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Abstract: Agrawal-Kayal-Saxena (AKS) theorem was proved, from which the above-mentioned algorithm is directly 
derived. The study has shown that the problem of simplicity is in the complexity class P of polynomial problems. An 
advanced AKS algorithm is proposed, which will simplify the initial AKS algorithm and ensure its implementation to 
determine the simplicity of integers. To implement this task it is necessary to reduce algorithm computational complexity. 
The block diagram of the algorithm for performing the advanced AKS test is presented. The theorems for prime numbers 
presented in the form of polynomials were formulated and proved. The AKS algorithm consisting of two phases is 
implemented: at the first stage, the corresponding parameters r and s were found, and at the second stage, the identity for 
different values of b presented in the form of consecutive squares was checked. The adequacy of the algorithm for 
checking numbers for simplicity is proved by the example of a generated arbitrary number of 500 orders. Comparative 
characterization of the improved AKS test and the Miller-Rabin test was carried out. 50,000 tests were conducted. The 
maximum test time was 2.3089 s. 
Keywords: AKS algorithm, Miller-Rabin test, prime numbers, theorem, lemma 
 
1 Introduction  
The problem of estimating the distribution of prime 
numbers and finding them has been relevant since the time 
of Euclid. The formal relations presented in [1] to the 
mechanisms of forming composite numbers of form {6k ± 
1}, k = 1, 2, 3, ... allowed substantiating and implementing 
new, more productive algorithms, simple numbers on 
arbitrary intervals of natural series, as well as proving 
Legendre and Brocard hypotheses, confirming Bertrand's 
postulate and linking other interval problems [1]. The 
obtained interval estimates are used to improve algorithms 
for information protection and encryption/decryption with 
prime numbers. Modern cryptography requires a large 
random prime in many situations. An example is the RSA 
cryptosystem. Integer simplicity checking is an algorithm 
that determines whether an input number is prime. All 
simplicity tests, in fact, look for a sign of the number 
complexity. If not found, they answer that the number is 
prime. There are usually two types of simplicity tests [2]: 

determined - issue a certificate of superiority; they answer 
that the number n given at the input is prime only if it really 
is; probabilistic - they omit some complex numbers 
(indicating their primacy), but they are never wrong in the 
case of prime numbers. 

There is a significant difference between the statement that 
a number is complex (due to the failure of the simplicity 
test) and the indication of its distribution (factorization). In 
particular, there is an effective (polynomial) algorithm for 

checking simplicity, while the still known factorization 
algorithms are much slower [3]. 

The naive test of simplicity is the simplest deterministic test 
of simplicity [3]. The number n given at the input is 
separated m = 2,3, ..., !√𝑚!. If the remainder is 0 in any 
division, the test returns that n is complex, otherwise n is 
simple. Note that if n is complex, one also finds its 
nontrivial divisor. Unfortunately, this is a very slow method 
of testing simplicity and it requires 𝑂%√𝑛 𝑙𝑔) 𝑛* steps [3]. 

Probability tests for simplicity work according to this 
scheme: 

One chooses a random number that matches the condition 
a∈ {0,1,2,…, n − 1}. 

