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Abstract: In this study, he statistical inference of the lifetime performance index for the Stacy distribution using a first-
failure progressive right type II censored sample is achieved. Two real-life medical and engineering applications, as well as 
a simulated one, are developed to illustrate the applicability of the suggested technique. The findings demonstrated the 
capability of the presented inference technique and its usefulness in making appropriate conclusions in many fields. 
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1 Introduction 

The main goal of studying the processing capacity via PCIs indices is to compute the prospective capabilities and 
performance of a process. Dimensions of the product quality have different descriptions and are evaluated via several issues 
for example; performance, reliability, and conformance to the standards. Process capability indices (PCIs) have been used 
to determine product quality. There are three sorts of PCIs indices: the first measures the target-the-better type of quality 
feature, the second the larger-the-better type, and the third the smaller-the-better type see [1], [2]. 

Because of time limits or other material resources, concerns about funding, or data collecting challenges, the tester in 
lifetime testing may not be able to monitor the lifetimes of all the objects or products on tests. As a result, censored samples 
may be encountered in actuality. When just a lower lifetime limit is identified, right censoring occurs. In other ways, 
whether certain units are still operational at the time of termination. One type of correct censoring is "Type II censoring," 
which happens when the test is discontinued after a certain number of units fail. The progressive Type-II censoring system 
consists of the following steps: first, monitoring n items until the mth failure happens, after which the test is completed. 
Second, once ith item fails(𝑖 = 1,2, … ,𝑚 − 1), the surviving items "𝑟-" are excluded from the test. Finally, when the mth 
item fails all remaining units 𝑟. = 𝑛 −𝑚 −∑ 𝑟-.12

-32  are eliminated. In [3], the first-failure scheme is given as follows:  
𝑚× 𝑛  items are separated into 𝑚 equal groups, and the test is run by checking each group sequentially and ending when 
the first failure in each grou progressive first-failure p is detected. To generalize all the schemes above, the first-failure 
progressive type II censoring is used , see [1], [4]. There are "𝑁" items, which are separated into "𝑛" distinct groups, each 
of which has "𝑘" items (𝑁 = 𝑛 × 𝑘) placed on a test. At the 𝑚78 failure occurs the life test is completed. Choose the group 
which contains the 𝑖78 item and select randomly "𝑅-" groups and remove them from the test when the 𝑖78	item fails {𝑖 =
1,2, …𝑚 − 1}, when the mth failure occurs, delete all remaining groups from the test. 

There are several papers in the literature on various censoring schemes for examining performance indices, for example; 
under progressive first-failure censoring, statistical inference of the Lindley distribution's lifetime performance index [5]. 
The performance index of the Burr XII distribution is implemented in [6] and [7] under progressive censoring. Life 
performance index estimation using the Weibull distribution with progressive first-failure censoring in [8]. The power 
Lomax distribution's lifetime performance index is based on a progressive first-failure censoring scheme [9]. Additionally, 
many papers have been published to investigate progressive censoring and evaluate the performance index under 
exponential distribution for various censoring schemes, for example; [10], [11], [12]. Moreover, infer the lifetime 
performance index with a power Rayleigh distribution [13]. Assessing the lifetime performance index for Kumaraswamy 
distribution under the first-failure progressive censoring scheme for ball bearing revolutions [14]. Furthermore,[15] 
proposed lifetime performance index inferences for the Lomax distribution in the case of progressively type-II censored 
data 

Amoroso distribution was introduced in 1925 and was originally applied to model lifetimes [3]. It happened as the 
Weibullization of the standard Gamma distribution [16] and, with integer 𝛼 , in extreme value statistics [17]. Stacy 
distribution was firstly studied in [18] which is a special case of the Amoroso distribution in which the location parameter 
𝛼 is set to zero. 
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An important and useful feature of the Amoroso distribution [19] is that many interesting and common probability 
distributions arise as special cases or limits such that Chi-square, Gamma, Erlang, Inverse chi, and Maxwell distribution. 

The purpose of this study is to calculate the lifetime performance index and evaluate its statistical inference on a first-
failure gradually type II right censoring sample using the Stacy distribution. 

