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Abstract: Combinatorial designs have properties that make them a significant tool for constructing good error detecting or correcting

codes. In this paper, we use the fundamental properties of the incidence matrix of the graph designs (H,G, l) to construct some

efficient error detecting and correcting codes. In this manner, we consider H a regular graph, G a subgraph of H and l ≥ 2 to be an

integer number. A (H,G, l) design is a collection of subgraphs G1,G2, · · · ,Gb of H with each Gi ≃ G; i ∈ {1,2, · · ·b} , every edge from

H appears exactly l times in that design and any two subgraphs Gi,G j are orthogonal (have at most on edge common). We propose an

approach that can generate an (H,G, l) design for some G and different H. Whenever building such a design, block graph binary codes

are generated from the incidence matrix of such design. The resulting codes can be shown to be hamming codes with weights divisible

by the cardinality of the edge set of G and the inner product of any two codewords ≤ 1. Using the minimum hamming distance of the

constructed codes, one can efficiently detect and correct errors.

Keywords: Graph decomposition; Graph design; Orthogonal cover; Cayley graph ; Hamming codes

1 Introduction

Graphs are a vast class of combinatorial structures and are
ubiquitous in that they are used to describe relationships.
Graphs are used to model ecosystems, phylogenetic trees,
and protein-protein interactions in biology; network
flows, routing problems, and data structures in computer
science and engineering; molecular structure in organic
chemistry; countless problems from combinatorics,
abstract algebra, matrix algebra, probability theory, and
statistics. For more application of graph theory in applied
mathematics and in applied science, we would refer the
reader to [1] and [2]. A graph H is a pair of sets (V,E),
where V = V (H) is called the vertex set of H and
E = E(H) = {{x,y} : x,y ∈ V (H)} is called the edge set
of H. Elements of V and E are called vertices and edges
of H respectively. The cardinality of V is said to be the
order of H, and the cardinality of E is said to be the size
of H. If {x,y} be an edge in H that is {x,y} ∈ E, we may
write xy instead of {x,y} whenever the context is clear.
Many problems in combinatorics and related areas can be
modeled as decomposition problems, where the goal is to
decompose a whole structure into suitable smaller ones.

Moreover, problems of combinatorial design may be
efficiently modeled from viewpoint of graph theory. In
graph theory, the problems of edge decomposition and
graph covering have great attention as it is of immense
importance for numerous applications in a wide range of
areas [1,2,3]. In this paper, we consider the problem of
designing orthogonal decompositions of the edge set of a
regular graph. Throughout the paper we use Km,n for the
complete bipartite graph with partition sets of sizes m and
n, Pn for the path on n vertices, Cn for the cycle with
length n, Kn for the complete graph on n vertices, G∪H

for the disjoint union of G and H, and mG for m disjoint
copies of G. Other terminology not defined here can be
found in [4]. Orthogonal decompositions have been
extensively studied for complete and complete bipartite
graphs, see [5,6,7]. In [8], authors proved that:

1.There are orthogonal decompositions of H ( H being a
2-regular graph except H ∈ {C3, C4, 2C3}) by 2K2.

2.There are orthogonal decompositions of H ( H being
a 3-regular graph containing a 1-factor and without a
component isomorphic to K4) by P4.
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3.There exist orthogonal decompositions of H (H being
a 3-regular graph containing a 1-factor and |V (H)| ≥
24) by P3 ∪K2.

The problem of the existence of cyclic orthogonal
decompositions of 4-regular circulant graphs has been
studied in [9]. Here, we consider the problem of
constructing orthogonal decompositions and the
application of such decompositions in constructing error-
detecting and correcting codes. In this manner, we are
interested in graphs that are based on an algebraic group,
that is the family of Cayley graphs. The theory of Cayley
graphs provide a mathematical basis for the design of
simple, undirected, uniform scalable families of
interconnection networks that constitute the backbone of
distributed memory parallel architectures.