One checks the identity of the numbers a and n depending 
on the specific test. If the identity is false, then n is complex 
and a is a witness of complexity (but not necessarily a 
divisor of n). If the identity is true, then a passes the test 
(which does not necessarily mean that it is the first) [3]. 
Agrawal et al. [4] demonstrated the first effective O (lg12n) 
deterministic simplicity test. After some processing, this 
algorithm works on O (lg6n). However, in practice, this 
algorithm works much slower than fast probability tests. On 
the otherhand, if the generalized Riemann hypothesis is 
true, then every odd complex number n has a witness of 
complexity b in the Miller-Rabin test, so 0 <b <2log2n. This 
would mean that the Miller-Rabin test is deterministic and 
works very quickly. In Chan and Norrish, the AKS 
simplicity algorithm is described [5]. This algorithm was 
first published in “PRIMES is in P” [4], [6]. This is a 
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breakthrough in terms of computational complexity theory, 
as AKS is the first fully deterministic polynomial test of 
simplicity [7]. The algorithm itself is simple and it is not 
difficult to prove its correctness. The AKS method is 
considered in many works, in particular, in Dimitrov [3]. 
This paper treats the problem based on the original article 
and the work of Bernstein [8], which gives a good overview 
of AKS improvements. First, the theorems underlying the 
AKS method will be formulated and proved. In practice, it 
turns out that in almost all cases, several Miller-Rabin tests 
are enough. For example, it has been estimated that there is 
only one compound odd number less than 2.5⋅1010, namely 
3215031751, which is very pseudo-simple for bases 2,3,5 
and 7. However, mathematicians are still looking for quick 
deterministic simplicity tests. Most recently, in 2002, 
Agrawal et al. [4] demonstrated the first effective O (lg12n) 
deterministic simplicity test. After some processing, this 
algorithm works on O (lg6n)). In practice, this algorithm 
works much slower than fast probability tests. On the other 
hand, if the generalized Riemann hypothesis is true, then 
every odd complex number n has a witness of complexity b 
in the Miller-Rabin test, so 0 <b <2log2n. This would mean 
that the Miller-Rabin test is deterministic and works very 
quickly [9]. The AKS algorithm allows one to get the result 
of checking a number for simplicity and determine whether 
the number is prime or compound. The advantage of the 
method is that the result of checking the number for 
simplicity is not probabilistic, and the method itself is not 
based on unproven assumptions [3].  

The theoretical importance of the AKS algorithm lies, in 
fact, in solving an important mathematical problem that has 
been discovered for over 2,000 years. As for the practical 
question, the biggest application is to generate 
cryptographic keys, because it is necessary to calculate very 
large prime numbers. Several sources were used to compile 
this report [3]. The main contribution of Agrawal et al. [4] 
is to demonstrate the correctness and efficiency of the AKS 
algorithm. In contrast to the original article [6] and the 
book [10], this paper uses algebraic structures of groups, 
rings and fields, which naturally arise in the study of this 
problem [3]. The classical AKS simplicity verification 
algorithm is used to determine elliptic curve theory results, 
with special emphasis on the properties of isogeny between 
curves (Velu’s theorem), and toThe theoretical importance 
of the AKS algorithm lies, in fact, in solving an important 
mathematical problem that has been discovered for over 
2,000 years. As for the practical question, the biggest 
application is to generate cryptographic keys, because it is 
necessary to calculate very large prime numbers. Several 
sources were used to compile this report [3]. The main 
contribution of Agrawal et al. [4] is to demonstrate the 
correctness and efficiency of the AKS algorithm. In 
contrast to the original article [6] and the book [10], this 
paper uses algebraic structures of groups, rings and fields, 
which naturally arise in the study of this problem [3]. The 
classical AKS simplicity verification algorithm is used to 
determine elliptic curve theory results, with special 

emphasis on the properties of isogeny between curves 
(Velu’s theorem), and to construct the extension of the 
function body from Kuven and Lervier elliptic cycles [3]. 
The author presented an elliptical criterion of simplicity 
[10], the ultimate goal of which was to present the 
algorithm “Elliptical AKS”, in particular the construction of 
a corresponding instance of an elliptical cyclic ring using 
the theory of complex multiplication. The algorithm 
proposed by Lenstra [10] is a variant of the original AKS 
test [3]. This is not the most effective, but the easiest way to 
prove the simplicity of numbers. This algorithm can be 
used when the input number is a prime number in decimal 
notation [10]. Bernstein’s advanced AKS algorithm can 
perform calculations in a few tens of seconds [8]. For 
primes above 40, this procedure will take up to several 
hours. After a thorough review of the improved version by 
Bernstein, Jin Zhengping, and others, improved algorithms 
were proposed, but they also had some shortcomings. 
However, the author noted that the algorithm still needs to 
be improved so that it can be used in practice [11,12,13,14]. 
None of the existing AKS algorithms is suitable for 
practical applications for security reasons, as it is 
impossible to achieve completeness of the algorithm 
without a huge amount of time to calculate [15,16].  