This paper is organized as follows: Section 2 is concerned with the lifetime performance index for Stacy distribution. The 
conforming rate of Stacy distribution versus the performance indexes is defined in section 3. In Section 4, the maximum 
likelihood estimation of the performance index is studied. The testing procedure owed to the lifetime performance index is 
completed in Section 5. Finally, Section 6 is devoted to demonstrating the potentiality of the suggested approach under 
Stacy distribution, medical and engineering real-life applications, and a simulated example is being applied. 

2 The Lifetime Performance Index of Stacy Distribution 

A process capabilities index 𝐶> is established by [2] to evaluate the larger-the better quality property. A longer lifetime has 
a higher quality. In general, the lifetime must exceed 𝐿 unit times where  𝐿 is the known lower specification limit. The 
item's performance is then evaluated using the lifetime performance index 𝐶> , as shown below. 

                                                          𝐶> =
@1>
A

                                                                                                                         (1)                                                                                                                                     

where 𝜇 , 𝜎 represent the process mean and process standard deviation respectively. 

Assume that an item's lifetime 𝑋 has a Stacy distribution with parameters 𝛼, 𝜃	𝑎𝑛𝑑	𝛽 with the probability density function 
and the cumulative distribution function defined respectively as; 

                           𝑓(𝑥) = 2
K[M]

OP
Q
R OS

Q
R
(MP12)

𝑒1O
U
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W

, 𝑥 > 0, 𝛼, 𝜃, 𝛽 > 0                                                                                   (2)     

                                         𝐹(𝑥) =
K[M]1K[M,OUVR

W
]

K[M]
										 , 𝑥 > 0, 𝛼, 𝜃, 𝛽 > 0                                                                               (3) 

with mean 𝜇 and standard deviation 𝜎 as indicated here 

                                               𝜇 =
QK[M[\W]

K[M]
				 , 𝛼, 𝜃, 𝛽 > 0				                                                                                                   (4) 

                                              𝜎 =
Q]^1K_M[\W`

]
[K[M]K_M[]W`a

K[M]]
		 , 𝛼, 𝜃, 𝛽 > 0                                                                                (5) 

Then the lifetime performance index 𝐶> is obtained as 

                                         	𝐶> =
1>[

Vbcde\Wf

b[d]
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](hb[de\W]
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                                                                                                            (6) 

where                              −∞ < 𝐶> <
QK_M[\W`

K[M]
kV

]lhbcde\Wf
]
eb[d]bcde]Wfm

b[d]]

	 , 𝛼, 𝜃, 𝛽 > 0       

The hazard rate ℎ(𝑥) of Stacy distribution is  

                                        ℎ(𝑥) =
ohO

U
VR
W
POUVR

dW

SKpM,OUVR
W
q
	 , 𝑥 > 0, 𝛼, 𝜃, 𝛽 > 0                                                                                         (7) 

When the process mean     
QK[M[\W]

K[M]
				> 𝐿, following that the performance index  𝐶> > 0. According to Equation (7), we 

note that the hazard function is an increasing function in 𝑥 see (plot 2.1). From Equations (4), (5), and (6), we can see that 

the mean 
QK[M[\W]

K[M]
				is inversely related to failure rate and directly proportional to the greater lifetime performance index 

𝐶> > 0. Therefore, Cs provides a reliable estimation of new product lifetime performance. 
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Plot 2.1. Hazard function of Stacy distribution 

3 The Conforming Rate of Stacy Distribution 

In this section, we obtain the reliability function, hazard rate and Reverse hazard rate functions of the Proposed weighted 
power Shanker distribution. 

3.1 Reliability Function 

If the product's lifetime exceeds the lower specification limit 𝐿, it is considered a conforming product. The conforming 
product ratio, often known as the conforming rate, can be calculated for 𝑋~𝑆𝑡𝑎𝑐𝑦(𝛼, 𝜃, 𝛽	)as follows, 

𝑃z = 𝑃(𝑋 ≥ 𝐿) 

                =
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where 																																		−∞ < 𝐶> <
QK_M[\W`

K[M]
kV

]lhbcde\Wf
]
eb[d]bcde]Wfm

b[d]]

	 , 𝛼, 𝜃, 𝛽 > 0, 

Table 1: The lifetime performance index 𝐶> vs the conforming rate 𝑃z	for Stacy distribution with �𝛼�, 𝜃�, 𝛽�� =
(8.90077, 7.21435, 0.57933) 

