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Abstract: This paper introduces a new lifetime model, referred to as modified Frechet–Exponential distribution (MFED), is developed

on the basis of the modified Frechet method. Numerous statistical properties of the suggested model are derived and discussed

including ordinary and incomplete moments, quantile, mode, the moment generating functions, reliability and order statistics. The

observed Fisher’s information matrix is provided, and the model parameters are estimated using the maximum likelihood technique.

The suggested model is very adaptable and has the capacity to simulate datasets with monotonic and nonmonotonic failure rates.

The proposed model is applied on three real datasets for checking its performance in comparison with available well-known models.

The motivation of this work that the suggested model has shown good performance in comparison with the available versions of the

Exponential distribution used in the literature.

Keywords: Exponential distribution, Fréchet distribution, maximum likelihood estimation, Modified Frechet technique, Moments

1 Introduction

The exponential distribution (ED) is a popular lifetime
model and has a wide range of applications including
reliability analysis and applied statistics but its inability to
properly model real life phenomena like wind speed, sea
waves and earthquakes whose failure rate is not constant
has led to many modifications and generalizations of the
exponential distribution for get more flexible models such
as Exponentiated Odd Lomax Exponential [1], Lomax
exponential [2], Odd Lomax Inverse Exponential [3] and
other models of Exponential distribution to deal with this
data. The source and other information about the
Exponential distribution can be found in [4,5]. A random
variable X is said to have the Exponential (E) distribution
with parameter λ > 0 if it’s probability density function
(pdf) is given by

f (x) = λ e−λ x, x > 0, (1.1)

while the cumulative distribution function (cdf) is
given by

F (x) = 1− e−λ x, x > 0. (1.2)

The Fréchet distribution was proposed to model
extreme events such as foods, earthquakes, horse racing,

wind speed, precipitation, sea waves, river discharges and
more by Fréchet [6]. For more information on the Fréchet
distribution and its applications, see [7]. Some extensions
of the Fréchet distribution are available in the literature,
such as the Exponentiated Fréchet (EFr) [8], transmuted
Fréchet (TFr) [9], Beta Fréchet (BFr) [10], transmuted
Exponentiated Fréchet (TEFr) [11], gamma extended
Fréchet (GEFr) [12], Kumaraswamy Fréchet (Kw-Fr)
[13], Marshall-Olkin Fréchet [14], transmuted
MarshallOlkin Fréchet [15] and Weibull Fréchet (WFr)
[16]. A random variable X is said to have the Fréchet (Fr)
distribution with parameters θ > 0 as a scale parameter
and β > 0 as a shape parameter if it’s probability density
function (pdf) is given by

g(x,θ ,β ) = β θ β x−β−1e−(
θ
x )

β

, x > 0, (1.3)

while the cumulative distribution function (cdf) is
given by

G(x,θ ,β ) = e−(
θ
x )

β

, x > 0. (1.4)

The purpose of this paper is to provide another
extension of the Fréchet model called the modified
Frechet-Exponential (MFE) distribution. The main
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feature of this model is the additional parameter will be
introduced in Eq. (1.2) to give greater flexibility in the
form of the generated distribution. Using the modified
Frechet-G (MF-G) family introduced by Alamgir et al.
[17], we construct the new two-parameters MFE model.
We give a comprehensive description of some
mathematical properties of the new distribution with the
hope that it will attract wider applications in real life
phenomena like sea waves, river discharges, wind speed
in addition to reliability, clinical studies and other areas of
research. The CDF and PDF of the modified Frechet-G
(MF-G) family are specified by the expressions as
follows:

GMF (x) =
e−(F(x))α − 1

e−1 − 1
, x > 0, (1.5)

gMF (x) =
α f (x) (F (x))(α−1)

e−(F(x))α

1− e−1
, x > 0. (1.6)

In Eqs. (1.5) and (1.6), F (x) and f (x) denote the CDF
and PDF of the input model, respectively. This technique
is used to introduce modified Frechet–Exponential
distribution (MFED). The basic purpose of producing
MFED has a more flexible distribution to model data in
comparison to other versions of Exponential distribution.

We applied our model to three practical datasets.
Dataset I is taken from [18] representing the daily mean
wind speed data for March, taken in 2015 from the
Turkish Meteorological Services for Sinop, Turkey,
Dataset II is taken from Bjerkedal [19] who gave various
doses of tubercle bacilli to groups of 72 guinea pigs and
recorded their survival times (in days) and Dataset III is
taken from the work of Gross and Clark [20] which
represents the relief times (in hours) of 20 patients who
received an analgesic. This model provided a satisfactory
fit to the datasets in comparison with various versions of
Exponential distribution.

This paper is organized as follows. We derive the
cumulative, density, survival and hazard functions of the
modified Frechet–Exponential (MFE) distribution in
Section 2. In Section 3, we present some statistical
properties including, quantile function, median, mode, rth
moment, skewness, kurtosis and the moment generating
function. The distribution of the order statistics is
expressed in Section 4. The shannon entropy is inferred in
Section 5. The mean residual life function is given in
Section 6. The stress-strength parameter is obtained in
Section 7. The maximum likelihood estimation of the
parameters is determined in Section 8. A simulation study
is introduced in Section 9. Real data sets are analyzed in
Section 10 and the results are compared with existing
distributions. Finally, we introduce the conclusions in
Section 11.