Let (Γ ,⊛) be a finite group with I as its unit element,
and A ⊆ Γ \{I} be a subset of non-identity elements of
Γ such that A = A−1.The set A is said to be the generating
set of Γ . In the following, we refer to the group (Γ ,⊛)
simply as Γ . Given the pair (Γ ,A) , a Cayley graph,
Cay(Γ ,A) is a graph whose vertex set V consists of
elements of the group Γ . The set A is said to be the
connection set (generating set) of Cay(Γ ,A) , That is, the
Cayley graph has |V | = |Γ | number of vertices labelled
by the elements of the group Γ . Further, any two vertices
x and y are adjacent, i.e. {x,y} ∈ E (Cay(Γ ,A)) if and
only if y = x ⊛ a for some a ∈ A. Thus,
E (Cay(Γ ,A)) =

{
{x,y} : y⊛ x−1 ∈ A

}
. Consequently, a

Cayley graph is a regular graph of degree |A|. As I /∈ A,
then there are no loops at any vertex. Furthermore, since
all elements of A are distinct, i.e., ai 6= a j for
1 ≤ i < j ≤ k, there is at most one edge labeled by ai

between any two vertices. Moreover, Cayley graph
defined above is a finite, simple, undirected, and regular
graph. The rest of the paper is organized as follows.
Section 2 describes the fundamentals and principals of
our approach used in constructing orthogonal
decompositions of Cayley graph. Section 3 introduces an
application of this approach in designing graph designs
(G−designs) of Cayley graphs where G is isomorphic to
the union of cycle Cl and K1,m with a unique vertex
belongs to that cycle and K1,m. The construction of binary
codes with efficient properties in detecting and correcting
errors while data transmission is presented in Section 4.
Section 5 summarizes the extracted results of the paper.

2 Orthogonal graph designs of Cayley graph

Let G be a finite simple graph. A G−design of
Cay(Γ ,A), denoted by GD(Γ ,G,A) is a triple (Γ ,G ,2),
where G is a collection of subgraphs (called blocks) of
Cay(Γ ,A), each isomorphic to the graph G, and any two
blocks share exactly one edge. Thus the design
GD(Γ ,G,A) (or the triple (Γ ,G ,2) ) covers the edge set
of Cay(Γ ,A) twice and we may refer to it as an
orthogonal G−design of Cay(Γ ,A) . Informally, we

define G-design of Cay(Γ ,A) as a collection
G = {J (x) : x ∈ Γ } of subgraphs of Cay(Γ ,A), all
isomorphic to G, such that

1.Every edge of Cay(Γ ,A) appears in exactly two blocks
of G .

2.J (x) and J (y) share an edge if and only if x and y

are adjacent in Cay(Γ ,A) .

For every x ∈ Γ , J (x) has exactly |A| edges.
Hereafter, we will introduce an effective approach to
construct GD(Γ ,G,A) of Cay(Γ ,A) . This approach
based on translate a given subgraph of G by the group Γ .
In this approach, we will use Multiplicative notation for
groups as a default. Sometimes we will switch to additive
notation when groups of residue classes are involved. In
our study, an edge of a Cay(Γ ,A) will often be identified
with one of its arcs, so we may write xy instead of {x,y}
whenever the context is clear.

Definition 1.Let H be a cayley graph Cay(Γ ,A) . An

automorphism ϕ of G is a map from V (H) to itself such

that ϕ(J (x)) = J (ϕ(x)) for all x ∈ Γ . if a coloring is

assigned to edges of H, the automorphism ϕ will be

called colour-preserving if whenever xy ∈ E(H) the edges

xy and ϕ(x)ϕ(y)) have the same colour.

Let Γ be a finite group and A ⊆ Γ a subset of Γ , such
that A−1 = A and 1 /∈ A. Consider the Cayley graph H =
Cay(Γ , A) where E(H) = {{x, ax}) : x ∈ Γ , a ∈ A}. The
colour a is assigned to each arc {x, ax} of H. Sometimes
a or its inverse will be mentioned as the colours of the
corresponding edge.