𝑪𝑳 𝑷𝒓 𝑪𝑳 𝑷𝒓 𝑪𝑳 𝑷𝒓 𝑪𝑳 𝑷𝒓 
−∞ 0.0000 -0.3 0.3029 0.7 0.7416 1.25 0.9652 
−𝟖 0.0001 0 0.4095 0.8 0.7917 1.3 0.9757 
−𝟔 0.0005 0.1 0.4507 0.82 0.8014 1.4 0.9905 
−𝟓 0.0014 0.2 0.4945 0.85 0.8159 1.5 0.9977 
−𝟒 0.0045 0.3 0.5409 0.9 0.8393 1.55 0.9992 
−𝟐 0.0452 0.4 0.5893 1 0.8830 1.6 0.9998 
−𝟏 0.1419 0.5 0.6395 1.1 0.9213 1.67 1.0000 
−𝟎. 𝟓 0.2454 0.6 0.6905 1.2 0.9525 1.7 1 

Note that: 𝐶> →≈ 1.7058 ⇒ 𝑃z → 1.0. 
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Plot 3.1. The lifetime performance index 𝐶> vs the conforming rate 𝑃z	for Stacy distribution 

Table 2: The lifetime performance index 𝐶> vs the conforming rate 𝑃z	for Stacy distribution with �𝛼�, 𝜃�, 𝛽�� =
(8.34687,9.0908, 0.5979). 

𝑪𝑳 𝑷𝒓 𝑪𝑳 𝑷𝒓 𝑪𝑳 𝑷𝒓 𝑪𝑳 𝑷𝒓 
−∞ 0.0000 0.2 0.4949 0.85 0.8151 1.5 0.9975 
−𝟖 0.0000 0.3 0.5412 0.9 0.8385 1.6 0.9998 
−𝟓 0.0014 0.4 0.5895 1 0.8821 1.65 1.0000 
−𝟒 0.0044 0.6 0.6903 1.2 0.9517 1.7 1 
−𝟐. 𝟓 0.0252 0.7 0.7412 1.22 0.9570   
−𝟏 0.1422 0.8 0.7910 1.3 0.9750   
𝟎 0.4101 0.82 0.8008 1.35 0.9836   
𝟎. 𝟏 0.4512 0.84 0.8104 1.4 0.9901   

Note that: 𝐶> →≈ 1.706 ⇒ 𝑃z → 1.0 

 
Plot 3.2. The lifetime performance index 𝐶> vs the conforming rate 𝑃z	for Stacy distribution 

4 Maximum Likelihood Estimator of the Stacy Distribution's Lifetime Performance Index 

Let 𝑋2:.:¦:§, 𝑋¨:.:¦:§, …… . , 𝑋.:.:¦:§ be the progressive first-failure type	𝐼𝐼	right censored sample from a continuous 
population with 𝑝. 𝑑. 𝑓 and 𝑐. 𝑑. 𝑓 𝒇𝑿(. ; 	𝚯) and 𝑭𝑿(. ; 	𝚯) respectively, where 𝚯 is a vector of parameters. Following 
[4], the associated likelihood function of the observed data 𝑋 = (𝑥2:.:¦:§, 𝑥¨:.:¦:§, …… . , 𝑥.:.:¦:§) is given by 

            𝐿(𝚯, 𝑋) = 𝐶𝑘.∏ 𝑓±(𝑥-:.:¦:§; 	𝚯)(1 − 𝐹±(𝑥-:.:¦:§; 	𝚯)§(²³[2)12.
-32                                                                           (9)            

where 0 < 𝑥2:.:¦:§ < 	𝑥¨:.:¦:§ < ⋯… .< 𝑥.:.:¦:§ < ∞ 

and 𝐶 = 𝑛(𝑛 − 𝑅2 − 1)(𝑛 − 𝑅¨ − 1)………(𝑛 − ∑ 𝑅- −𝑚 + 1).12
-32 . 
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Consider that the progressive first-failure type II right censoring sample from a life test of 𝑛 products whose lifetimes 
follow 𝑆𝑡𝑎𝑐𝑦(𝛼, 𝜃, 𝛽	) distribution. From (2) and (3), the likelihood function is as follows 