2 The Modified Frechet–Exponential

Distribution

In this section, we study the two parameters modified
Frechet–Exponential distribution. Substituting from Eqs.
(1.1) and (1.2) into Eq. (1.5), the cumulative distribution
function of the modified Frechet–Exponential distribution
(MFED) is given by

FMFED (x) =
e−(1−e−λx)

α

− 1

e−1 − 1
,x > 0,λ ,α > 0. (2.1)

Substituting from Eqs. (1.1) and (1.2) in Eq. (1.6), the
pdf corresponding to Eq. (2.1) is given by

fMFED (x) =
αλ e−λ x−(1−e−λx)

α
(

1− e−λ x
)(α−1)

1− e−1
, (2.2)

x > 0 and λ ,α > 0.

The survival function, hazard rate function and
reversed-hazard rate function of X ∼ MFED (α,λ ) are
given by

SMFED (x) =
e−1 − e−(1−e−λx)

α

e−1 − 1
,x > 0, (2.3)

hMFED (x) =
αλ e−λ x−(1−e−λx)

α
(

1− e−λ x
)(α−1)

e−(1−e−λx)
α

− e−1
(2.4)

and

rMFED (x) =
αλ e−λ x−(1−e−λx)

α
(

1− e−λ x
)(α−1)

1− e−(1−e−λx)
α , (2.5)

respectively, x > 0 and λ ,α > 0.

Figures (1-3) display the cdf, pdf, survival, hazard
rate and reversed hazard rate functions of the MFE (α,λ )
distribution for some parameters values.
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Figure 1: Plots of the cdf and pdf of the MFE distribution for different values of parameters.

Figure 2: Plots of the survival and hazard rate functions of the MFE distribution for different values of parameters.

Figure 3: The reversed hazard rate function of MFE distribution for different values of parameters.
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3 Statistical Properties

In this section, we will study some statistical properties
for the MFE distribution, specially quantile function,
median, mode, moments, skewness, kurtosis and the
moment generating function.

3.1 Quantile and median

If X ∼ MFED(α,λ ) , then the quantile xp of the MFED is
given by

F (xp) = u, 0 < u < 1. (3.1)

From Eq. (2.2), xp can be obtained as follows

xp =
1

λ

[

− log

{

1−
(

− log
(

u
(

e−1
− 1
)

+ 1
))

1
α

}]

.

(3.2)

By putting u = 0.5 in Eq. (3.2), we get the median of
MFE distribution as follows

Median=
1

λ

[

− log

{

1−
(

− log
(

0.5
(

e−1
− 1
)

+ 1
))

1
α

}]

.

(3.3)

3.2 Mode

In this subsection, The mode of the MFE distribution can
be obtained by differentiating its probability density
function pdf with respect to x and equate it to zero.

The mode is the solution the following equation

f
′

(x) = 0. (3.4)

By substitution PDF from Eq. (2.2) in Eq. (3.4), we
have

∂

∂x





αλ e−λ x−(1−e−λx)
α
(

1− e−λ x
)(α−1)

1− e−1



= 0

and

αλ 2 e

(

−xλ−(1−e−xλ)
α
)

(1−e−xλ)
α

(

e−xλ − 1
)2
(e−1 − 1)

×

(

αe−xλ
(

1− e−xλ
)α

−αe−xλ + 1
)

= 0 (3.5)

3.3 Skewness and kurtosis

Variability analysis Skewness and Kurtosis on the shape
parameter α can be investigated based on quantile
measures. The short comings of the classical Kurtosis
measure are widely acknowledged. The Bowely’s
skewness [21] based on quartiles is given by

Sk =
p(0.75)− 2p(0.5)+ p(0.25)

p(0.75)− p(0.25)
, (3.6)

and the Moors’ Kurtosis [22] is based on octiles

Ku =
p(0.875)− p(0.625)− p(0.375)+ p(0.125)

p(0.75)− p(0.25)
, (3.7)

where p(.) represents quantile function.

3.4 Moments

If X has MFE ( α , λ ) distribution, then the rth moments
of random variable X is given by

µ
′

r = E (X r)

=

∫ ∞

0
xr αλ e−λ x−(1−e−λx)

α
(

1− e−λ x
)(α−1)

1− e−1
dx, (3.8)

where e−(1−e−λx)
α

= ∑∞
n=0

(−1)n

n!

(

1− e−λ x
)nα

, by
using exponential expansion.

µ
′

r =
∞

∑
n=0

(−1)nαλ

n!(1− e−1)

∫ ∞

0
xre−λ x

(

1− e−λ x
)(n+1)α−1

dx.

