
*Corresponding author e-mail: oleksandrakozachok@ukr.net

© 2023 NSP
Natural Sciences Publishing Cor.

 Appl. Math. Inf. Sci. 17, No. 1, 13-20 (2023) 13

 Applied Mathematics & Information Sciences
An International Journal

 http://dx.doi.org/10.18576/amis/170103

Improving AKS Algorithm. Proving the Simplicity of Integers
O. Kozachok*

Department of Algebra and Computer Mathematics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Received: 21 Sep. 2022, Revised: 22 Oct. 2022, Accepted: 24 Nov. 2022.
Published online: 1 Jan. 2023.

Abstract: Agrawal-Kayal-Saxena (AKS) theorem was proved, from which the above-mentioned algorithm is directly
derived. The study has shown that the problem of simplicity is in the complexity class P of polynomial problems. An
advanced AKS algorithm is proposed, which will simplify the initial AKS algorithm and ensure its implementation to
determine the simplicity of integers. To implement this task it is necessary to reduce algorithm computational complexity.
The block diagram of the algorithm for performing the advanced AKS test is presented. The theorems for prime numbers
presented in the form of polynomials were formulated and proved. The AKS algorithm consisting of two phases is
implemented: at the first stage, the corresponding parameters r and s were found, and at the second stage, the identity for
different values of b presented in the form of consecutive squares was checked. The adequacy of the algorithm for
checking numbers for simplicity is proved by the example of a generated arbitrary number of 500 orders. Comparative
characterization of the improved AKS test and the Miller-Rabin test was carried out. 50,000 tests were conducted. The
maximum test time was 2.3089 s.
Keywords: AKS algorithm, Miller-Rabin test, prime numbers, theorem, lemma

1 Introduction
The problem of estimating the distribution of prime
numbers and finding them has been relevant since the time
of Euclid. The formal relations presented in [1] to the
mechanisms of forming composite numbers of form {6k ±
1}, k = 1, 2, 3, ... allowed substantiating and implementing
new, more productive algorithms, simple numbers on
arbitrary intervals of natural series, as well as proving
Legendre and Brocard hypotheses, confirming Bertrand's
postulate and linking other interval problems [1]. The
obtained interval estimates are used to improve algorithms
for information protection and encryption/decryption with
prime numbers. Modern cryptography requires a large
random prime in many situations. An example is the RSA
cryptosystem. Integer simplicity checking is an algorithm
that determines whether an input number is prime. All
simplicity tests, in fact, look for a sign of the number
complexity. If not found, they answer that the number is
prime. There are usually two types of simplicity tests [2]:

determined - issue a certificate of superiority; they answer
that the number n given at the input is prime only if it really
is; probabilistic - they omit some complex numbers
(indicating their primacy), but they are never wrong in the
case of prime numbers.

There is a significant difference between the statement that
a number is complex (due to the failure of the simplicity
test) and the indication of its distribution (factorization). In
particular, there is an effective (polynomial) algorithm for

checking simplicity, while the still known factorization
algorithms are much slower [3].

The naive test of simplicity is the simplest deterministic test
of simplicity [3]. The number n given at the input is
separated m = 2,3, ..., !√𝑚!. If the remainder is 0 in any
division, the test returns that n is complex, otherwise n is
simple. Note that if n is complex, one also finds its
nontrivial divisor. Unfortunately, this is a very slow method
of testing simplicity and it requires 𝑂%√𝑛 𝑙𝑔) 𝑛* steps [3].

Probability tests for simplicity work according to this
scheme:

One chooses a random number that matches the condition
a∈ {0,1,2,…, n − 1}.

One checks the identity of the numbers a and n depending
on the specific test. If the identity is false, then n is complex
and a is a witness of complexity (but not necessarily a
divisor of n). If the identity is true, then a passes the test
(which does not necessarily mean that it is the first) [3].
Agrawal et al. [4] demonstrated the first effective O (lg12n)
deterministic simplicity test. After some processing, this
algorithm works on O (lg6n). However, in practice, this
algorithm works much slower than fast probability tests. On
the otherhand, if the generalized Riemann hypothesis is
true, then every odd complex number n has a witness of
complexity b in the Miller-Rabin test, so 0 <b <2log2n. This
would mean that the Miller-Rabin test is deterministic and
works very quickly. In Chan and Norrish, the AKS
simplicity algorithm is described [5]. This algorithm was
first published in “PRIMES is in P” [4], [6]. This is a

 14 O. Kozachok: Improving AKS Algorithm…

© 2023 NSP
Natural Sciences Publishing Cor.