𝐿(𝛼, 𝜃, 𝛽; 𝑋) = 𝐶	𝑘. 	∏ 2
K[M]
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R OS³:¶:·:¸
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]§(²³[2)12	                                           (10) 

The natural Logarithm of 𝐿(𝛼, 𝜃, 𝛽; 𝑋) is obtained as 

𝑙𝑛�𝐿(𝛼, 𝜃, 𝛽; 𝑋)� = Log[𝑐] + 𝑚Log[𝑘] − 𝑚Log[Γ[𝛼]] + 𝑚Log[𝛽] − 𝑚Log[𝜃] +¾ (𝛼𝛽 − 1)Log[S³:¶:·:¸
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                                                                                       (11)                            

The MLE 𝚯Â = (𝛼�, 𝜃�, 𝛽�) can be obtained by equating the first partial derivative of (11) concerning  𝛼, 𝜃, 𝑎𝑛𝑑	𝛽. Then the 
likelihood equations for the parameters 𝛼, 𝜃	𝑎𝑛𝑑	𝛽 is obtained as  
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Hence; 

The closed-form of the above equation is very hard to analytically solved, hence, these non-linear equations will be solved 
numerically. 

Following [20], the invariance property of the MLE is satisfied, then the MLE of  𝐶> has a form 

                     		𝐶>Ø =
QÂKcMÙ[\

WÂ
f

K[MÙ]
kV
Â]ÚhbpdÙe\

WÂ
q
]
eb[dÙ]bpdÙe]

WÂ
qÛ

b[dÙ]]

                                                                                                                      (15)                                                             

Following [4] and [21], the asymptotic normal distribution has been obtained for the MLEs in Appendix A.   

According to [21]under some regularity conditions, the asymptotic normality of MLE of  𝛾 is  

                              𝛾�~𝑁(𝛾, 𝐼(𝛾)12)                                                                                                                                     (16) 

where 𝐼(𝛾) is the Fisher information matrix. By considering the approximate information matrix 𝐼Ý(𝛾�) which is defined by 
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                                                                 (17)                                                       

By using the variance-covariance matrix 𝐼Ý(𝛾�)12to estimate 𝐼(𝛾)12. 

Let 		𝐶> ≡ 𝐶(𝛾), and due to [22] the multivariate delta method stated that the asymptotic normal distribution of 𝐶(𝛾�) is  

		𝐶>Ø ≡ 	𝐶(𝛾�)~𝑁�		𝐶>,Ψß�                                                                        (18) 

The approximate asymptotic variance-covariance matrix ΨßÙ of 𝐶(𝛾) to esti mate Ψß and it is defined by 

                                    ΨßÙ = OÃå(ß)ÃM
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                              (19)                   

5 Testing Technique for the Lifetime Performance Index 

The statistical hypothesis testing approach is used to determine whether the lifetime performance index meets the required 
level. The hypothesis testing and confidence interval can be conducted by considering (18), and (19). Assume that the 
needed index value for lifetime performance is greater than 𝑐∗, where 𝑐∗indicate the target value. Hence, the null and the 
alternative hypothesis is executed as 

                                                                   𝐻è:			𝐶> ≤ 𝑐∗  

against                                                       𝐻2	:			𝐶> > 	 𝑐∗ 

For a given specified significance level 𝛼, the critical value 𝑐Ô is obtained as [7] 

𝑃 l
		𝐶>Ø − 		𝐶>
êΣß	Ù

≤
𝐶Ý − 𝑐∗

êΣß	Ù
m = 1 − 𝛼 

where 		å�
Ø 1		å�

ìíî	Ù
~𝑁(0,1) and Σß	Ù  as described in (19). 

Then, the critical value is obtained from 

                                                   𝐶Ý = 𝑐∗ + 𝑧MêΣß	Ù                                                                                                                (20) 

Thus, the 100(1 − 𝛼)% one-sided confidence interval of 		𝐶> is 

		𝐶> ≥ 		𝐶>Ø − 𝑧MêΣß	Ù  

and the 100(1 − 𝛼)% lower confidence bound for 		𝐶> is  

                                                              𝐿𝐵 = 		𝐶>Ø − 𝑧MêΣß	Ù                                                                                                  (21)       

6 Real-life Data Application 

This section described how to use the above technique in two separate applications, as well as another simulated example 
that used the Stacy distribution with first-failure progressive type-II censored data. 

