Table 2: MLEs, MSEs and average biases for APPA distribution' simulation when (α = 0.07, β = 0.55, λ = 0.009). 
n Ps MLEs MSEs RMSE AB 
50 α                    

β                     
λ 

0.133           
0.57           
0.491 

0.00145 
0.00569   
0.0303 

0.038132      
0.075          
0.1741 

0.01625         
0.0251           
0.0883 

100 α                     
β                     
λ 

0.06             
0.56             
0.02 

0.00087   
0.0028     
0.0182 

0.0295        
0.0533          
0.135 

0.0066           
0.0073           
0.0385 

200 α                     
β                     
λ 

0.068          
0.555         
0.012 

0.00042   
0.0016     
0.0066 

0.021          
0.0404         
0.0814 

0.0059           
0.0033           
0.0347 

400 α                    
β                     
λ 

0.07           
0.561           
0.01 

0.003       
0.0011       
0.004 

0.017            
0.033             
0.0636 

0.0047              
0.001              
0.0268 

500 α                    
β                     
λ 

0.0724     
0.5460      
0.0096 

0.00023 
0.00098    
0.0025 

0.0151          
0.031              
0.05 

0.00359       
0.00098           
0.021 

700 α                    
β                     
λ 

0.070           
0.53         
0.0096 

0.00018 
0.00081   
0.0019 

0.0134          
0.028           
0.0445 

0.003              
0.0007              
0.017 

1000 α                    
β                     
λ 

0.75           
0.547         
0.013 

0.00011 
0.00056 
0.00098 

0.0106          
0.023            
0.031 

0.0018          
0.00058         
0.0112 

6 Data Analysis 

Four real data sets have been analyzed to demonstrate the performance of the APPA distribution. The proposed distribution 
is fitted to more important fields of survival times of COVID-19 data with two countries including Italy and United Kingdom. 
In addition, the vinyl chloride data and fourth data for the March precipitation in Minneapolis/St Paul. Several criteria are 
considered to compare the efficiency of the APPA distribution such as Kolmogorov Smirnov (K-S) test and its p-value, 
Cramér–von (W*) Mises distance values, Anderson-Darling (A*), Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC). The required numerical estimates are generated by using the Package of R software. The data 
sets are given as 

Data Set 1: Next COVID-19 data are from Italy and cover 111 days between 1 April and 20 July 2020, as suggested in  [22, 
23]. This data created by dividing daily new deaths on daily new cases. 

0.2070, 0.1520, 0.1628, 0.1666, 0.1417, 0.1221, 0.1767, 0.1987, 0.1408, 0.1456, 0.1443, 0.1319, 0.1053, 0.1789, 0.2032, 
0.2167, 0.1387, 0.1646, 0.1375, 0.1421, 0.2012, 0.1957, 0.1297, 0.1754, 0.1390, 0.1761, 0.1119, 0.1915, 0.1827, 0.1548, 
0.1522, 0.1369, 0.2495, 0.1253, 0.1597, 0.2195, 0.2555, 0.1956, 0.1831, 0.1791, 0.2057, 0.2406, 0.1227, 0.2196, 0.2641, 
0.3067, 0.1749, 0.2148, 0.2195, 0.1993, 0.2421, 0.2430, 0.1994, 0.1779, 0.0942, 0.3067, 0.1965, 0.2003, 0.1180, 0.1686, 
0.2668, 0.2113, 0.3371, 0.1730, 0.2212, 0.4972, 0.1641, 0.2667, 0.2690, 0.2321, 0.2792, 0.3515, 0.1398, 0.3436, 0.2254, 
0.1302, 0.0864, 0.1619, 0.1311, 0.1994, 0.3176, 0.1856, 0.1071, 0.1041, 0.1593, 0.0537, 0.1149, 0.1176, 0.0457, 0.1264, 
0.0476, 0.1620, 0.1154, 0.1493, 0.0673, 0.0894, 0.0365, 0.0385, 0.2190, 0.0777, 0.0561, 0.0435, 0.0372, 0.0385, 0.0769, 
0.1491, 0.0802, 0.0870, 0.0476, 0.0562, 0.0138. 