breakthrough in terms of computational complexity theory,
as AKS is the first fully deterministic polynomial test of
simplicity [7]. The algorithm itself is simple and it is not
difficult to prove its correctness. The AKS method is
considered in many works, in particular, in Dimitrov [3].
This paper treats the problem based on the original article
and the work of Bernstein [8], which gives a good overview
of AKS improvements. First, the theorems underlying the
AKS method will be formulated and proved. In practice, it
turns out that in almost all cases, several Miller-Rabin tests
are enough. For example, it has been estimated that there is
only one compound odd number less than 2.5⋅1010, namely
3215031751, which is very pseudo-simple for bases 2,3,5
and 7. However, mathematicians are still looking for quick
deterministic simplicity tests. Most recently, in 2002,
Agrawal et al. [4] demonstrated the first effective O (lg12n)
deterministic simplicity test. After some processing, this
algorithm works on O (lg6n)). In practice, this algorithm
works much slower than fast probability tests. On the other
hand, if the generalized Riemann hypothesis is true, then
every odd complex number n has a witness of complexity b
in the Miller-Rabin test, so 0 <b <2log2n. This would mean
that the Miller-Rabin test is deterministic and works very
quickly [9]. The AKS algorithm allows one to get the result
of checking a number for simplicity and determine whether
the number is prime or compound. The advantage of the
method is that the result of checking the number for
simplicity is not probabilistic, and the method itself is not
based on unproven assumptions [3].

The theoretical importance of the AKS algorithm lies, in
fact, in solving an important mathematical problem that has
been discovered for over 2,000 years. As for the practical
question, the biggest application is to generate
cryptographic keys, because it is necessary to calculate very
large prime numbers. Several sources were used to compile
this report [3]. The main contribution of Agrawal et al. [4]
is to demonstrate the correctness and efficiency of the AKS
algorithm. In contrast to the original article [6] and the
book [10], this paper uses algebraic structures of groups,
rings and fields, which naturally arise in the study of this
problem [3]. The classical AKS simplicity verification
algorithm is used to determine elliptic curve theory results,
with special emphasis on the properties of isogeny between
curves (Velu’s theorem), and toThe theoretical importance
of the AKS algorithm lies, in fact, in solving an important
mathematical problem that has been discovered for over
2,000 years. As for the practical question, the biggest
application is to generate cryptographic keys, because it is
necessary to calculate very large prime numbers. Several
sources were used to compile this report [3]. The main
contribution of Agrawal et al. [4] is to demonstrate the
correctness and efficiency of the AKS algorithm. In
contrast to the original article [6] and the book [10], this
paper uses algebraic structures of groups, rings and fields,
which naturally arise in the study of this problem [3]. The
classical AKS simplicity verification algorithm is used to
determine elliptic curve theory results, with special

emphasis on the properties of isogeny between curves
(Velu’s theorem), and to construct the extension of the
function body from Kuven and Lervier elliptic cycles [3].
The author presented an elliptical criterion of simplicity
[10], the ultimate goal of which was to present the
algorithm “Elliptical AKS”, in particular the construction of
a corresponding instance of an elliptical cyclic ring using
the theory of complex multiplication. The algorithm
proposed by Lenstra [10] is a variant of the original AKS
test [3]. This is not the most effective, but the easiest way to
prove the simplicity of numbers. This algorithm can be
used when the input number is a prime number in decimal
notation [10]. Bernstein’s advanced AKS algorithm can
perform calculations in a few tens of seconds [8]. For
primes above 40, this procedure will take up to several
hours. After a thorough review of the improved version by
Bernstein, Jin Zhengping, and others, improved algorithms
were proposed, but they also had some shortcomings.
However, the author noted that the algorithm still needs to
be improved so that it can be used in practice [11,12,13,14].
None of the existing AKS algorithms is suitable for
practical applications for security reasons, as it is
impossible to achieve completeness of the algorithm
without a huge amount of time to calculate [15,16].

The purpose of this study is to improve the original AKS
algorithm to provide an efficient approach to solving the
global problem of proving the simplicity of integers.

 To achieve this goal, it is necessary to solve the following
tasks:

- perform an analysis of the necessary and sufficient
conditions for the AKS;

- perform an equivalence transformation in the equations of
the algorithm using Fermat's little theorem;

- present an improved AKS algorithm for checking integers
by successive squaring;

- prove that the developed algorithm can be represented as
the Miller-Rabin algorithm with two additional restrictions
when narrowing the set of base numbers.

2 Methods and materials

The problem of simplicity is a problem of a solution, and
the author of the article consider a deterministic algorithm
that solves it (AKS algorithm). If the study proves that this
algorithm is also polynomial, then the simplicity problem is
in P. The study will focus solely on seeing that AKS is
polynomial. The study will not delve into the calculation of
the best execution time but will overestimate the number of
steps taken. Then, this will be about AKS improvements
that will speed up the algorithm. To see that the algorithm
is solved in polynomial time, one of the things the study
needs to prove is that in step 2 the number r does
notbecome too large. To do this, the following notation was
entered.

Appl. Math. Inf. Sci. 17, No. 1, 13-20 (2023)/ http://www.naturalspublishing.com/Journals.asp 15

 © 2023 NSP
 Natural Sciences Publishing Cor.