Example 6.1. 
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To illustrate the statistical inference for the lifetime performance index, consider a real data set from organ transplant 
recipients mentioned in [23] and [24]. The data was collected over 𝑁 = 56 blood samples. Using a standard approved 
procedure to analyse an aliquot of each sample liquid chromatography with high performance (HPIC). 

The data is fitted to the Stacy distribution and then compared to various well-known lifetime models using the goodness of 
fit criteria, thus according [23]  

Suppose the first failure, after sorting the data into 𝑛 = 14 groups with 𝑘 = 4 items inside each group, progressive right 
censoring type 𝐼𝐼 is applied to the data.  

The first failure censored is as follows 

{35, 71, 77, 87, 99, 109, 129, 148, 162, 185, 198, 203, 241, 275} 

The total data set is fitted to the Stacy distribution using goodness of fit criteria KS = 0.094043 and P − value = 0.70497. 

Using the next two progressive censoring schemes with 𝑚 = 10  shown in Table (3) and (4) as follows: 

Table 3: Censoring Scheme II: 𝑅¨ = (4,0 ∗ 9) 
𝑥- 35 109 129 148 162 185 198 203 241 275 
𝑅- 4 0 0 0 0 0 0 0 0 0 

Table 4: Censoring Scheme I: 𝑅2 = (2,2,0 ∗ 8) 
𝑥- 35 87 129 148 162 185 198 203 241 275 
𝑅- 2 2 0 0 0 0 0 0 0 0 

Therefore, for the given schemes, the suggested testing technique for the lifetime performance index 𝐶> is implemented as 
follows. 

Find the solution of Equations (12,13,14) to get the MLE estimates of 𝛼, 𝜃	𝑎𝑛𝑑	𝛽. The obtained MLE estimates of the 
Stacy parameters 𝛼, 𝜃	𝑎𝑛𝑑	𝛽 are shown in Table (5). 

Assume that the lower lifetime 𝐿 is 35. To solve specific concerns about operational performance, the conforming rate 𝑃z 
must be greater than 80%. Tables (1) and (2), show that the targeted value is 𝑐∗ = 0.82 for all censoring schemes. Then, the 
required test is 

𝐻è:			𝐶> ≤ 0.82 

                              against                                          𝐻2	:			𝐶> > 0.82                                                                                  (22) 

Specifying the significance level 𝛼 = 0.05. 

Through Equations (18, 19, 21), lifetime performance estimate 		𝐶>Ø , the asymptotic variance Σß	Ù  , the 95% lower confidence 
interval bound for 𝐶> and the 95% one-sided confidence interval for 𝐶> is ÷𝐿𝐵	,∞�	are established in Table (5). 

The observed results show that the performance index value 𝑐∗ = 0.82 ∉ ÷𝐿𝐵	,∞�, indicating that 𝐻è is rejected. 
Consequently, there is evidence to indicate that the lifetime performance index of HQIC achieves the needed threshold. 

Moreover, by using Equation (18, 20),		𝐶>Ø > 𝐶Ô = 𝑐∗ + 𝑧MêΣß	Ù  as shown in Table (5), 𝐻è is rejected so the same 
conclusion is achieved. 

Table 5: The Real Data Application's Results 
Scheme 𝛼� 𝜃� 𝛽�  		𝐶>Ø  Σß	Ù  𝐿𝐵 𝐶Ô 
I 8.9008 7.2144 0.5793 1.5280 0.1280 0.8267 1.5213 
II 8.3469 9.0909 0.5979 1.5297 0.1201 0.8504 1.4993 

Example 6.2. 