(3.9)

Using binomial expansion of
(

1− e−λ x
)(n+1)α−1

=

∑∞
m=0

(

(n+ 1)α − 1
m

)

(−1)me−mλ x, we obtain

µ
′

r =
∞

∑
n=0

∞

∑
m=0

(

(n+ 1)α − 1
m

)

×
(−1)n+mαλ

n!(1− e−1)

∫ ∞

0
xre−(m+1)λ xdx. (3.10)

Put z = (m+1)λ x in Eq. (3.10), after simplification, it
will take the following form:
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µ
′

r =
∞

∑
n=0

∞

∑
m=0

(

(n+ 1)α − 1
m

)

(−1)n+mαλ

n!(1− e−1)

×

∫ ∞

0

1

(m+ 1)r+1λ r+1
zre−zdz

=
∞

∑
n=0

∞

∑
m=0

(

(n+ 1)α − 1
m

)

×
(−1)n+mα

n!(1− e−1)(m+ 1)r+1λ r
Γ (r+ 1), (3.11)

where Γ (.) is the ordinary gamma function.

3.5 Moment generating function

If a random variable X has MFED(x;α,λ ), then the MGF
of X is given by

Mx (t) = E
(

etx
)

=
∫ ∞

0
etx αλ e−λ x−(1−e−λx)

α
(

1− e−λ x
)(α−1)

1− e−1
dx.

(3.12)

The Taylor series yields the following simplified
expression:

Mx (t) = E
(

etx
)

=
∞

∑
r=0

tr

r!

∫ ∞

0
xr e−λ x−(1−e−λx)

α
(

1− e−λ x
)(α−1)

1− e−1
dx.

(3.13)

Using Eq. (3.11) in Eq. (3.13), we obtain

Mx (t) =
∞

∑
r=0

∞

∑
n=0

∞

∑
m=0

(

(n+ 1)α − 1
m

)

×
(−1)n+mαtr

r!n!(1− e−1) (m+ 1)r+1λ r
Γ (r+ 1). (3.14)

4 Order Statistics

Let X1:n, X2:n, .....,Xn:n denote the order statistics obtained
from a random sample X1,X2, ....,Xn which taken from the
MFE distribution, then the pdf of Xi:n is given as follows

fi:n (x) =
n!

(i− 1)!(n− i)!
f (x) [F (x)]i−1 [1−F (x)](n−i) .

(4.1)

Substitute f (x) and F (x) of MFE in Eq. (4.1), we
obtain distribution of order statistic as

fi:n (x) =
n!

(i− 1)!(n− i)!

×





αλ e−λ x−(1−e−λx)
α
(

1− e−λ x
)(α−1)

1− e−1





×

[

e−(1−e−λx)
α

− 1

e−1 − 1

]i−1

×

[

1−
e−(1−e−λx)

α

− 1

e−1 − 1

](n−i)

=
n!

(i− 1)!(n− i)!(1− e−1)n

×

[

e−(1−e−λx)
α

− 1
]i−1

×αλ e−λ x−(1−e−λx)
α (

1− e−λ x
)(α−1)

×

[

e−1
− e−(1−e−λx)

α ](n−i)
. (4.2)

By putting i = 1 in Eq. (4.2), we have expression for
first-order statistic as given below:

f1:n (x) =
n

(1− e−1)n αλ e−λ x−(1−e−λx)
α

×

(

1− e−λ x
)(α−1) [

e−1
− e−(1−e−λx)

α ](n−1)
.

(4.3)

By substituting i = n in Eq.(4.2), the expression for the
nth order statistic will take the form

fn:n (x) =
n

(1− e−1)
n αλ e−λ x−(1−e−λx)

α

×

(

1− e−λ x
)(α−1) [

e−(1−e−λx)
α

− 1
]n−1

. (4.4)

For median’s distribution insert i = n/2 in Eq. (4.2),
we have

fi:n (x) =
n!

((n/2)− 1)!(n− (n/2))!(1− e−1)n

×

[

e−(1−e−λx)
α

− 1
](n/2)−1

×αλ e−λ x−(1−e−λx)
α (

1− e−λ x
)(α−1)

×

[

e−1
− e−(1−e−λx)

α ](n−(n/2))
. (4.5)
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5 Shannon Entropy

The Shannon entropy of MFED is given as follows:

S.Ex = E [− log f (x)]

= E






− log







αλe−λx−(1−e−λ x)
α (

1−e−λx
)(α−1)

1−e−1













=− log






E







αλe−λx−(1−e−λ x)
α (

1−e−λx
)(α−1)

1−e−1













=− log





α2λ 2

(1−e−1)2

∫ ∞
0 e−2λxe−2(1−e−λ x)

α

×

(

1−e−λx
)2α−2

dx



 , (5.1)

substituting 1− e−λ x = y in Eq. (5.1), the expression
will be

S.Ex =− log

[

α2λ

(1− e−1)2

∫ 1

0
(1− y)e−2yα

y2α−2dy

]

.

(5.2)
Putting 2yα = z in Eq. (5.2), after simplification, it will

take the following form

S.Ex =− log

[

2
1
α −2αλ

(1− e−1)
2

∫ 2

0

(

21/α
− z1/α

)

e−zz1− 1
α dz

]

.