Definition 2.Let Γ be a finite group and η be a

permutation of Γ . The permutation η is said to be

balanced if η(yz)η(xz)−1 = η(y)η(x)−1 for all

x, y, z ∈ Γ .

All automorphisms η of Γ are balanced. Moreover,
for fixed a, b ∈ Γ , the map η(x) = axb is a balanced
permutation.

Definition 3.Let A be any non-empty subset of Γ and let η
be a balanced permutation of Γ . For a map f : A →Γ , the

map f ∗ : A → A defined as f ∗ (a) = f (a−1)−1a f (a). We

call f a starter map for (Γ , A, η) if f ∗ is injective and

satisfies:

yx−1 ∈A if and only if ∃ a∈A f ∗(a)η(x)=η(y). (1)

When additive notation is used, a balanced map will
be a permutation η satisfying
η(y+ z)− η(x + z) = η(y)− η(x). Moreover, the map
f ∗ will define as f ∗ (a) = − f (−a) + a + f (a) and (1)
will be:

y−x∈A if and only if ∃ a∈ A f ∗(a)+η(x) =η(y). (2)
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Let H =Cay(Γ , A), η be a balanced permutation of Γ
and f be a starter map for (Γ , A, η). We define B( f ) as
the collection of graphs

J (x) = {( f (a)η(x), a f (a)η(x)) : a ∈ A}, where x ∈ Γ .

Theorem 1.Let H =Cay(Γ , A). The collection G ( f ) is a

GD(Γ ,G,A) and J (1) is the generator of such design.

Moreover, the group of right translations h 7→ xh of Γ is a

colour-preserving automorphism group of G ( f ).

Proof.Firstly, we claim to check that each edge (h, ah) of
H occurs in exactly two blocks of G ( f ). If (h, ah) is in
J (x), then either h = f (b)η(x) or ah = f (b)η(x) for
some b ∈ A. In the former case, b = a and
η(x) = f (a)−1h. Conversely, with this choice of x we
actually have (h, ah) ∈ J (x). In the latter case, b = a−1

and η(x) = f (a−1)−1ah. Again, we have (h, ah) ∈ P(x)
for this choice of x. It remains to show that the elements
of G are different. Now if f (a)−1h = f (a−1)−1ah then
f (a−1)−1a f (a) = 1, that is f ∗(a) = 1. This is a
contradiction because f is a starter map and 1 /∈ A. This
proves the first claim.

Secondly, at this time we claim to prove that two
blocks J (x) and J (y) of G ( f ), with x 6= y,
|E (J (x))∩E (J (y))| = 0, whenever x and y are not
adjacent and |E (J (x))∩E (J (y))| = 1 otherwise. A
common edge of J (x) and J (y) takes the two forms
expressed as
{ f (a)η(x), a f (a)η(x)} = { f (b)η(y), b f (b)η(y)} for
suitable a,b ∈ A. Note that if f (a)η(x) = f (b)η(y) then
a f (a)η(x) = b f (b)η(y), so that a = b and also x = y, a
contradiction. Therefore we must have
f (a)η(x) = b f (b)η(y) and a f (a)η(x) = f (b)η(y). As
the colour of the arc is a, we must have
ab f (b)η(y) = f (b)η(y) Then b is the inverse of a. The
latter of these two equations can thus be rewritten as
f (a−1)−1a f (a)η(x) = η(y). That is f ∗(a)η(x) = η(y).
Since f is a starter map, by (1) this is not possible if x

and y are nonadjacent and so the intersection of the pages
J (x) and J (y) is empty in this case. If x and y are

adjacent, the equation is satisfied whenever f ∗(a) = x−1y.
Since now x−1y ∈ A and f ∗ is injective, there is exactly
one a ∈ A satisfying this condition. This proves that
J (x) and J (y) intersect in exactly one edge. These
two claims prove that G ( f ) is a GD(Γ ,G,A) of H. For
h ∈ Γ the map: x 7→ xh takes the edge
( f (a)η(1), a f (a)η(1)) into ( f (a)η(1)g, a f (a)η(1)g),
hence J (1) into η(g) where η(g) = η(1)h. Thus the
group of right translations consists of colour-preserving
automorphisms of G ( f ). In particular, G ( f ) is
GD(Γ ,G,A) of H by J (1), so J (1) can be seen as a
generator of GD(Γ ,G,A).