A real-life data set from Nicholas and Padgett [25]. Data on the tensile strength of 100 carbon fiber observations. The first 
failure censored data is: 

0.39, 1.08, 1.22, 1.47, 1.59, 1.69, 1.84, 1.92, 2.05 2.17, 2.43, 2.53, 2.59, 2.74, 2.81, 2.85, 2.95, 3.09, 3.15 , 3.22, 3.31, 
3.51, 3.68, 4.2, 4.9 

The entire data set is fitted to the Stacy distribution using goodness-of-fit criteria KS = 0.06423 and P − value =
	0.80374. 
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Then, the progressive censoring scheme with 𝑚 = 21 is as follows: 

Table 6: Censoring Scheme: 𝑅 = (4,0 ∗ 20) 
𝑥- 0.39 1.69 1.84 1.92 2.05 2.17 2.43 2.53 2.59 2.74  𝑅- 4 0 0 0 0 0 0 0 0 0 
𝑥- 2.81 2.85 2.95 3.09 3.15 3.22 3.31 3.51 3.68 4.2 4.9 
𝑅- 0 0 0 0 0 0 0 0 0 0 0 

For the above scheme, the statistical inference procedure for the lifetime performance index	𝐶> is as follows. Firstly, by 
solving the MLE equations of the Stacy distribution parameters (12), (13), and (14) numerically with the following results 
𝛼� = 	0.7451, 𝜃� = 5.14435, 	𝛽Â = 4.02793.	Consequently, suppose the lifetime limit is 0.39, if the lifetime exceeds 0.39 
then the product is considered a conforming product. To satisfy product purchasers' concerns regarding lifetime 
performance, the conforming rate 𝑃z of items must be more than 80%. Looking at Table (7), the performance index value is 
set at 𝑐∗ = 0.88 and the testing of hypothesis: 𝐻è:			𝐶> ≤ 0.88	against 𝐻2	:			𝐶> > 0.88.  

For the significance level 𝛼∗ = 0.05, using Equations (16), (24), and (26), the lower confidence interval bound is calculated 
as 𝐿𝐵 = 		𝐶>Ø − 𝑧M∗êΨßÙ = 2.7316 − 1.96(√0.2883) = 1.679. Therefore, the 95% one-sided confidence interval for 		𝐶> is 
[𝐿𝐵,∞) = [1.679,∞). Accordingly, the performance index 𝑐∗ = 0.88 ∉ [𝐿𝐵,∞) = [1.679,∞) then, 𝐻è:			𝐶> ≤ 0.88 is 
rejected. Thus, the lifetime performance index of the product meets the required level. Also, from (16) and (26) 		𝐶>Ø =
1.81139 > 𝐶Ô = 𝑐∗ + 𝑧M∗êΨßÙ = 0.88 + 1.96(√0.2883) =≈ 1.932394. Then, the decision is to reject 𝐻è:			𝐶> ≤ 0.88 
and the lifetime performance index of the product meets the required level. 

Table 7: The lifetime performance index 𝐶> versus the conforming rate 𝑃z	for Stacy distribution with �𝛼�, 𝜃�, 𝛽�� =
(0.7451, 5.14435, 4.02793) 

𝑪𝑳 𝑷𝒓 𝑪𝑳 𝑷𝒓 𝑪𝑳 𝑷𝒓 𝑪𝑳 𝑷𝒓 
−∞ 0.0000 0.3 0.6182 0.88 0.8005 1.55 0.9334 
−𝟐 0.0185 0.4 0.6533 0.9 0.8057 1.6 0.9399 
−𝟏 0.1652 0.5 0.6871 1 0.8308 1.67 0.9483 
−𝟎. 𝟓 0.3207 0.6 0.7194 1.1 0.8538 1.7 0.9517 
−𝟎. 𝟑 0.3936 0.7 0.7500 1.2 0.8748 2.2 0.9885 
𝟎 0.5072 0.8 0.7788 1.3 0.8939 2.5 0.9971 
𝟎. 𝟏 0.5449 0.82 0.7844 1.4 0.9111 3 1 
𝟎. 𝟐 0.5820 0.85 0.7925 1.5 0.9264   

Example 6.3: Simulated data set 

Table (7) shows that the censoring scheme for progressive first-failure type II censored data with 𝑛 = 40,𝑚 = 10, 𝑘 = 4 
was generated from Stacy distribution. 