(5.3)

Using series e−z = ∑∞
k=0 (−z)k /k! in Eq. (5.3), we

obtain the final expression as given below

S.Ex =− log





αλ

4(1−e−1)
2

∫ 2
0 ∑∞

k=0
(−z)k

k!

×
(

21/α − z1/α
)

z1− 1
α dz





=− log







αλ

4(1−e−1)
2 ∑∞

k=0
(−1)k

k!

×

(

2k+2

(k+2)(α(k+2)−1)

)






. (5.4)

6 Mean Residual Life Function

If X follows MFED. Then, µ (t) of MFRD has the
following expression

µ (t) =
1

S (t)

(

E (t)−

∫ t

0
x f (x)dx

)

− t, t ≥ 0, (6.1)

where

∫ t

0
x f (x)dx=

∫ t

0
x

αλ e−λ x−(1−e−λx)
α
(

1− e−λ x
)(α−1)

1− e−1
dx.

(6.2)

Putting, 1− e−λ x = y, the above expression will take
the form given below

∫ t

0
x f (x)dx =

−α

λ (1− e−1)

×

∫ 1−e−λ t

0
(log(1− y))e−yα

yα−1dy, (6.3)

substitute log(1− y) = ∑∞
n=0

(−1)2n+1yn+1

n+1
in Eq. (6.3),

we obtain
∫ t

0
x f (x)dx =

−α

λ (1− e−1)

×

∫ 1−e−λ t

0

∞

∑
n=0

(−1)2n+1
yn+1

n+ 1
e−yα

yα−1dy,

(6.4)

substitute yα = z in Eq. (6.4), we obtain

∫ t

0
x f (x)dx =

1

λ (1− e−1)

∞

∑
n=0

(−1)2n+2

n+ 1

×

∫ (1−e−λ t)
α

0
z

n+1
α e−zdz

=
1

λ (1− e−1)

∞

∑
n=0

(−1)2n+2

n+ 1

× γ

(

n+ 1

α
+ 1,

(

1− e−λ t
)α
)

=
1

λ (1− e−1)

×

∞

∑
n=0

∞

∑
m=0

(−1)2n+2
(

(

1− e−λ t
)α
)m

(n+ 1)Γ
(

n+1
α +m+ 2

)

×Γ

(

n+ 1

α
+ 1

)

((

1− e−λ t
)α)( n+1

α +1)

× e−(1−e−λ t)
α

, (6.5)

where γ(., .) is the lower incomplete gamma function
and Γ (.) is the ordinary gamma function.

E (t) =
∫ ∞

0
t f (t)dt =

∫ ∞

0
t
αλe−λ t−(1−e−λ t)

α (

1−e−λ t
)(α−1)

1−e−1
.

Using Eq. (3.11) and putting r = 1, we obtain

E (t) =
∞

∑
n=0

∞

∑
m=0

(

(n+ 1)α − 1
m

)

×
(−1)n+mα

n!(1− e−1)(m+ 1)2λ
Γ (2), (6.6)
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substituting Eqs. (2.3), (6.5), and (6.6) in Eq. (6.1), we
obtain

µ (t) =

(

e−1 − 1
)

λ (1− e−1)
(

e−1 − e−(1−e−λx)
α)

×



























∑∞
n=0 ∑∞

m=0

(−1)2n+2
(

(1−e−λ t)
α
)m

(n+1)Γ ( n+1
α +m+2)

×Γ
(

n+1
α + 1

)

.
(

(

1− e−λ t
)α
)( n+1

α +1)

×e−(1−e−λ t)
α

×∑∞
n=0 ∑∞

m=0

(

(n+ 1)α − 1
m

)

×
(−1)n+mα

n!(m+1)2 Γ (2)



























− t.

(6.7)

7 Stress-Strength Parameter (SSP)

Let X1 and X2 be two independently and identically
distributed random variables such that X1 ∼

MFED(α1,λ ) and X2 ∼ MFED(α2,λ ). Then, the
stress-strength parameter is defined by

R =
∫ +∞

−∞
f1 (x)F2 (x)dx. (7.1)

Utilizing Eqs. (2.1) and (2.2) in Eq. (7.1), the stress-
strength parameter is given as

R =
∫ ∞

0







α1λe−λx−(1−e−λ x)
α1
(

1−e−λx
)(α1−1)

1−e−1







×

(

e−(1−e−λ x)
α2

−1

e−1 −1

)

dx

=
∫ ∞

0









α1λe
−λ x−(1−e−λ x)

α1

(1−e−λ x)(
α1−1)

e
−(1−e−λ x)

α2

(1−e−1)(e−1−1)

−
α1λe

−λ x−(1−e−λ x)
α1

(1−e−λ x)(
α1−1)

(1−e−1)(e−1−1)









dx,

(7.2)

substitute 1− e−λ x = y in Eq. (7.2) and simplify, we
obtain

R =
α1

(1− e−1)(e−1 − 1)

×

∫ 1

0
e−yα1

y(α1−1)e−yα2
dy

−
1

(e−1 − 1)
. (7.3)

Using e−yα2 = ∑∞
n=0

(−1)nynα2

n!
in Eq. (7.3) and

simplify, we get

R =
α1

(1− e−1) (e−1 − 1)

×

∞

∑
n=0

(−1)n

n!