Throughout the next section we switch to additive
notation and use Γ = Zn for a finite (additive) abelian
group where Zn = {0,1,2, · · · ,n− 1} is the group of all
residual classes modulo n.

3 Construction of Cl ∪
v K1,m design of

Cay(Zn, A)

Let m, l be positive integers such m < n and l < n. We will
apply the approach introduced in Section 2 to build some
GD(Zn,G,A) of Cay(Zn, A) where G is isomorphic to Cl

∪v K1,m (the union of cycle Cl and K1,m where the vertex
v belongs to that cycle and K1,m ).

Theorem 2.Let n be a positive integer such that n ≥ 5 and

let v ∈ Zn. Then there exists graph design

(Zn,C3 ∪
v K1,n−4, A) of Cay(Zn, A = Zn\{0}).

Proof.For n ≥ 5, A = Zn\{0} and for each a ∈ A, define
f : A → Zn by

f (a) =







0 if a = 2
4 if a = n− 2, n− 1
2 otherwise.

From the definition of f (a); J (0) is isomorphic to

the graph G = C3 ∪2 K1,n−4 and
E(G) = {( f (a), f (a) + a) : a ∈ A} ∈ G ( f ). For
a ∈ {1,2,n− 2,n− 1}; f ∗(a) = f (a)− f (−a)+ a = −a;
for otherwise, f ∗(a) = f (a)− f (−a)+ a = a. And hence
f ∗ is injective as well as surjective because of
{ f (a)− f (−a) + a : a ∈ A} = A. Therefore f ∗ satisfies
(2) with η = 1, which implies that f (a) is a starter map
with respect to (Zn, A, 1). Applying Theorem 1, proves
the claim and moreover, J (0) is the generator of such a
design.

Example 1.Let n = 8, v ∈ Z8 and A = Z8\{0}. According
to Theorem 2, Figure 1, shows the graph design
(Z8,C3 ∪

v K1,4, A) of Cay(Z8, A).

Theorem 3.Let n be a positive integer such that n ≥ 6,
and let v ∈ Zn. Then there exists graph design

(Zn,C4 ∪
v K1,n−7, A)of Cay(Zn, A = Zn\{0,3,n− 3}).

Proof.For n ≥ 5, A =Zn\{0,3,n−3} and for each a ∈ A,
f : A → Zn is defined as

f (a) =

{
n− 1 if a = 1,n− 1

2 otherwise

From the definition of f (a); J (0) is isomorphic to

the graph G = C4 ∪2 K1,n−7 has edges
E(G) = {( f (a), f (a) + a) : a ∈ A} ∈ G ( f ). For a ∈ A;
f ∗(a) = f (a)− f (−a)+ a = a. And hence f ∗ is injective
as well as surjective because of
{ f (a)− f (−a) + a : a ∈ A} = A. Therefore f ∗ satisfies
(2) with η = 1, which implies that f (a) is a starter map
with respect to (Zn, A, 1). Applying Theorem 1, proves
the claim and moreover, J (0) is the generator of such a
design.
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Fig. 1: C3∪
v K1,4-design for Cay(Z8, A=Z8\{0}) where v∈Z8.

Fig. 2: C4 ∪
v K1,1-design for Cay(Z8, A = Z8\{0,3,n − 3})

where v ∈ Z8.

Example 2.Let n = 8, v ∈ Z8 and A = Z8\{0,3,n− 3}.
According to Theorem 3, Figure 2, shows the graph design
(Z8,C4 ∪

v K1,1, A) of Cay(Z8, A).

Theorem 4.Let n be a positive integer such that n > 10.
Then there exists a graph-design (Zn,C5 ∪

v K1,n−8, A) of

Cay(Zn, A = Zn\{0,4,n− 4}).