Designation 1. Let 𝑃(𝑥) 	= 	𝑎4𝑥4 	+	𝑎678𝑥678 	+ ⋯	+
	a)𝑥) 	+	𝑎8x	 +	𝑎< 	∈ 	 Z>[𝑥]	and	P(𝑥) (1)

Let P(x) be a polynomial of degree less than or equal to d,
the coefficients of which 𝑎і ∈ 𝑍> are classes modulo p of
the coefficients 𝑎і ∈ 𝑍>for P(x) to all 𝑎і ∈ {1,2, … , 𝑛}.
Thus:

𝑃(𝑥) 	= 	𝑎4𝑥4 	+	𝑎678𝑥678 	+ ⋯	+	a)𝑥) 	+	𝑎8x	 +
	𝑎< 	∈ 	 Z>[𝑥] (2)

Now it is needed to formulate and prove the desired
theorem.

A block diagram implemented in Python was used to test
sets of numbers for simplicity (Figure 1).

Fig. 1. Block diagram of the algorithm for performing the
advanced AKS test

Source: Mathematical bases of AKS method

Briefly, the block diagram can be explained as follows.
After the start of the algorithm, the polynomiality of the
number is checked. If the number is polynomial, then the
number is prime, and if it is not polynomial, then it is not
prime.

Assume that for a prime number then n then 𝑤(𝑥)M ≡
𝑤(𝑥M) (mod n). Especially for monomony w {x) = x – b,
the following takes place:

(𝑥 − 𝑏)M = 𝑥M − 𝑏M = 𝑥M − 𝑏 (mod n) (3)

Such congruence of polynomials does not occur when n is a
composite number. In fact, when a prime number p is
divisible by n to the power of a, coefficients at 𝑥QM/>S of
polynomial (𝑥 − 𝑏)M is not divisible by p for gcd (k, n) = 1.
It is not possible to calculate the whole polynomial
(𝑥 − 𝛼)M, since it has an exponential number of
coefficients. However, it is possible to test the modulus of
equality by some polynomial of degree r.

(𝑥 − 𝛼)M = 𝑥M − 𝛼 (mod n, (𝑥U − 1) (4)

Polynomial (𝑥U − 1) was chosen for its special properties.
If one chooses a random polynomial of degree r instead,
one would get a fairly strong probability test, and therefore
one can use the property (𝑥U − 1) in the proof. In addition,
one proceeds from the fact that the calculation of the
module (𝑥U − 1) is very easy to perform.

The AKS algorithm mainly consists of two phases: in the
first stage the corresponding parameters r and s are found,
in the second stage the identity 1 is checked for the
presence of s different values of b. If the number n passes
all these tests, it must be an indicator of the prime number
degree 𝑛 = 𝑝W, which can be pre-checked separately. Thus,
the theorem can be formulated:

Theorem 1. Let the n — a positive integer, q and r are
prime numbers such that q|r – 1 and 𝑛(U78)/X mod 𝑟 ∉
{0.1}r 0 {0,1}. Let S — set of s integers, such that
𝑔𝑐𝑑(𝑛, 𝑏 − 𝑏_) = 1 for different 𝑏, 𝑏_ 	 ∈ 𝑆. Suppose also
that

a𝑠 + 𝑞 − 1𝑠 d ≥ 𝑛)!√U! (5)

and that for every 𝑏 ∈ 𝑆 around 𝑍M[𝑥]/𝑥U − 1 equality
comes true

(𝑥 + 𝑏)M ≡ 𝑥M + 𝑏 (6)

Then n is a power of a prime number.

Proof. The idea of proof is contained in [10]. The
formulation of the theorem and a brief proof can be found
in Dimitrov [3].

Based on this theorem, one can show a polynomially
determined algorithm for checking the simplicity of a
number. It is necessary to show that there are corresponding
numbers q, r, s, except for polynomials. In Bernstein [8],
reference was made to Fourier’s theorem that there are
many primes r such that r-1 has a prime divisor q, bigger
than r 2/3. This is a complex statement. In addition, based on
well-established hypotheses, one can expect the existence
of many prime numbers r, such that (r - l) / 2 is prime,
which leads to a better estimate of the AKS algorithm
complexity. Therefore, the AKS theorem has been
improved, so there is no need to refer to the Fourier
theorem.

Theorem 2. Let n — positive integer, r is a prime number.
Let 𝜐 = 𝑜𝑟𝑑U(𝑛) - order n modulo r. Let S be the set of s
integers such that 𝑔𝑐𝑑(𝑛, 𝑏 − 𝑏_) = 1 for different 𝑏, 𝑏_ 	 ∈
𝑆. Assume that for every d that is a divisor 𝜙(𝑟)/𝜐

a𝑠 + 𝑞 − 1𝑠 d ≥ 𝑛)!ij(U)/4! (7)

and that for every 𝑏 ∈ 𝑆 around 𝑍M[𝑥]/𝑥U there will be fair
equality:

(𝑥 + 𝑏)M ≡ 𝑥M + 𝑏 (8)

Then n is a power of a prime number.