∫ 1

0
y(α1+nα2−1)e−yα1

dy

−
1

(e−1 − 1)
. (7.4)

Now, putting yα1 = z in Eq. (7.4), after simplification,
we get the following form

R =
1

(1− e−1) (e−1 − 1)

∞

∑
n=0

(−1)n

n!

∫ 1

0
z

nα2
α1 e−zdz

−
1

(e−1 − 1)

=
1

(1− e−1) (e−1 − 1)

∞

∑
n=0

(−1)n

n!
γ

(

nα2

α1

+ 1,1

)

−
1

(e−1 − 1)

=
1

(1− e−1) (e−1 − 1)

∞

∑
n=0

∞

∑
m=0

(−1)n

n!Γ
(

nα2
α1

+m+ 2
)

×Γ

(

nα2

α1

+ 1

)

e−1
−

1

(e−1 − 1)
. (7.5)

8 Parameters Estimation

In this section, the method of maximum likelihood
estimation is used to obtain point and interval estimation
of the MFED’s unknown parameters.

8.1 Maximum likelihood estimation

Let x1,x2, ...,xn denote a random sample of size n selected
from the MFE distribution. The Likelihood function is
given as

L(α,λ ) =

(

αλ

1− e−1

)n

e−∑n
i=1 λ xie−∑n

i=1(1−e−λx)
α

×

n

∏
i=1

(

1− e−λ xi

)(α−1)
. (8.1)

Taking natural logarithm of Eq. (8.1), we obtain

ℓ= logL(α,λ ) = n log(αλ )− n log
(

1− e−1
)

−

n

∑
i=1

λ xi −

n

∑
i=1

(

1− e−λ xi

)α

+(α − 1)
n

∑
i=1

log
(

1− e−λ xi

)

. (8.2)
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The maximum likelihood estimation of the parameters
(α,λ ) are obtained by differentiating the log-likelihood
function ℓ with respect to the parameters α and λ and
setting the result to zero, we have the following normal
equations.

∂ℓ

∂α
=

n

α
−

n

∑
i=1

(

1− e−λ xi

)α
log
(

1− e−λ xi

)

+
n

∑
i=1

log
(

1− e−λ xi

)

= 0. (8.3)

and

∂ℓ

∂λ
=

n

λ
−

n

∑
i=1

xi −α
n

∑
i=1

xie
−λ xi

(

1− e−λ xi

)(α−1)

+(α − 1)
n

∑
i=1

xie
−λ xi

(

1− e−λ xi
) = 0. (8.4)

The MLEs can be obtained by solving the Eqs. (8.3)
and (8.4), numerically for α and λ .

8.2 Asymptotic confidence bounds

In this subsection, we use the variance covariance matrix
I−1 see [23] to estimate the asymptotic confidence
intervals of these parameters when λ ,α > 0 because the
MLEs of the unknown parameters cannot be computed in
closed forms, where I−1 is the inverse of the observed
information matrix which is defined as follows

I−1 =

(

− ∂ 2ℓ
∂α2 − ∂ 2ℓ

∂α∂λ

− ∂ 2ℓ
∂α∂λ − ∂ 2ℓ

∂λ 2

)−1

=

(

var(α̂) cov(α̂, λ̂ )

cov(λ̂ , α̂) var(λ̂)

)

.

(8.5)
The second derivative of Eqs. (8.3) and (8.4) with

respect to α and λ yields Eqs. (8.6) and (8.7) given as

∂ 2ℓ

∂α2
=

−n

α2
−

n

∑
i=1

(

1− e−λ xi

)α (

log
(

1− e−λ xi

))2

(8.6)

and

∂ 2ℓ

∂λ 2
=

−n

λ 2
+α

n

∑
i=1

x2
i e−λ xi

(

1− e−λ xi

)(α−1)

−α (α − 1)
n

∑
i=1

x2
i e−2λ xi

(

1− e−λ xi

)(α−2)

+(α − 1)
∑n

i=1

(

1− e−λ xi
)

x2
i e−λ xi −∑n

i=1 xie
−2λ xi

(

1− e−λ xi
)2

.

(8.7)

Differentiating Eq. (8.3) with respect to λ , we obtain

∂ 2ℓ

∂α∂λ
=−α

n

∑
i=1

xie
−λ xi

(

1− e−λ xi

)α−1

log
(

1− e−λ xi

)

−

n

∑
i=1

(

1− e−λ xi

)α xie
−λ xi

(

1− e−λ xi
) +

n

∑
i=1

xie
−λ xi

(

1− e−λ xi
) .

(8.8)

We can derive the (1 - δ )100% confidence intervals
of the parameters λ ,α by using variance matrix as in the
following forms

α̂ ±Zδ/2

√

var(α̂), λ̂ ±Zδ/2

√

var(λ̂ )

where Zδ denote the upper percentile of the standard
normal distribution.