Proof.For n> 10,A=Zn\{0,4,n−4} and for each a∈A,
define f : A → Zn by

f (a) =







2 if a = 2, n− 1
6 if a = n− 2
0 otherwise.

From the definition of f (a); J (0) is isomorphic to

the graph G = C5 ∪0 K1,n−8 has edges

Fig. 3: C5 ∪
v K1,3-design for Cay(Z11, A = Z11\{0,4,n − 4})

where v ∈ Z11.

E(G) = {( f (a), f (a) + a) : a ∈ A} ∈ G ( f ). For
a ∈ {1,2,n− 2,n− 1}; f ∗(a) = f (a)− f (−a)+ a = −a;
for otherwise, f ∗(a) = f (a)− f (−a)+ a = a. And hence
f ∗ is injective as well as surjective because of
{ f (a)− f (−a) + a : a ∈ A} = A. Therefore f ∗ satisfies
(2) with η = 1, which implies that f (a) is a starter map
with respect to (Zn, A, 1). Applying Theorem 1, proves
the claim and moreover, J (0) is the generator of such a
design.

Example 3.Let n = 11,v ∈ Z11 and A = Z11\{0,4,n−4}.
According to Theorem 4, Figure 3, shows the graph design
(Z11,C5 ∪

v K1,3, A) of Cay(Z11, A).

Theorem 5.Let n be a positive integer such that n > 7 and

let v ∈ Zn. Then there exists a graph-design

(Zn,C6 ∪
v K1,n−7, A) of Cay(Zn, A = Zn\{0}).

Proof.For n > 7, A = Zn\{0} and for each a ∈ A, define
f : A → Zn by

f (a) =







4 if a = 1, n− 2
0 if a = 2, 3
6 if a = n− 3, n− 1.
3 otherwise.

From the definition of f (a), J (0) is isomorphic to

the graph G = C6 ∪3 K1,n−7 has edges
E(G) = {( f (a), f (a) + a) : a ∈ A} ∈ G ( f ). For
a ∈ {1,2,3,n − 3,n − 2,n − 1};
f ∗(a) = f (a) − f (−a) + a = −a; for otherwise,
f ∗(a) = f (a)− f (−a)+ a = a. And hence f ∗ is injective
as well as surjective because of
{ f (a)− f (−a) + a : a ∈ A} = A. Therefore f ∗ satisfies
(2) with η = 1, which implies that f (a) is a starter map
with respect to (Zn, A, 1). Applying Theorem 1, proves
the claim and moreover, J (0) is the generator of such a
design.
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Fig. 4: C6∪
v K1,1-design for Cay(Z8, A=Z8\{0}) where v∈Z8.

Example 4.Let n = 8,v ∈ Z8 and A = Z8\{0}. According
to Theorem 5, Figure 4, shows the graph design
(Z8,C6 ∪

v K1,1, A) of Cay(Z8, A).

Theorem 6.Let n,m be positive integers such that n =
2m+ 1, and m > 5. Assume that v ∈ Zn, then there exists

a graph-design (Zn,C7 ∪
v K1,2m−11, A) of Cay(Zn, A =

Z2m+1\{0,4,6,2m− 5,2m− 3}).

Proof.For n = 2m+ 1, m > 5, A = Z2m+1\{0,4,6,2m−
5,2m− 3}, and for each a ∈ A, define f : A → Z2m+1 by

f (a) =







1 if a = 1, 2m

2 if a = 2
6 if a = 2m− 1.

2m− 1 a = 8, 2m− 7
0 otherwise.

From the definition of f (a); J (0) is isomorphic to

the graph G = C7 ∪0 K1,2m−11 has edges
E(G) = {( f (a), f (a) + a) : a ∈ A} ∈ G ( f ). For
a ∈ {2,2m − 1}; f ∗(a) = f (a)− f (−a) + a = −a; for
otherwise, f ∗(a) = f (a)− f (−a)+ a = a. And hence f ∗

is injective as well as surjective because of
{ f (a)− f (−a)+ a : a ∈ A}= A.Therefore f ∗ satisfies (2)
with η = 1, which implies that f (a) is a starter map with
respect to (Zn, A, 1). Applying Theorem 1, proves the
claim and moreover, J (0) is the generator of such a
design.