The purpose of this study is to improve the original AKS 
algorithm to provide an efficient approach to solving the 
global problem of proving the simplicity of integers. 

 To achieve this goal, it is necessary to solve the following 
tasks: 

- perform an analysis of the necessary and sufficient 
conditions for the AKS; 

- perform an equivalence transformation in the equations of 
the algorithm using Fermat's little theorem; 

- present an improved AKS algorithm for checking integers 
by successive squaring; 

- prove that the developed algorithm can be represented as 
the Miller-Rabin algorithm with two additional restrictions 
when narrowing the set of base numbers. 

2 Methods and materials 

The problem of simplicity is a problem of a solution, and 
the author of the article consider a deterministic algorithm 
that solves it (AKS algorithm). If the study proves that this 
algorithm is also polynomial, then the simplicity problem is 
in P. The study will focus solely on seeing that AKS is 
polynomial. The study will not delve into the calculation of 
the best execution time but will overestimate the number of 
steps taken. Then, this will be about AKS improvements 
that will speed up the algorithm. To see that the algorithm 
is solved in polynomial time, one of the things the study 
needs to prove is that in step 2 the number r does 
notbecome too large. To do this, the following notation was 
entered.  
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Designation 1. Let 𝑃(𝑥) 	= 	𝑎4𝑥4 	+	𝑎678𝑥678 	+ ⋯	+
	a)𝑥) 	+	𝑎8x	 +	𝑎< 	∈ 	 Z>[𝑥]	and	P(𝑥)                   (1)                                      

Let P(x) be a polynomial of degree less than or equal to d, 
the coefficients of which 𝑎і ∈ 𝑍> are classes modulo p of 
the coefficients 𝑎і ∈ 𝑍>for P(x) to all 𝑎і ∈ {1,2, … , 𝑛}. 
Thus:  

𝑃(𝑥) 	= 	𝑎4𝑥4 	+	𝑎678𝑥678 	+ ⋯	+	a)𝑥) 	+	𝑎8x	 +
	𝑎< 	∈ 	 Z>[𝑥]                                               (2) 

Now it is needed to formulate and prove the desired 
theorem. 

A block diagram implemented in Python was used to test 
sets of numbers for simplicity (Figure 1). 

 
Fig. 1. Block diagram of the algorithm for performing the 
advanced AKS test 

Source: Mathematical bases of AKS method 

Briefly, the block diagram can be explained as follows. 
After the start of the algorithm, the polynomiality of the 
number is checked. If the number is polynomial, then the 
number is prime, and if it is not polynomial, then it is not 
prime. 

Assume that for a prime number then n then 𝑤(𝑥)M ≡
𝑤(𝑥M) (mod n). Especially for monomony w {x) = x – b, 
the following takes place: 

(𝑥 − 𝑏)M = 𝑥M − 𝑏M = 𝑥M − 𝑏 (mod n)               (3) 

Such congruence of polynomials does not occur when n is a 
composite number. In fact, when a prime number p is 
divisible by n to the power of a, coefficients at 𝑥QM/>S  of 
polynomial (𝑥 − 𝑏)M is not divisible by p for gcd (k, n) = 1. 
It is not possible to calculate the whole polynomial 
(𝑥 − 𝛼)M, since it has an exponential number of 
coefficients. However, it is possible to test the modulus of 
equality by some polynomial of degree r. 

(𝑥 − 𝛼)M = 𝑥M − 𝛼 (mod n, (𝑥U − 1)                          (4) 

Polynomial (𝑥U − 1) was chosen for its special properties. 
If one chooses a random polynomial of degree r instead, 
one would get a fairly strong probability test, and therefore 
one can use the property (𝑥U − 1) in the proof. In addition, 
one proceeds from the fact that the calculation of the 
module (𝑥U − 1) is very easy to perform. 