Start
algorithm

Read p which
has to be
checked

(x-1)^p-(x^p-1)

Print number is
prime

If (equation is
multiple of p)

Number is not
prime

else

Stop algorithm

 16 O. Kozachok: Improving AKS Algorithm…

© 2023 NSP
Natural Sciences Publishing Cor.

Note that the largest constraint is most likely for the
maximum d = <p (r) fv (if one omits the whole part).

When n is the prime root of the modulus r, then v=φ(r) and
the theorem is simplified:

Theorem 3. Let n — a natural number, and r is a prime
number. Let n be a simple root modulo r. Let S be the set of
s integers, such that 𝑔𝑐𝑑(𝑛, 𝑏 − 𝑏_) = 1 for different
𝑏, 𝑏_ 	 ∈ 𝑆. Suppose also that

a𝑆 + 𝜙(𝑟) − 1𝑆 d ≥ 𝑛)!ij(U)! (9)

and that for every𝑏 ∈ 𝑆 around 𝑍M[𝑥]/𝑥U − 1, there will be
the following equality:

(𝑥 + 𝑏)M ≡ 𝑥M + 𝑏 (10)

Then n is a power of a prime number.

Proof of the basic AKS theorem

First, the proof of Theorem 3 is shown, which is a simpler
version, where one assumes that n is the prime root of the
module r. Assume that p is a prime divisor of n. The author
formulates the proof of the theorem and divide it into
several lemmas.

Lemma 4. There are (і1, j2) ≠ (i 2 , j 2): i1 , i 2 , j 2, h ≥ 0,
such as for 𝑡 = 𝑛lm𝑝nm, 𝑢 = 𝑛lp𝑝np there are 𝑡 ≡ 𝑢(𝑚𝑜𝑑 𝑟),
t = u (mod r), moreover |𝑡 − 𝑢|⟨𝑛)!ij(U)!.

Proof of the lemma. It is known that xt=xu (mod xr - 1) only
when t = u(mod r). Let us consider the value (mod r) for
pairs (i, j), that meet the condition 0 ≤ 𝑖, 𝑗 ≤ !i𝜙(𝑟)!.
These values may be different: |𝑍U∗| = 𝜙(𝑟), whereas there
are more (i , j) pairs, because 1 + !i𝜙(𝑟)!

)
. Thus, based on

the Dirichlet principle, there will be different pairs
(𝑖8, 𝑗8) ≠ (𝑖), 𝑗)), such as 𝑛lm𝑝nm ≡ 𝑛lp𝑝np(𝑚𝑜𝑑 𝑟). Let
us mark 𝑡 = 𝑛lm𝑝nm and 𝑢 = 𝑛lp𝑝np. One should note that
1 ≤ 𝑡, 𝑢 ≤ 𝑛)!ij(U)!, thus, (𝑡 − 𝑢) < 𝑛)!ij(U)!.

Remark. One should know that t = u, then, concerning
𝑖8 ≠ 𝑖), n should be a power of p.

Lemma 5. Let G — set of polynomials {∏ (𝑥 +z∈{
𝑏)|}: 𝑒z ≥ 0}. Let t, u — numbers from the previous
lemma. For each polynomial 𝑔 ∈ 𝐺 there is 𝑔� = 𝑔� in
𝑍>[𝑥]/𝑥U − 1.

Proof of the lemma. Identity g l = g u — multiplicative.
Therefore, it is enough to show this for monomials g = x +
b.

Because for 𝑏 ∈ 𝑆

(𝑥 + 𝑏)M ≡ 𝑥M + 𝑏(𝑚𝑜𝑑 𝑛, 𝑥U − 1), (11)

then

(𝑥 + 𝑏)M ≡ 𝑥M + 𝑏(𝑚𝑜𝑑 𝑝, 𝑥U − 1) (12)

Substituting 𝑥M� instead of x , one gets:

a𝑥M� + 𝑏d
M
≡ 𝑥M��m + 𝑏 a𝑚𝑜𝑑 𝑝, 𝑥M�U − 1d														 (13),

because 𝑥U − 1|𝑥QU − 1,

a𝑥M� + 𝑏d
M
≡ 𝑥M��m + 𝑏(𝑚𝑜𝑑 𝑝, 𝑥U − 1) (14)

and therefore, by induction on і:

(𝑥 + 𝑏)M� = 𝑥M� + 𝑏(𝑚𝑜𝑑 𝑝, 𝑥U − 1) . (15)

Given the fact that w (x p) ≡ w(x) p (mod p), one gets:

(𝑥 + 𝑏)M�>� = a𝑥M� + 𝑏d
>�
= 𝑥M�>� + 𝑏(𝑚𝑜𝑑 𝑝, 𝑥U − 1)

 (16)

Since x r = 1 and t = u (mod r), then

(𝑥 + 𝑏)� = 𝑥� + 𝑏 = 𝑥� + 𝑏 = (𝑥 + 𝑏)�(𝑚𝑜𝑑 𝑝, 𝑥U −
1) (17)

3 Results

Improving AKS method

The AKS algorithm can be improved in several ways by
weakening the required estimates. As a result, one can
improve the time complexity of the algorithm (by a
constant), because to prove the theorem requires smaller
parameters r, s, and then one will have fewer calculations to
perform. Most of the amendments concern the estimates of
one of the proofs.