Theorem 7.Let n be a positive integer such that n ≥ 14
and let v ∈ Zn. Then there exists a graph-design

(Zn,C8 ∪
v K1,n−13, A) of

Cay(Zn,A = Zn\{0,2,4,n− 2,n− 4}) .

Proof.For n ≥ 14, A = Zn\{0,2,4,n− 2,n− 4} and for
each a ∈ A, define f : A → Zn by

f (a) =







1 if a = 1, n− 1
5 if a = 3, n− 3
3 if a = 5, n− 5

n+ 6− a otherwise.

From the definition of f (a); J (0) is isomorphic to

the graph G = C8 ∪6 K1,n−13 has edges
E(G) = {( f (a), f (a) + a) : a ∈ A} ∈ G ( f ).
For a ∈ {1,3,5,n − 5,n − 3,n − 1};
f ∗(a) = f (a) − f (−a) + a = a; for otherwise,
f ∗(a) = f (a) − f (−a) + a = −a. And hence f ∗ is
injective as well as surjective because of
{ f (a)− f (−a) + a : a ∈ A} = A. Therefore f ∗ satisfies
(2) with η = 1, which implies that f (a) is a starter map
with respect to (Zn, A, 1). Applying Theorem 1, proves
the claim and moreover, J (0) is the generator of such a
design.

Theorem 8.Let n,m be positive integers such that

n = 2m+ 1, and m ≥ 7. Assume that v ∈ Zn , then there

exists a graph-design (Zn,C9 ∪
v K1,2m−13, A) of

Cay(Zn, A = Z2m+1\{0,4,8,2m− 7,2m− 3}).

Proof.For n = 2m+ 1, m ≥ 7, A = Z2m+1\{0,4,8,2m−
7,2m− 3} and for each a ∈ A, define f : A → Z2m+1 by

f (a) =







1 if a = 1, 2m

2m− 3 if a = 2, 2m− 1
2 if a = 3
3 if 5, 2m− 4
8 if 2m− 2
0 otherwise.

From the definition of f (a); J (0) is isomorphic to

the graph G = C9 ∪0 K1,2m−13 has edges
E(G) = {( f (a), f (a) + a) : a ∈ A} ∈ G ( f ). For
a ∈ {3,2m − 2}; f ∗(a) = f (a)− f (−a) + a = −a; for
otherwise, f ∗(a) = f (a)− f (−a)+ a = a. And hence f ∗

is injective as well as surjective because of
{ f (a)− f (−a) + a : a ∈ A} = A. Therefore f ∗ satisfies
(2) with η = 1, which implies that f (a) is a starter map
with respect to (Zn, A, 1). Applying Theorem 1, proves
the claim and moreover, J (0) is the generator of such a
design.

4 Codes and GD(Zn,G,A) of Cay(Zn, A)

For a graph design GD(Zn,G,A) of Cay(Zn, A), we may
associate an incidence matrix I .The incidence matrix I
is a n× n |A|

2
binary matrix. The rows of I correspond to

the blocks of the collection G while the columns of I
correspond to the edges of Cay(Zn, A) .The entry wi, j of
I has value equals 1 if and only if the edge corresponds
to the column, j belongs to the block corresponding to the
row i, and wi, j = 0 otherwise. The rows and columns of
I can be used to construct binary hamming codes. Here,
we consider the rows binary codes (Cr) constructed from
the rows of I . We refer to the code generated from the
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Fig. 5: A flow chart for the process of building codes from the

graph design.

rows of I as R. Each row in I is a codeword in R.Thus
R has n codewords each of length

n |A|
2

.