Data Set 2: The United Kingdom's COVID-19 [24]. This data covers 82 days, from May 1 to July 16, 2021, and constructed 
by using daily new deaths (ND), daily cumulative deaths (CD), and daily cumulative cases (CC) as: 

𝑥Z =
𝑁𝐷Z

𝐶𝐶Z − 𝐶𝐷Z*+
× 1000.																																																																																																																																																																							(40) 

0.0023, 0.0023, 0.0023, 0.0046, 0.0065, 0.0067, 0.0069, 0.0069, 0.0091, 0.0093, 0.0093, 0.0093, 0.0111, 0.0115, 0.0116, 
0.0116, 0.0119, 0.0133, 0.0136, 0.0138, 0.0138, 0.0159, 0.0161, 0.0162, 0.0162, 0.0162, 0.0163, 0.0180, 0.0187, 0.0202, 
0.0207, 0.0208, 0.0225, 0.0230, 0.0230, 0.0239, 0.0245, 0.0251, 0.0255, 0.0255, 0.0271, 0.0275, 0.0295, 0.0297, 0.0300, 
0.0302, 0.0312, 0.0314, 0.0326, 0.0346, 0.0349, 0.0350, 0.0355, 0.0379, 0.0384, 0.0394, 0.0394, 0.0412, 0.0419, 0.0425, 
0.0461, 0.0464, 0.0468, 0.0471, 0.0495, 0.0501, 0.0521, 0.0571, 0.0588, 0.0597, 0.0628, 0.0679, 0.0685, 0.0715, 0.0766, 
0.0780, 0.0942, 0.0960, 0.0988, 0.1223, 0.1343, and 0.1781. 

The descriptive statistics for COVID-19 data in both Italy and United Kingdom are presented in Table (3). 
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Table 3: Descriptive statistics for APPA distribution for two COVID-19 data in Italy and United Kingdom. 
COVID-19 Data Median Mean Skewness Kurtosis 
Italy 0.1628 0.1668 0.762351 1.812914 
United Kingdom 0.02730 0.03571 1.984259 4.97806 

For data set 1, the MLEs of the parameters with standard errors, K-S, P-value, W* and A* are computed and displayed in 
Tables (4) and (5). The APPA distribution is compared with other some competitive models as, Kumaraswamy inverted 
Topp–Leone (KITL), inverted Topp–Leone (ITL), inverse Weibull (IW), inverse Lomax (IL), inverse Kumaraswamy (IK), 
Topp Leone inverted Kumaraswamy (TLIK), novel alpha power Gumbel Type II (NAPGT-II), New Alpha Power 
Exponential (NAPE), Exponentiated Gumbel Type-II (EGT-II), Weibull and Gumbel Type-Two (GT-II) distributions    [25, 
26, 27, 28]. Fig. (8) shows the plots of the estimated density and the empirical CDF and Fig. (9) shows the P-P plot and the 
Q-Q plot of the APPA distribution for COVID-19 data in Italy. It is clear from Table (5), Fig. (8) and Fig. (9) that APPA 
model is the best for modeling COVID-19 data in Italy where it has the greatest P-value and the least K-S, W* and A* values. 
Furthermore, total time on test transform (TTT) is presented in Fig. (10), which takes convex shape followed by a concave 
shape. This corresponds to a bathtub shaped HF. Also, the boxplot of the APPA model in Italy is displayed in Fig. (10). 