Corrections when finding u, t

Lemma 4 shows what one can find u ≡ t (mod r) of type
𝑛l𝑝l, 𝑖, 𝑗 ≥ 0, such that |𝑢 − 𝑡| < 𝑛)!ij(U)!. One can make
the following improvements.

One should note that in ��
[�]

�(�)
 raising the polynomial to the

pth degree is a reversible	
𝑛
= 47940917743537973692644475812229992529786814872499245562292570755330643813134833171	
00458499922259011023504448867777071492685879122518530652291843944762804120812191729618	
87681039791349635530458534138304162846593055485126172037102380279251953595226831353710	
55658904063286578635833582214067827360654259330234894372332159730250159696606450783603	
91073101715445822433684928993232433968828438559337786465588280324886300918982672383912	
9681831756854480239463853251795610189200537854685347952906322421388521503

For a given number n, 𝑟 = 2755759; 𝜙(𝑟) = 𝑜U(𝑛) =
27555758, (20)

𝑖 = 𝑗 = 0.047𝜙(𝑟) = 129520, (21) 𝑑 = 0.5𝜙(𝑟) =
1377879, (22)

𝑙𝑜𝑔)(0.5 ⋅ 129520) = 𝑙𝑜𝑔)(0.5 ⋅ 129520) =
1581626.22, and 𝑙𝑜𝑔)(1377897) = 1581407.72.

The set S1 is presented as follows.

Assume that 𝑛 < 10�<< = 28��<. Then √𝑛 < 2�)�.

Let us consider the number 2 in the following form: 2)�� <
√𝑛. Then 2, 2), 2�, 2�, 28�, 2�), 2��, 28)�, 2)��, 2�8) ∈ 𝑆8

Appl. Math. Inf. Sci. 17, No. 1, 13-20 (2023)/ http://www.naturalspublishing.com/Journals.asp 17

 © 2023 NSP
 Natural Sciences Publishing Cor.

Let us consider the number 3 in the following form: 3)�� <
√𝑛. It follows that
3, 3), 3�, 3�, 38�, 3�), 3��, 38)�, 3)��, 3�8) ∈ 𝑆8

operation, since the size of the multiplicative
group 𝑝4|� � − 1, then:

(𝑤(𝑥)>)>��� � = 𝑤(𝑥)>��� � =
𝑤(𝑥)>��� �78𝑤(𝑥) = 𝑤(𝑥) (18)

Let us suppose that 𝑔�>� = 𝑔�>� ⇒ 𝑔� = 𝑔�.
Therefore, it suffices to consider t, u of type (𝑛/𝑝)l𝑝n,
moreover n/p is integer. Replacing 𝑛l𝑝l with (𝑛/𝑝)l𝑝n
leads directly to the estimate 𝑢, 𝑡 ≤ 𝑛!ij(U)!.

Thus, one should check whether n is an indicator
of prime number power. With a positive solution of the
algorithm, n is a composite number (Figure 1).

Let us find the smallest prime number 𝑟 ≥ 3. Let
us choose the following integers:

d 0 ≤ 𝑑 ≤ 𝜙(𝑟) − 1	
0 ≤ 𝑖 ≤ 𝑑	

0 ≤ 𝑗 ≤ 𝜙(𝑟) − 1 − 𝑑 (19)

The author chooses S that satisfies the requirement

a2𝑆𝑖 d a𝑑𝑖 d �
2𝑆 − 𝑖
𝑗 � �𝜙(𝑟) − 1 − 𝑑𝑗 � ≥ 𝑛ij(U)/�. Let us

define the set

𝑆8 = 2, 2), … . , 2)�� ; 3, 3), … . , 3)�� ; 5, 5), … . . , 5)�� ;

𝑏, 𝑏), , 𝑏)�� . One should note that the sum of a series
(set) is equal to 𝑆8 = ∑ (𝑢Q + 1)�

Q¢8 .

Let us choose a natural number of 500 orders and
investigate it using the advanced AKS algorithm. To test,
the author uses the simplest Fermat method by dividing by
prime numbers. Let us generate the most probable prime
number:

Number 4 is 2) and it will not be considered, as it has been
presented above.

For number 5: 5)�� < √𝑛. Then
5, 5), 5�, 5�, 58�, 5�), 5��, 58)�, 5)��, 5�8) ∈ 𝑆8 . For other
numbers, the author checks similarly.