Cr =R ={w1,1w1,2...w1, j
︸ ︷︷ ︸

1st codeword

,w2,1w2,2...w2. j
︸ ︷︷ ︸

2nd codeword

, ...,wn,1wn,2...wn, j
︸ ︷︷ ︸

nth codewords

}

A flow chart for the process of building codes from the

graph design is illustrated in Figure 5.

Since every block J (x) where x ∈ Zn has the same
number of edges that is |A| , every row in I has the same
number of ones. Moreover, any two rows have exactly
one position of ones common, then the minimum
distance d (R) of the code R is 2(|A|− 1) . Following
[10] and [11], R can detect up to d (R)− 1 = 2 |A| − 3

errors, and correct up to
⌊

d(R)−1

2

⌋

=
⌊

2|A|−3

2

⌋

. Let S,T

be two distinct codewords in R. The distance d (S,T )
between S,T defines the number of positions where S

and T differ. The minimum distance of the code R is
d (R) = min{d (S,T ) : S,T ∈ R, S 6= T} . For binary
codes, the minimum distance is a significant notation.
Such distance plays an important role in checking
whether the binary code can detect or correct errors [10,
11,12,13].

For more illustration, the construction of the code R
from an incidence matrix I of a design GD(Zn,G,A) of
Cay(Zn,A) is described in the following example.

Example 5.Let n = 6 and A = Zn\{0} then the edge set
of Cay(Zn, A = Zn\{0}) is the set
E (Cay(Zn, A = Zn\{0})) =
{01,02,03,04,05,12,13,14,15,23,24,25,34,35,45}

Following Theorem 2 and Theorem 1, we can build a
GD(Z6,C3 ∪

v K1,n−4, A) of Cay(Z6, A = Z6\{0}).
In such a design
G ( f ) = {J (0), J (1), J (2), J (3), J (4), J (5)} .
Furthermore,

E (J (0)) = {23,02,25,42,43},

E (J (1)) = {34,13,30,53,54},

E (J (2)) = {45,24,41,04,05},

E (J (3)) = {50,35,52,15,10},

E (J (4)) = {01,40,03,20,21},

E (J (5)) = {12,51,14,31,32}.

Fig. 6: C3 ∪
v K1,2-design for Cay(Z6, A = Z6\{0}).

Consequently, The incidence matrix I of
GD(Zn,C3 ∪

v K1,n−4, A) is a 6× 15 binary matrix.

J (0)→
J (1)→
J (2)→
J (3)→
J (4)→
J (5)→










0 1 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 1 1 1
0 0 0 1 1 0 0 1 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 1 0 1 0
1 1 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0










.

︸ ︷︷ ︸

The incidence matrix I for the graph design in Example 5

Every column from I corresponds to a unique edge
from the set E (Cay(Zn, A = Zn\{0})) and every row
refers to a unique block from the collection G ( f ).
Observing the incidence matrix I . We can see that the
properties of a GD(Zn,G,A) of Cay(Zn, A) are valid on
I . Every edge from Cay(Zn, A) occurs in exactly two
blocks. Looking at I each column has exactly two
positions of ones. From the design, any two blocks
intersect in exactly one edge, that is any two rows from I
have exactly one common position of ones. Figure 6,
shows the graph design (Z6,C3 ∪

v K1,n−4, A) of
Cay(Z6, A = Z6\{0}).

The code

R =







010000000111100,001000100000111,
000110010010001,100010001001010
111101000000000,000001111100000







Thus R has 6 codewords each of length 15 and the
weight (the number of 1’ bits in the codeword) of each
codeword is 5. Besides that each codeword in R can be
represented as C3 ∪

v K1,2. The minimum distance d (R) =
2(5− 1) = 8. Hence R can detect up to 7 errors and can
correct up to 4 errors.

Hereafter, we show an application of a graph design
GD(Zn,G,A) of Cay(Zn, A) in experiments design.

Example 6.A psychiatric clinic has 91 patients were
diagnosed with depression. At some stage of treatment,
the patients should partioned into a set of groups therapy.
Such partions have to satisfy the below constraints:
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Fig. 7: Cay(Z14, A = Z14\{0})

1.Each group consistis of 13 patients.
2.For medical reasons, each patient has to join two

different groups with totally different people in each
group.