Table 4: MLEs of parameters and standard errors for COVID-19 data in Italy. 
Italy MLEs Standard Errors 
APPA 
 

α = 12.03915                                         
β = 1.19744                                          
λ = 10.89357 

2.27006                                                                   
0.17388                                                                    
12.69443 

ITL υ = 43.6078 4.1391 
KIT δ = 1.3430                           

ϑ = 20.4473                     
 υ = 4.4464 

0.1180                                   
28.9206                                   
5.1612 

IW ϑ = 1.3507                                            
υ = 0.0483 

0.0818                                     
0.0115 

IL δ = 17.7970                                             
ϑ = 0.0069 

7.1991                                                 
0.0029 

IK δ = 14.6443                                              
ϑ = 4.8909 

1.2584                                     
0.7972 

TLIK δ = 30.0526                                     
ϑ = 1.3699                                       
υ = 1.8741 

8.8631                                                                    
0.4298                                                                     
0.2976 

NAPE λ = 135.5089                                   
𝜉 = 13.2114 

79.5693                                   
1.3148 

NAPGT-II λ = 0.0063                                       
β = 5.2431                                        
�̌� =1.0064 

0.0043                                     
0.4208                                     
0.0044 

EGT-II 𝜉 = 6.4945                                       
β = 2.4718                                              
𝜅 = 0.0238 

4.0462                                       
0.5118                                     
0.0282 

Weibull θ = 5.2152                                       
𝜅 = 0.1750 

0.6407                                     
0.0060 

GT-II β = 0.0025                                         
𝜅 = 3.1696 

0.0006                                        
0.1391 
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Table (5): Goodness-of-fit measures and K-S statistic with P-value of the APPA distribution and other competing 
distributions for COVID-19 data in Italy. 

Italy K-S W* A* P-value 

APPA 0.05 0.0715 0.54148 0.96 

ITL 0.1560 0.179 1.079 _ 

Weibull 0.1102 _ _ 0.7480 

KIT 0.0715 0.135 0.831 _ 

NAPE 0.2788 _ _ 0.0068 

IW 0.1907 1.324 7.127 _ 

NAPGT-II 0.0889 _ _ 0.9217 

IL 0.2922 0.986 5.442 _ 

EGT-II 0.9891 _ _ 0.0000 

IK 0.1202 0.398 2.330 _ 

GT-II 0.2537 _ _ 0.0179 

TLIK 0.0740 0.142 0.870 _ 

 

 

  
Fig. 8: Illustrate the estimated density and the empirical CDF of the APPA distribution for COVID-19 data in Italy. 
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Fig. 9: Illustrate the P-P plot and the Q-Q plot of the APPA distribution' COVID-19 Italian data. 

  
Fig. 10: Illustrate the empirical TTT and the boxplot of the APPA distribution for COVID-19 data in Italy. 

For data set 2, Table (6) provides the APPA distribution comparison with other competitive distributions as, Transmuted 
Generalized Lomax (TGL), Burr-XII (KEBXII) with Kumaraswamy exponentiated [29], Weibull-Lomax (WL), Odds 
Exponential- Pareto IV (OEPIV) [30], Marshall–Olkin Alpha power Weibull (MOAPW) [31], Marshall–Olkin Alpha power 
extended Weibull (MOAPEW) [32], and Gompertz Lomax (GOLOM) distribution [33]. Fig. (11) shows the plots of the 
estimated density and the empirical CDF and Fig. (12) shows the P-P plot and the Q-Q plot of the APPA distribution for 
COVID-19 data of the United Kingdom. It is clear from Table (6), Fig. (11) and Fig. (12) that APPA model is the most 
effective model for fitting COVID-19 data of the United Kingdom where it has the greatest P-value and the lowest values of 
K-S, W* and A*. Furthermore, total time on test transform (TTT) is presented in   Fig. (13), which takes convex shape 
followed by a concave shape. This corresponds to a bathtub shaped HF. Also, Fig. (13) displays the boxplot of the APPA 
model in the United Kingdom. Finally, APPA model is the most appropriate model for fitting the two real datasets.  

Table 6: The numerical results of the APPA distribution and other rival distributions using United Kingdom COVID-19 data. 
United Kingdom K-S P-value W* A* 
APPA 0.044608 0.9968 0.012247 0.1080 
TGL 0.0579 0.9313 0.0520 0.3666 
KEBXII 0.0686 0.8093 0.0574 0.4058 
WL 0.0589 0.9221 0.0573 0.4038 
OEPIV 0.0600 0.9120 0.0557 0.3935 
MOAPW 0.0620 0.8912 0.0614 0.4256 
MOAPEW 0.0643 0.8646 0.0562 0.3930 
GOLOM 0.1003 0.3574 0.0719 0.4967 
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Fig. 11: Illustrate the estimated density and the empirical CDF of the APPA distribution for COVID-19 data of the United 
Kingdom. 