The AKS algorithm mainly consists of two phases: in the 
first stage the corresponding parameters r and s are found, 
in the second stage the identity 1 is checked for the 
presence of s different values of b. If the number n passes 
all these tests, it must be an indicator of the prime number 
degree 𝑛 = 𝑝W, which can be pre-checked separately. Thus, 
the theorem can be formulated: 

Theorem 1. Let the n — a positive integer, q and r are 
prime numbers such that q|r – 1 and 𝑛(U78)/X mod 𝑟 ∉
{0.1}r 0 {0,1}. Let S — set of s integers, such that 
𝑔𝑐𝑑(𝑛, 𝑏 − 𝑏_) = 1 for different 𝑏, 𝑏_ 	 ∈ 𝑆. Suppose also 
that 

a𝑠 + 𝑞 − 1𝑠 d ≥ 𝑛)!√U!                                       (5) 

and that for every 𝑏 ∈ 𝑆 around 𝑍M[𝑥]/𝑥U − 1 equality 
comes true 

(𝑥 + 𝑏)M ≡ 𝑥M + 𝑏                                                    (6) 

Then n is a power of a prime number. 

Proof. The idea of proof is contained in [10]. The 
formulation of the theorem and a brief proof can be found 
in Dimitrov [3]. 

Based on this theorem, one can show a polynomially 
determined algorithm for checking the simplicity of a 
number. It is necessary to show that there are corresponding 
numbers q, r, s, except for polynomials. In Bernstein [8], 
reference was made to Fourier’s theorem that there are 
many primes r such that r-1 has a prime divisor q, bigger 
than r 2/3. This is a complex statement. In addition, based on 
well-established hypotheses, one can expect the existence 
of many prime numbers r, such that (r - l) / 2 is prime, 
which leads to a better estimate of the AKS algorithm 
complexity. Therefore, the AKS theorem has been 
improved, so there is no need to refer to the Fourier 
theorem. 

Theorem 2. Let n — positive integer, r is a prime number. 
Let 𝜐 = 𝑜𝑟𝑑U(𝑛) - order n modulo r. Let S be the set of s 
integers such that 𝑔𝑐𝑑(𝑛, 𝑏 − 𝑏_) = 1 for different 𝑏, 𝑏_ 	 ∈
𝑆. Assume that for every d that is a divisor 𝜙(𝑟)/𝜐 

a𝑠 + 𝑞 − 1𝑠 d ≥ 𝑛)!ij(U)/4!                     (7) 

and that for every 𝑏 ∈ 𝑆 around 𝑍M[𝑥]/𝑥U there will be fair 
equality: 

(𝑥 + 𝑏)M ≡ 𝑥M + 𝑏                                          (8) 

Then n is a power of a prime number. 

Start 
algorithm 

Read p which 
has to be 
checked 

(x-1)^p-(x^p-1) 

Print number is 
prime 

If (equation is 
multiple of p) 

Number is not 
prime 

else

Stop algorithm
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Note that the largest constraint is most likely for the 
maximum d = <p (r) fv (if one omits the whole part). 

When n is the prime root of the modulus r, then v=φ(r) and 
the theorem is simplified: 

Theorem 3. Let n — a natural number, and r is a prime 
number. Let n be a simple root modulo r. Let S be the set of 
s integers, such that 𝑔𝑐𝑑(𝑛, 𝑏 − 𝑏_) = 1 for different 
𝑏, 𝑏_ 	 ∈ 𝑆. Suppose also that 

a𝑆 + 𝜙(𝑟) − 1𝑆 d ≥ 𝑛)!ij(U)!                                   (9) 

and that for every𝑏 ∈ 𝑆 around 𝑍M[𝑥]/𝑥U − 1, there will be 
the following  equality: 

(𝑥 + 𝑏)M ≡ 𝑥M + 𝑏                                    (10) 

Then n is a power of a prime number. 

Proof of the basic AKS theorem 

First, the proof of Theorem 3 is shown, which is a simpler 
version, where one assumes that n is the prime root of the 
module r. Assume that p is a prime divisor of n. The author          
formulates the proof of the theorem and divide it into 
several lemmas. 