9 Simulations

In order to conduct a simulation study to investigate the
behaviour of MLEs, 1000 samples are generated from the
MFE distribution using the following expression of the
quantile function

xp =
1

λ

[

− log

{

1−
(

− log
(

u
(

e−1
− 1
)

+ 1
))

1
α

}]

,

(9.1)

where u follows uniform distribution over [0, 1]. MSE
of MFED is computed by the following expression

MSE =
1

W

W

∑
i=1

(

b̂i − bi

)2
, (9.2)

where b = (α,λ ) , and W = 1000 simulations.
Simulation results were obtained for various values of α
and λ . Using the Monte Carlo simulation method.
Various sample sizes (n = 50, 100, and 200) have been
considered. Table 1 displays the average estimates of the
parameters, mean square errors, and biases, showing that
the property of consistency is proven by the fact that as
sample size increases, the estimated parameter values
approach the assumed parameter values quite closely.
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Table 1: Parameters estimates, MSEs and biases.

Parameter n α̂ λ̂ MSE(α̂) MSE
(

λ̂
)

Bias(α̂) Bias
(

λ̂
)

α = 2 50 2.15622 2.10109 0.262797 0.154579 0.15622 0.101086

λ = 2 100 2.06723 2.03787 0.0965705 0.0650739 0.0672321 0.0378668

200 2.03152 2.02068 0.0400649 0.0322064 0.031519 0.0206803

α = 3 50 3.27521 2.09021 0.766525 0.128042 0.275211 0.0902082

λ = 2 100 3.11654 2.03374 0.269606 0.0543291 0.11654 0.0337424

200 3.05475 2.01823 0.110469 0.0268141 0.0547477 0.0182267

α = 4 50 4.41144 3.12672 1.655 0.258108 0.411439 0.126717

λ = 3 100 4.17186 3.04725 0.562971 0.109937 0.171863 0.0472487

200 4.08023 3.02517 0.228801 0.0541353 0.0802296 0.0251739

α = 5 50 5.56289 3.12149 3.02057 0.239814 0.562887 0.121486

λ = 3 100 5.23293 3.04525 0.999035 0.102351 0.232933 0.0452481

200 5.10843 3.0239 0.403382 0.0503066 0.108427 0.0238983

10 Application

In this section, three practical datasets are used to assess
the performance of MFE(x;α,λ ) model. Different
submodels of Exponential distribution are considered for
comparison such as Inverse Exponential (IE) [24],
Exponentiated Exponential (EE) [25], Marshall-olkin
Exponential (MOE), Kumaraswamy Exponential
(KW − E) [26], Weibull-Exponential (WE) [27] and
Exponential (E) distributions using Kolmogorov Smirnov
(K-S) statistic and P-value, as well as the negative of the
log-likelihood functions (-ℓ), Akaike information
criterion(AIC) [28], Akaike Information Citerion with
correction (AICC), Bayesian information criterion (BIC),
Hannan-Quinn information criterion (HQIC) [29] and
consistent Akaike’s information criteria (CAIC) values.

10.1 Dataset I

Dataset I which represents the daily mean wind speed data
for March, taken in 2015 from the Turkish Meteorological
Services for Sinop, Turkey, is taken from [18]. The data
points are given below: 2.8, 1.8, 3.2, 5.0, 2.4, 4.8, 2.9, 2.9,
2.3, 3.2, 2.3, 2.0, 1.9, 3.3, 4.4, 6.7, 4.3, 1.9, 2.2, 3.3, 2.1,
4.0, 2.0, 3.1, 3.8, 3.1, 3.2, 3.4, 2.8, 2.1, 3.1.

Table 2 gives MLEs of parameters of the MFE, K-S
Statistics and P-value. The values of -ℓ, AIC, AICC, BIC,
CAIC, and HQIC are in Table 3.

We find that the MFE distribution with two
parameters provides a better fit than the different
submodels of Exponential distribution. It has the smallest
K-S, AIC, AICC, BIC, CAIC and HQIC values among
those considered in this paper.

Substituting the MLE’s of the unknown parameters α
and λ for dataset I into the inverse of the observed
information matrix, we get estimation of the variance
covariance matrix as the following

I−1
◦ =

(

125.454 1.92706
1.92706 0.0334179

)

.

The approximate 95% two sided confidence intervals
of the unknown parameters α and λ are [2.08,45.934] and
[0.7597,1.476], respectively.

To show that the likelihood equation have unique
solution, we plot the profiles of the log-likelihood
function of α and λ in Figure 4.

Figure 5 gives the cdf and pdf for the EE, Kw − E ,
WE, MOE, IE, E and MFE which are used to fit data I
after substituting each distribution’s unknown parameters
with its MLE.

Figure 6 provides plots of PDF, CDF, PP-plots and
QQ-plots for dataset I which shows that the MFE
distribution fits the dataset I.
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Table 2: MLEs, K–S and P-value for dataset I.