3.For more interaction among patients of the same
group, the pineapple shape of the group is preferred.

By the help of cayley graph and its graph designs we
show how to solve this problem. Firstly we consider
cayley graph to represent the groups and the relations
among them. The vertices of cayley graph would refer to
the groups and the edges represent the relations between
groups. Hence, Cay(Z14, A = 13) is the graph
representation for this problem and such representation is
illustrated in Figure 7. Now we claim to build a graph
design of the obtained cayley graph. Such design
produces 14 blocks (groups) each group has |A| = 13
patients (edges) . To have a guarantee that the structure of
each group is a pineapple, we emphasize on building a
graph design GD

(
Z14,C3 ∪

2 K1,10,A}
)

of
Cay(Z14, A = Z14\{0}). using the starter map f defined
as

f (a) =







0 if a = 2,
4 if a ∈ {n− 2,n− 1},
2 otherwise.

The whole design of the required groups (14 groups
therapy) and the members (Patients such that each patient
has a unique number from the set {1,2, · · · ,91}) of each
group is presented in Table 1.

Table 1: The whole design of groups required in Example 6

1st group 2, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37

2nd group 3, 15, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47

4th group 4,16, 27, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56

5th group 5,17, 28, 38, 56, 57, 58, 59, 60, 6, 62, 63, 64

6th group 6, 18, 29, 39, 48, 64, 65, 66, 67, 68, 69, 70, 71

7th group 7, 19, 30, 40, 49, 57, 71, 72, 73, 74, 75, 76, 77

8th group 8, 20, 31, 41, 50, 58, 68, 77, 78, 79, 80, 81, 82

9th group 9, 21, 32, 42, 51, 59, 66, 72, 82, 83, 84, 85, 86

10th group 10, 22, 33, 43, 52, 60, 67, 73, 78, 86, 87, 88, 89

11th group 11, 23, 34, 44, 53, 61, 68, 74, 79, 83, 89, 90, 91

12th group 12, 13, 24, 35, 45, 54, 62, 69, 75, 80, 84, 87, 91

13th group 1,13, 24, 36, 46, 55, 63, 70, 76, 81, 85, 88, 90

14th group 1,2,3,4,5,6,7,8,9,10,11,12,14

Fig. 8: Code R induced from the graph design of example 6.

This design can be converted into a code R, see Figure
8. Thus, the code R helps in preserving privacy of data
while sending and receiving among different departments
of the clinic and intelligible only to those concerned with
these patients.

5 Conclusion

The paper investigates the the graph design (H,G, l). We
proposed an approach that can generate an (H,G, l)
graph design for some graphs G and cayley graph H.
Using the presented approach, we constructed graph
designs (G−design) of cayley graphs where G is
isomorphic to Cl ∪

v K1,m. Such designs are summarized in
Table 2. In addition, we studied the application of
G−designs in constructing binary codes with weights
divisible by the cardinality of the edges set of G. We
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showed that the induced binary codes from designs have
efficient properties in detecting and correcting errors that
may occur during data transmission.

Table 2: Summary of the introduced graph designs

H =Cay(Zn, A) GD (Zn,G,A)
A = Zn\{0}

(
Zn,C3 ∪

2 K1,n−4, A
)

A = Zn\{0,3,n−3}
(
Zn,C4 ∪

2 K1,n−7, A
)

A = Zn\{0,4,n−4}
(
Zn,C5 ∪

0 K1,n−8, A
)

A = Zn\{0}
(
Zn,C6 ∪

3 K1,n−7, A
)

A = Z2m+1\{0,4,6,2m−5,2m−3})
(
Zn,C7 ∪

0 K1,2m−11, A
)

A = Zn\{0,2,4,n−2,n−4})
(
Zn,C8 ∪

6 K1,n−13, A
)

A = Z2m+1\{0,4,8,2m−7,2m−3})
(
Zn,C9 ∪

0 K1,2m−13, A
)
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