It follows that

𝑔𝑐𝑑(𝑛, |𝑏 − 𝑏_|) = 1, 𝑓𝑜𝑟𝑎𝑙𝑙pairwise differentb, b' ∈ S1 ;

𝑔𝑐𝑑(𝑛, |𝑏 + 𝑏_|) = 1, 𝑓𝑜𝑟𝑎𝑙𝑙pairwise differentb, b' ∈ S1

𝑔𝑐𝑑(𝑛, |𝑏𝑏_ − 1|) = 1, 𝑓𝑜𝑟𝑎𝑙𝑙b, b' ∈ S1

𝑔𝑐𝑑(𝑛, |𝑏𝑏_ + 1|) = 1, 𝑓𝑜𝑟𝑎𝑙𝑙b, b' ∈ S1

𝑏M78 = 1𝑚𝑜𝑑 𝑛𝑓𝑜𝑟𝑎𝑙𝑙𝑏 ∈ 𝑆8

(𝑥 − 𝑏)M = 𝑥M − 𝑏(𝑚𝑜𝑑 𝑛, 𝑥U − 1)𝑓𝑜𝑟𝑎𝑙𝑙𝑏 ∈ 𝑆8

Table 1. Testing the adequacy of the advanced AKS
algorithm
Range n Prime numbers Test time, s
22 <n< 216 12 0.1005
216 <n< 264 32 0.1082
264 < n < 2128 48 1.0006
2128 < n < 2256 50 1.2039
2256 < n < 2512 256 2.3089

Fig. 2. Comparative characteristics of Miller-Rabin
algorithms and AKS algorithm

Let us consider arbitrary ranges of prime numbers
presented in Table 1, for example, in the number of 10,000
random numbers each. All numbers were tested according
to the Miller-Rabin algorithm and using the advanced AKS
test (Figure 2). The Miller–Rabin primality test or Rabin–
Miller primality test is a probabilistic primality test:
an algorithm which determines whether a given number
is likely to be prime. It is of historical significance in the
search for a polynomial-time deterministic primality test.
Its probabilistic variant remains widely used in practice, as
one of the simplest and fastest tests known.

The maximum testing time was 2.3089 s. All 50,000 tests
show that the two algorithms give consistent results. The
error of calculations according to the Miller-Rabin test and
the improved AKS algorithm is zero in all cases. An
arbitrary set of basic numbers according to two algorithms
is 22 prime numbers.

4 Discussion
It is known that tests to establish the simplicity of numbers,
including in cryptographic schemes, face difficulties related
to the execution time of the algorithm [15,17,18]. The
author has proposed an improvement of the AKS algorithm
for the set of integers represented by consecutive squares.
The original AKS algorithm pays more attention to
obtaining the best execution time, and therefore differs in
some respects from the one formulated in this paper. In
statements instead of “not more than r – 1”, they indicate “n

ot more than 2√𝑟 𝑙𝑜𝑔) 𝑛”. To see this, one would also need
to make some changes to the previous results, for example,
as a result, 2.25 hypothesis l > t-1 can be replaced by a
weaker condition 𝑙 ≥ 2√𝑡 𝑙𝑜𝑔) 𝑛 − 1. All this leads to the
optimization of the execution time in the algorithm,
because one can replace the limit r of the third step by
2√𝑟 𝑙𝑜𝑔) 𝑛 < 𝑟. In addition, it should be noted that it is not
really necessary to require the primacy of r. [9] states that

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6

t,s

nu
mb

ers AKS M-R
AKS impr

 18 O. Kozachok: Improving AKS Algorithm…

© 2023 NSP
Natural Sciences Publishing Cor.

one can study irreducible factors r modulo the prime
number p, and r and p are mutually prime, and Lemma 2.29
will still be tested (although the proof becomes much more
complicated). Given that this lemma is the only place in the
proof of Theorem 2, where the primacy of r is applied, one
concludes that this assumption can be excluded from the
theorem and, consequently, from the algorithm [3]. Again,
this speeds up the algorithm for two reasons: 1. One can do
without checking the simplicity on r (in this case the
Eratosthenes sieve) 2. The smallest positive integer r that
checks that the order (n) > 4 (log2 n)2 cannot be simple and
is therefore found earlier than in the case of its simplicity
requirement. Note that step 2 is accelerated. In the literature
on efficient algorithms, one can find information on other
AKS improvements using the most well-known polynomial
arithmetic algorithms [3]. Usually, the same problem can
have different algorithms that solve it, so one needs to
somehow compare them to know which one is most
appropriate [19,20]. Intuitively, algorithmic complexity is a
theoretical metric that is applied to algorithms. The
comparison between algorithms can be approached in two
main ways: temporal complexity (the time required by the
algorithm to solve the problem) and spatial complexity (the
amount of memory required by the algorithm)
[11,21,22,23,24]. In the current study, the author limited
themselves to temporal complexity, so when this is about
ordinary complexity, this is about temporal complexity.
Thus, the author concludes that the algorithmic complexity
is the number of (temporary) resources required by the
algorithm to solve the problem, and, therefore, allows one
to determine the effectiveness of this algorithm. The
complexity of a problem is defined as the complexity of the
best algorithm that solves it, and its study is known as
complexity theory [25,26,27,28]. To understand these
definitions, it is necessary to introduce the concepts of
algorithm execution time and asymptotic growth. In
Bernstei [8], the improvements provided by other
researchers in this field are analyzed. Shortly after Agrawal
et al. [4] published their paper, several people developed
improvements to this algorithm. Initially, with adjustments
made by Lenstra and Pomerance [29], AKS was set for 𝑟 =
𝑂%(𝑙𝑜𝑔) 𝑛)�

¤�*. Later, they also made changes to the
algorithm of Berstein, as well as Berrizbeitia [8]. The basic
idea is essentially the same as in AKS, but another Q
polynomial is used to prove congruence in step 3. This
significantly improves execution time, but instead makes it
much more difficult to prove.

5 Conclusions

The advanced AKS algorithm provides an effective
approach to solving the global problem of proving the
simplicity of integers. The author has improved the original
AKS algorithm, as it is characterized by algorithm
complexity and difficulties in implementing calculations.
High reliability can be achieved with a public key scheme
based on the discrete logarithm of an elliptic curve when

the number n of 500 orders is of interest. An advanced
algorithm can be used on a supercomputer to test the
simplicity of n. However, this type of complete algorithms
is not feasible for RSA (Rivest-Shamir-Adleman algorithm)
in electronic transactions. The analysis of necessary and
sufficient conditions for AKS is presented in the article and
the equivalence transformation in the algorithm equations is
performed using the little Fermat theorem. An advanced
AKS algorithm for checking integers by sequential
squaring in the form of squares
𝑏, 𝑏), 𝑏�, 𝑏�, 𝑏8�, 𝑏�), 𝑏��, 𝑏8)�, 𝑏)��, 𝑏�8) ∈ 𝑆8 is presented.
It is proved that these algorithms can be applied to a
number
−𝑏,−𝑏),−𝑏�,−𝑏�,−𝑏8�, −𝑏�), −𝑏��, −𝑏8)�, −𝑏)��, −𝑏�8) ∈
𝑆8. Thus, the algorithm can be used to test twice as many
numbers. Accordingly, the computational complexity of the
algorithm is halved. It is proved that the developed
algorithm can be represented in the form of the Miller-
Rabin algorithm with two additional restrictions when
narrowing the set of base numbers. The results of
experimental studies have shown that the efficiency of the
advanced AKS algorithm may be higher than the Miller-
Rabin algorithm and is more suitable for practical
application.

Acknowledgments

Not applicable.

Declaration of conflicting interests

The author declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of
this article.

Funding

The author received no financial support for the research,
authorship, and/or publication of this article.

Data availability

Data will be available on request.

References

[1] K. Ahmad, A. Kamal and K. A. B. Ahmad, Prime
number, in Emerging security algorithms and
techniques. K. Ahmad, M. N. Doja, N. I. Udzir and
M. Pratap, Eds. Chapman and Hall/CRC, New York:
27-45, (2019).

[2] B. N. Tiwari, J. K. Kuipo, J. M. Adeegbe and N.
Marina, Optimized AKS primality testing: a
fluctuation theory perspective, Cryptography, 3, 12
(2019).

[3] D. G. Dimitrov, On the software coputation of the
formulae for the n-th prime number, Notes Number
Theory Discrete Math., 25, 198-206 (2019).

Appl. Math. Inf. Sci. 17, No. 1, 13-20 (2023)/ http://www.naturalspublishing.com/Journals.asp 19

 © 2023 NSP
 Natural Sciences Publishing Cor.

[4] M. Agrawal, N. Kayal and N. Saxena, PRIMES is in
P, Ann. Math., 160, 781-793 (2004).

[5] H. L. Chan and M. Norrish, Mechanisation of the
AKS algorithm, J. Autom. Reason., 65, 205-256
(2021).

[6] F. Bornemann, PRIMES is in P: a breakthrough for
«Everyman», Notices Am. Math. Soc., 50, 545-553
(2003).

[7] D. Garcia-Martin, E. Ribas, S. Carrazza, J. I. Latorre
and G. Sierra, The Prime state and its quantum
relatives, Quantum, 4(371) (2020), doi: 10.22331/q-
2020-12-11-371.

[8] D. J. Bernstein, Proving primality in essentially
quartic random time, Mathematics of Computation,
76, 389-403 (2007).

[9] F. Qin, L. Yao, C. Lu, C. Li, Y. Zhou, C. Su, B. Chen
and Y. Shen, Phenolic composition, antioxidant and
antibacterial properties, and in vitro anti-HepG2 cell
activities of wild apricot (Armeniaca Sibirica L. Lam)
kernel skins, Food Chem. Toxicol., 129, 354-364
(2019).