Model MLEs of the parameters K-S P-vaue

MFE (α,λ ) 24.0073 1.11801 0.106072 0.840531

EE(α,λ ) 27.7412 1.26946 0.107863 0.826089

Kw−E(a,b,λ ) 240.73 0.36836 2.57063 0.13035 0.621456

W E(α,β ,λ ) 1.65529*106 2.83568 0.00184598 0.160922 0.359461

MOE(α) 19.3602 0.206869 0.121737

IE(α) 2.80764 0.397405 0.0000628408

E (λ ) 0.321911 0.439788 5.62052*10−6

Table 3: -ℓ, AIC, AICC, BIC, CAIC and HQIC for dataset I.

Model -ℓ AIC AICC BIC CAIC HQIC

MFE (α,λ ) 41.6624 87.3249 87.7534 90.1928 87.7534 88.2598

EE(α,λ ) 41.7245 87.4491 87.8777 90.3171 87.8777 88.384

Kw−E(a,b,λ ) 40.9643 87.9287 88.8175 92.2306 88.8175 89.331

W E(α,β ,λ ) 46.1526 98.3051 99.194 102.607 99.194 99.7075

MOE(α) 49.0402 100.08 100.218 101.514 100.218 100.548

IE(α) 65.9913 133.983 134.121 135.417 134.121 134.45

E (λ ) 66.1379 134.276 134.414 135.71 134.414 134.743

Figure 4: the profile of the log-likelihood function of α and λ .

Figure 5: Fitted cdf with the empirical distribution and fitted pdf with histogram for dataset I.
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Figure 6: Fitted cdf, fitted pdf, QQ-plots and PP-plots of MFED for dataset I.

10.2 Dataset II

Dataset II which represents the survival times (in days) of
72 guinea pigs infected with virulent tubercle bacilli, is
taken from Bjerkedal [19]. The data points are given
below: 0.1, 0.33, 1.08, 1.08, 1.08, 0.44, 0.56, 0.59, 0.72,
0.74, 0.77, 2.54, 2.78, 2.93, 3.27, 3.42, 0.92, 0.93, 0.96, 1,
1, 1.02, 1.05, 1.07, 07, 1.09, 1.12, 1.13, 1.15,1.36, 1.39,
1.44, 1.83, 1.95, 1.96, 1.97, 2.02, 1.16, 1.2, 1.21, 1.22,
1.22, 1.24, 1.3, 1.34, 2.13, 1.46,1.53, 1.59, 1.6, 1.63, 1.63,
1.68, 1.71, 1.72, 1.76, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4,
2.45, 2.51, 2.53,2.54, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55.

Table 4 gives MLEs of parameters of the MFE, K-S
Statistics and P-value. The values of -ℓ, AIC, AICC, BIC,
CAIC, and HQIC are in Table 5.

We find that the MFE distribution with two
parameters provides a better fit than the different
submodels of Exponential distribution. It has the smallest
K-S, AIC, AICC, BIC, CAIC and HQIC values among
those considered in this paper.

Substituting the MLE’s of the unknown parameters α
and λ for dataset II into the inverse of the observed
information matrix, we get estimation of the variance
covariance matrix as the following

I−1
◦ =

(

0.406659 0.0606906
0.0606906 0.0132538

)

.

The approximate 95% two sided confidence intervals of
the unknown parameters α and λ are [0,4.734] and
[0,1.122], respectively.

To show that the likelihood equation have unique
solution, we plot the profiles of the log-likelihood
function of α and λ in Figure 7.

Figure 8 gives the cdf and pdf for the EE, Kw − E ,
WE, MOE, IE, E and MFE which are used to fit data II
after substituting each distribution’s unknown parameters
with its MLE.

Figure 9 provides plots of PDF, CDF, PP-plots and
QQ-plots for dataset II which shows that the MFE
distribution fits the dataset II.
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Table 4: MLEs, K–S, and P-value for dataset II.

Model MLEs of the parameters K-S P-vaue

MFE (α,λ ) 3.48421 0.896249 0.0871817 0.613003

EE(α,λ ) 3.30367 1.03703 0.0893901 0.581617

Kw−E(a,b,λ ) 3.30401 0.999711 1.03726 0.0893923 0.581585

W E(α,β ,λ ) 24025.7 1.62952 0.000987213 0.122193 0.214319

MOE(α) 4.21441 0.15258 0.0627444

IE(α) 1.1502 0.211399 0.00265859

E (λ ) 0.540378 0.280626 0.0000165512

Table 5: −ℓ, AIC, AICC, BIC, CAIC and HQIC for dataset II.

Model -ℓ AIC AICC BIC CAIC HQIC

MFE (α,λ ) 99.3531 202.706 202.88 207.26 202.88 204.519

EE(α,λ ) 99.7196 203.439 203.613 207.993 203.613 205.252

Kw−E(a,b,λ ) 99.7196 205.439 205.792 212.269 205.792 208.158

W E(α,β ,λ ) 102.739 211.478 211.831 218.308 211.831 214.197

MOE(α) 105.273 212.545 212.603 214.822 212.603 213.452

IE(α) 123.154 248.309 248.366 250.585 248.366 249.215

E (λ ) 116.315 234.63 234.687 236.907 234.687 235.536

Figure 7: the profile of the log-likelihood function of α and λ .