 Table 8: Simulated data of Stacy distribution 
27.2416 27.3196 18.5581 31.6103 27.5968 11.565 43.1924 27.6558 56.2843 24.8551 
25.389 41.5905 26.4119 27.7718 32.6278 29.2143 39.3499 35.8745 32.8341 51.3031 
12.463 33.6912 31.1299 19.0596 19.0155 58.093 29.8197 28.1314 42.8176 17.7475 
37.3228 34.2583 45.3663 24.0338 29.2738 25.0105 39.8337 21.1778 18.5072 28.2563 

and the first failure censored data shown as 

{11.565, 12.463, 17.7475, 18.5072, 18.5581, 19.0155, 19.0596, 21.1778, 27.3196, 29.8197} 

Table 9: The simulated progressive first failure censored data scheme 
𝒊 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 

𝑿𝒊:𝒎:𝒏:𝒌 11.565028 19.0155 19.0596 21.1778 27.3196 29.8197 
𝑹𝒊 4 0 0 0 0 0 

Then, the testing technique of 		𝐶> based on a confidence interval is defined as follows: 
According to the censoring data above in Table (9), the MLE of the Stacy distribution parameters are obtained from 
equations (13), (14), and (15) and the results are: 𝛼� = 	6.7241, 𝜃� = 6.45993, 𝛽� = 0.873268. Let the lifetime limit is 
11.565 and if the lifetime is more than 11.565	 then the product is then classified as a conforming product. The 
conforming rate 𝑃z of products must be greater than 80%. Referring to Table (10). The target value of 		𝐶> must be greater 
than 0.9. Thus, 𝑐∗ = 0.9 and the testing of hypothesis: 𝐻è:			𝐶> ≤ 0.9	versus 𝐻2	:			𝐶> > 0.9.  The significance level is  𝛼∗ =
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0.05. And from Equations (19), (20), and (21), The bound of the lower confidence interval is calculated. from 𝐿𝐵 = 		𝐶>Ø −
𝑧M∗êΨßÙ = 1.685430479 − 1.96(√0.120839) = 1.004097. Hence, the 95% one-sided confidence interval for 		𝐶> is 
[𝐿𝐵,∞) = [1.004097,∞). Moreover, the performance index 𝑐∗ = 0.9 ∉ [𝐿𝐵,∞) = [1.004097,∞) then,𝐻è:			𝐶> ≤ 0.9 is 
rejected. Thus, the product's lifetime performance index reaches the required level. Moreover,		𝐶>Ø = 1.81139 > 𝐶Ô = 𝑐∗ +
𝑧M∗êΨßÙ = 0.9 + 1.96�√0.120839� = 1.581333. Then, the decision is to reject 𝐻è:			𝐶> ≤ 0.9 and the product's lifetime 
performance index is at the appropriate level. 
Table 10: The lifetime performance index 𝐶> against the conforming rate 𝑃z	for Stacy's distribution with �𝛼�, 𝜃�, 𝛽�� =
(6.7241, 6.45993, 0.87326). 

𝑪𝑳 𝑷𝒓 𝑪𝑳 𝑷𝒓 𝑪𝑳 𝑷𝒓 𝑪𝑳 𝑷𝒓 
−∞ 0.0000 0.3 0.5781 0.9 0.8142 1.5 0.9600 
−𝟓 0.0001 0.4 0.6198 1 0.8468 1.8 0.9888 
−𝟒 0.0011 0.6 0.7019 1.2 0.9025 2 0.9965 
−𝟐. 𝟓 0.0167 0.7 0.7413 1.22 0.9073 2.1 0.9983 
−𝟏 0.1554 0.8 0.7789 1.3 0.9252 2.2 0.9993 
𝟎 0.4555 0.8 0.7861 1.3 0.9293 2.4 0.9999 
𝟎. 𝟏 0.4955 0.8 0.7933 1.4 0.9443 2.6 1 
𝟎. 𝟐 0.5365 0.9 0.8003 1.5 0.9526 2.7 1 

7 Conclusions 

In lifetime testing studies, the experimenter may not be able to detect the lives of all things under test, therefore a process 
capability analysis is always required to quantify the performance and prospective capacities of a process. As a result, this 
study aims to evaluate the lifetime performance index		𝐶> of items under first-failure progressive right censoring data using 
the Stacy distribution. The maximum likelihood of 		𝐶> is performed and the testing of the hypothesis procedure is 
completed. The hypothesis testing process not only evaluates lifetime performance but also serves as an experimenter's 
supplier selection criteria. The proposed technique is clarified using an actual data application, and the results show that the 
goal of assessing the lifetime performance index has been achieved. 
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The asymptotic normal distribution for the MLEs  
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