[10] B. N. Prasad Rao and M. Rangamma, A primality test
and a theorem on twin primes, in Mathematical
analysis and computing: ICMAC 2019. R. N.
Mohapatra, S. Yugesh, G. Kalpana and C. Kalaivani,
Eds. Springer, Singapore, 1-6 (2019).

[11] A. Hegde and P. Devaraj, Heuristics for the
construction of counterexamples to the agrawal
conjecture, in Mathematical analysis and computing.
ICMAC 2019. R. N. Mohapatra, S. Yugesh, G.
Kalpana and C. Kalaivani, Eds. Springer, Singapore,
537-543 (2019).

[12] H. Li and R. Wang, A primality test based on modular
hyperbolic curves, in 2020 2nd Int. Conf. Machine
Learning, Big Data and Business Intelligence
(MLBDBI), 32-35 (2020).

[13] M. Karatay, A. Aylanç and S. Ozkan, Algorithm on
finding twin prime numbers, J. Mod. Technol.Eng., 4,
190-194 (2019).

[14] H. L. Chan, Primality testing is polynomial-time: a
mechanised verification of the AKS algorithm. Ph.D.
dissertation, The Australian National University,
Australia (2019).

[15] R. Patgiri, M. D. Borah and L. D. Singh, SecretStore:
a secrecy as a service model to enable the Cloud
Storage to store user’s secret data, in 2021 26th IEEE
Asia-Pacific Conf. Commun. (APCC), 198-204
(2021).

[16] A. P. Ferreira and R. Sinnott, A performance
evaluation of containers running on managed
kubernetes services, in 2019 IEEE Int. Conf. Cloud

Comput. Technol. Sci. (CloudCom), 199-208 (2019).

[17] D. Huang and Y. Kang, Primality testing for numbers
of the form h· 2n±1, J. Syst. Sci. Complex., 32, 1473-
1478 (2019).

[18] F. O. Igbinovia and J. Krupka, Computational
complexity of algorithms for optimization of multi-
hybrid renewable energy systems, in 2018 Int. Conf.
Power System Technol. (POWERCON), 4498-4505
(2018).

[19] D. Symak, V. Sabadash, J. Gumnitsky and Z. Hnativ,
Z., Kinetic regularities and mathematical modelling of
potassium chloride dissolution, Chem. Chem.
Technol., 15, 148-152 (2021).

[20] S. Galbraith, J. Massimo and K. G. Paterson, Safety in
numbers: on the need for robust Diffie-Hellman
parameter validation, in IACR International
Workshop on Public Key Cryptography. D. Lin and
K. Sako, Eds. Springer, Cham, 379-407 (2017).

[21] F. Mechkene, An efficient algorithm to find all primes
in a given interval, Turk. J. Math. Comput. Sci., 11,
74-77 (2019).

[22] M. R. Albrecht, J. Massimo, K. G. Paterson and J.
Somorovsky, Prime and prejudice: primality testing
under adversarial conditions, in Proc. 2018 ACM
SIGSAC Conf. Comput. Commun. Secur., 281-298
(2018).

[23] V. Sabadash, J. Gumnitsky and O. Lyuta, Combined
adsorption of the copper and chromium cations by
clinoptilolite of the sokyrnytsya deposit, J. Ecol. Eng.,
21, 42-46 (2020).

[24] B. K. Yusuf and K. A. B. Mahmood, Towards
cryptanalysis of a variant prime numbers
algorithm, Comput. Sci., 5, 14-30 (2020).

[25] D. Buell, Mathematics, computing, and arithmetic,
in Fundamentals of Cryptography. Undergraduate
Topics in Computer Science. I. Mackie Ed. Springer,
Cham, 99-122 (2021).

[26] A. Adve, C. Robichaux and A. Yong, Computational
complexity, Newton polytopes, and Schubert
polynomials, arXiv:1810.10361, 1, 1-12 (2018).

[27] K. Knežević, Generating prime numbers using
genetic algorithms, in 2021 44th Int. Convention
Inform. Commun. Electronic Technol. (MIPRO),
1224-1229 (2021).

[28] A. Beketaeva and A. Naimanova, Flow structure of
the transverse jet interaction with supersonic flow for
moderate to high pressure ratios. Int. J. Mech., 12, 88-
95 (2018).

 20 O. Kozachok: Improving AKS Algorithm…

© 2023 NSP
Natural Sciences Publishing Cor.

[29] H. W. Lenstra and C. Pomerance, A rigorous time
bound for factoring integers, J. Am. Math. Soc., 5,
483-516 (1992).

Oleksandra Kozachok -
Department of Algebra and
Computer Mathematics, Taras
Shevchenko National University
of Kyiv, Kyiv, Ukraine,
Volodymyrska 60, 03022.