Figure 8: Fitted cdf with the empirical distribution and fitted pdf with histogram for dataset II.
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Figure 9: Fitted cdf, fitted pdf, QQ-plots and PP-plots of MFED for dataset II.

10.3 Dataset III

Dataset III which represents the relief times (in hours) of
20 patients who received an analgesic, is taken from the
work of Gross and Clark [20]. The data points are given
below: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1,
1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2.

Table 6 gives MLEs of parameters of the MFE, K-S
Statistics and P-value. The values of AIC, AICC, BIC,
CAIC, and HQIC are in Table 7.

We find that the MFE distribution with two
parameters provides a better fit than the different
submodels of Exponential distribution. It has the smallest
K-S, AIC, AICC, BIC, CAIC and HQIC values among
those considered in this paper.

Substituting the MLE’s of the unknown parameters α
and λ for dataset III into the inverse of the observed
information matrix, we get estimation of the variance
covariance matrix as the following

I−1
◦ =

(

426.496 7.97448
7.97448 0.164501

)

.

The approximate 95% two sided confidence intervals
of the unknown parameters α and λ are [8.044,72.911]
and [0,2.226], respectively.

To show that the likelihood equation have unique
solution, we plot the profiles of the log-likelihood
function of α and λ in Figure 10.

Figure 11 gives the cdf and pdf for the EE, WE,
MOE, IE, E and MFE which are used to fit data III after
substituting each distribution’s unknown parameters with
its MLE.

Figure 12 provides plots of PDF, CDF, PP-plots and
QQ-plots for dataset III which shows that the MFE
distribution fits the dataset III.

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


122 A. T. Farhat et al.: On Modified Frechet–Exponential Distribution

Table 6: MLEs, K–S, and P-value for dataset III.

Model MLEs of the parameters K-S P-vaue

MFE (α,λ ) 32.4333 2.00038 0.120612 0.899975

EE(α,λ ) 36.6832 2.23524 0.134321 0.817352

W E(α,β ,λ ) 3.66805*106 2.68471 0.0016895 0.175318 0.514469

MOE(α) 5.25823 0.275965 0.0773872

IE(α) 1.72473 0.387245 0.00328244

E (λ ) 0.526316 0.439512 0.000491546

Table 7: -ℓ, AIC, AICC, BIC, CAIC and HQIC for dataset III.

Model -ℓ AIC AICC BIC CAIC HQIC

MFE (α,λ ) 15.9512 35.9024 36.6082 37.8938 36.6082 36.2911

EE(α,λ ) 16.2606 36.5212 37.2271 38.5127 37.2271 36.91

W E(α,β ,λ ) 20.6213 47.2426 48.7426 50.2298 48.7426 47.8257

MOE(α) 26.4381 54.8763 55.0985 55.872 55.0985 55.0707

IE(α) 32.6687 67.3373 67.5596 68.3331 67.5596 67.5317

E (λ ) 32.8371 67.6742 67.8964 68.6699 67.8964 67.8685

Figure 10: the profile of the log-likelihood function of α and λ .

Figure 11: Fitted cdf with the empirical distribution and fitted pdf with histogram for dataset III.
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Figure 12: Fitted cdf, fitted pdf, QQ-plots and PP-plots of MFED for dataset III.

11 Conclusion

In this article, we suggeste a new lifetime model called
modified Frechet–Exponential distribution (MFED) using
the modified Frechet technique. We were able to
determine the moments, MGF, and median in closed
form, as well as the Quantile function, Mean Residuals’
Life Function, Order Statistics, and Shannon Entropy for
the proposed distribution. The MLE technique was used
to estimate the model’s parameters. A simulation study
was performed by generating data from MFED, and the
maximum likelihood estimates of the unknown parameter
were obtained. The simulation results showed consistency
of the parameter estimates of the MFE model. The
suggested model was also fitted to three real datasets to
show its usefulness. MFED model provided a satisfactory
fit to the datasets in comparison with other distributions
considered here for modeling real-life datasets, especially
the exponentiated Exponential distribution. Perhaps this is
because the cumulative distribution function of the
modified Frechet–Exponential distribution can be
expressed by the cumulative distribution function of the
exponentiated Exponential distribution as follows

FMFE (x) =
e−FEE (x)−1

e−1−1
, where FEE(x) is the cumulative

distribution function of the exponentiated Exponential
distribution. We believe in the importance of this
distribution, and based on this premise that we believe in

it, we think it will be the motivation to continue
conducting more research on this distribution, we may
apply one of the copulas family such as
Farlie-Gumbel-Morgenstern (FGM) copulas and estimate
some life-time parameters under progressive type-II
censored data.
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distribution. Far east journal of theoretical statistics, 14(1),

15-24 (2004).

[11] I. Elbatal, G. Asha, and A. V. Raja. Transmuted
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