           
Fig. 12: Illustrate P-P plot and Q-Q plot of the APPA distribution for the United Kingdom's COVID-19 data. 

   
Fig. (13): Illustrate the empirical TTT and the boxplot of the APPA distribution for the United Kingdom's COVID-19 data. 

Data Set 3: According to [34, 35], the following data includes 34 observations of vinyl chloride data (in mg/L) acquired 
from clean-up gradient groundwater monitoring wells. 

5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 2.3,1.0, 0.2, 0.1, 0.1, 1.8, 0.9, 
2.0, 4.0, 6.8, 1.2, 0.4, 0.2. 
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The MLEs of the parameters with standard errors, K-S, P-value, W*, A*, AIC and BIC are computed and displayed in Tables 
(7) and (8). The APPA distribution is compared with other some competitive models as, generalized Burr XII (GBXII), BXII, 
odd exponential logarithmic Weibull (OELW), Beta BXII (BBXII), log-logistic Weibull (LLoGW) distributions. Fig. (14) 
shows the plots of the estimated density and the empirical CDF and Fig. (15) shows the P-P plot and the Q-Q plot of the 
APPA distribution for vinyl chloride data. It is clear from Table (8), Fig. (14) and Fig. (15) that APPA model is the best for 
modeling vinyl chloride data where it has the greatest P-value and the least K-S, W*, A*, AIC and BIC values. Furthermore, 
total time on test transform (TTT) is presented in Fig. (16), which takes convex shape followed by a concave shape. This 
corresponds to a bathtub shaped HF. Also, the boxplot of the APPA model is displayed in        Fig. (16). 

Data Set 4: Next data indicate 30 observations of March precipitation in Minneapolis/St Paul (measured in inches), as 
described in [35, 36]. 

0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 
1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05. 

Tables (9) and (10) display the MLEs of the parameters with standard errors, K-S, P-value, W*, A*, AIC, and BIC. The 
APPA distribution is compared with other models as, generalized Burr XII (GBXII), BXII, Nakagami Weibull (NW), Beta 
BXII (BBXII), Exponentiated Weibull Weibull (EWW) distributions.  Fig. (17) shows the plots of the estimated density and 
the empirical CDF and Fig. (18) shows the P-P plot and the Q-Q plot of the APPA distribution for the March precipitation in 
Minneapolis/St Paul. It is clear from Table (10), Fig. (17) and Fig. (18) that APPA model is the best for modeling fourth data 
where it has the greatest P-value and the least K-S, W*, A*, AIC and BIC values. Furthermore, total time on test transform 
(TTT) is presented in Fig. (19), which takes convex shape followed by a concave shape. This corresponds to a bathtub shaped 
HF. Also, the boxplot of the APPA model is displayed in Fig. (19). 

Table 7: MLEs of parameters and standard errors for the vinyl chloride data. 
Models MLEs Standard Errors 
APPA 
 

α = 0.58971                                                    
β = 0.71987                                                    
λ = 0.40942 

0.27493                                                                   
0.10893                                                                    
0.82015 

GBXII α = 1.3204                                       
c = 0.8542                                        
k = 2.7298 

1.9609                                     
0.6688                                     
2.4948 

BXII c = 1.5621                                         
k = 0.9305 

0.2479                                     
0.1791 

OELW a = 1.9409                                            
b = 8.7259                                       
p = 0.0023                                        
β = 2.0977 

_                                                       
_                                                        
_                                                       
_ 

BBXII a = 3.5874                                             
b = 13.211                                        
c = 0.5429                                         
k = 1.4257                                         
s = 30.417 

7.0388                                                 
72.677                                     
0.5453                                          
7.4133                                           
140.35 

LLoGW s = 9.7787                                              
c = 5.0155                                                    
β = 0.9910                                       
α = 0.5270 

_                                                       
_                                                       
_                                                       
_ 

Table (8): Goodness-of-fit measures and K-S statistic with P-value of the APPA distribution and other competing 
distributions for the vinyl chloride data. 

Models K-S P-value W* A* AIC BIC 
APPA 0.077733 0.9864 0.028745 0.18981 115.8297 120.4087 
GBXII 0.089 _ 0.034 0.248 117.11 121.69 
BXII 0.104 _ 0.045 0.302 118.15 122.20 
OELW 0.0785 0.9849 0.0289 0.2002 116.4218 122.5273 
BBXII 0.083 _ 0.037 0.250 119.88 127.51 
LLoGW 0.0931 0.9301 0.0438 0.2881 118.708 124.8134 
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Fig. 14: Illustrate the estimated density and the empirical CDF of the APPA distribution for the vinyl chloride data. 

 

   
Fig. 15: Illustrate the P-P plot and the Q-Q plot of the APPA distribution' vinyl chloride data. 

 

   
Fig. 16: Illustrate the empirical TTT and the boxplot of the APPA distribution for vinyl chloride data. 
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Table 9: MLEs of parameters and standard errors using fourth data. 

Models MLEs Standard Errors 
APPA 
 

α = 0.39057                                                    
β = 1.30558                                                    
λ = 0.35102 

0.27685                                                                     
0.22248                                                                     
1.01011 

GBXII α = 1.8505                                       
c = 1.4092                                        
k = 2.5352 

2.5782                                      
1.0352                                     
2.2729 

BXII c = 3.2555                                        
k = 0.5769 

0.6455                                     
0.1371 

NW λ = 1.5347926                                            
β = 0.5178431                                 
δ = 0.3999663                                    
α = 0.5250054 

_                                                       
_                                                         
_                                                       
_ 

BBXII a = 3.2965                                             
b = 7.9098                                         
c = 0.9976                                                
k = 3.3293                                              
s = 14.163 

6.0155                                                 
49.794                                     
1.0339                                      
20.744                                      
69.095 

EWW λ = 1.5264454                                            
β = 0.6836198                                 
δ = 1.3895067                                    
α = 0.6091976                                      
θ = 0.6701214 

_                                                       
_                                                       
_                                                       
_                                                       
_ 

 

Table 10: Goodness-of-fit measures and K-S statistic with P-value of the APPA distribution and other competing 
distributions based on fourth data 

Models K-S P-value W* A* AIC BIC 
APPA 0.05861 1 0.014073 0.10542 82.25 86.454 
GBXII 0.103 _ 0.044 0.273 84.11 88.31 
BXII 0.138 _ 0.102 0.531 84.52 88.34 
NW 0.066 0.999 _ 0.170 85.493 91.098 
BBXII 0.102 _ 0.043 0.271 86.19 93.19 
EWW 0.1023 0.911 _ 0.235 88.412 95.418 

 

     
Fig. 17: Illustrate the estimated density and the empirical CDF of the APPA distribution for fourth data. 
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.      
Fig. 18: Illustrate the P-P plot and the Q-Q plot of the APPA distribution' fourth data. 

   
Fig. 19: Illustrate the empirical TTT and the boxplot of the APPA distribution for fourth data. 

7 Conclusions 

In this paper, a new three- parameters distribution, Alpha Power of the Power Ailamujia (APPA) distribution, is introduced 
using alpha power transformation. The log-concavity, moments, quantile function, moment generating function, median, 
mode, characteristic function, Shanon's entropy, order statistics, and other reliability measures are among the statistical 
qualities of the distribution that are derived and discussed. The method of maximum likelihood estimation is used for 
determining the unknown parameters of the newly proposed distribution. The performance of the APPA distribution is 
determined by fitting it to four real-life datasets using several criteria. In comparison to other well-known distributions, the 
APPA distribution offers a best fitting to the data, yielding the least K-S, W*, A*, AIC and BIC values and the greatest     P-
value of all fitted models. Finally, the proposed distribution is suitable for most of the lifetime data.  
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