Lemma 4. There are (і1, j2) ≠ (i 2 , j 2): i1 , i 2 , j 2, h ≥ 0, 
such as for 𝑡 = 𝑛lm𝑝nm, 𝑢 = 𝑛lp𝑝np  there are 𝑡 ≡ 𝑢(𝑚𝑜𝑑 𝑟), 
t = u (mod r), moreover |𝑡 − 𝑢|⟨𝑛)!ij(U)!. 

Proof of the lemma. It is known that xt=xu (mod xr - 1) only 
when t = u(mod r). Let us consider the value (mod r) for 
pairs (i, j), that meet the condition 0 ≤ 𝑖, 𝑗 ≤ !i𝜙(𝑟)!. 
These values may be different: |𝑍U∗| = 𝜙(𝑟), whereas there 
are more (i , j) pairs, because 1 + !i𝜙(𝑟)!

)
. Thus, based on 

the Dirichlet principle, there will be different pairs 
(𝑖8, 𝑗8) ≠ (𝑖), 𝑗)), such as 𝑛lm𝑝nm ≡ 𝑛lp𝑝np(𝑚𝑜𝑑 𝑟). Let 
us mark 𝑡 = 𝑛lm𝑝nm and 𝑢 = 𝑛lp𝑝np. One should note that 
1 ≤ 𝑡, 𝑢 ≤ 𝑛)!ij(U)!, thus, (𝑡 − 𝑢) < 𝑛)!ij(U)!. 

Remark. One should know that t = u, then, concerning 
𝑖8 ≠ 𝑖), n should be a power of p. 

Lemma 5. Let G — set of polynomials {∏ (𝑥 +z∈{
𝑏)|}: 𝑒z ≥ 0}. Let t, u  — numbers from the previous 
lemma. For each polynomial 𝑔 ∈ 𝐺 there is 𝑔� = 𝑔� in 
𝑍>[𝑥]/𝑥U − 1. 

Proof of the lemma. Identity g l = g u — multiplicative. 
Therefore, it is enough to show this for monomials g = x + 
b. 

Because for 𝑏 ∈ 𝑆 

(𝑥 + 𝑏)M ≡ 𝑥M + 𝑏(𝑚𝑜𝑑 𝑛, 𝑥U − 1),                          (11) 

then 

(𝑥 + 𝑏)M ≡ 𝑥M + 𝑏(𝑚𝑜𝑑 𝑝, 𝑥U − 1)                           (12) 

Substituting 𝑥M�  instead of x , one gets: 

a𝑥M� + 𝑏d
M
≡ 𝑥M��m + 𝑏 a𝑚𝑜𝑑 𝑝, 𝑥M�U − 1d														 (13),  

because 𝑥U − 1|𝑥QU − 1, 

a𝑥M� + 𝑏d
M
≡ 𝑥M��m + 𝑏(𝑚𝑜𝑑 𝑝, 𝑥U − 1)                   (14) 

and therefore, by induction on і: 

(𝑥 + 𝑏)M� = 𝑥M� + 𝑏(𝑚𝑜𝑑 𝑝, 𝑥U − 1) .                       (15) 

Given the fact that w (x p ) ≡ w(x) p (mod p ), one gets: 

(𝑥 + 𝑏)M�>� = a𝑥M� + 𝑏d
>�
= 𝑥M�>� + 𝑏(𝑚𝑜𝑑 𝑝, 𝑥U − 1)                                                      

   (16) 

Since x r = 1 and t = u (mod r), then 

(𝑥 + 𝑏)� = 𝑥� + 𝑏 = 𝑥� + 𝑏 = (𝑥 + 𝑏)�(𝑚𝑜𝑑 𝑝, 𝑥U −
1)                                                (17) 

3 Results 

Improving AKS method 

The AKS algorithm can be improved in several ways by 
weakening the required estimates. As a result, one can 
improve the time complexity of the algorithm (by a 
constant), because to prove the theorem requires smaller 
parameters r, s, and then one will have fewer calculations to 
perform. Most of the amendments concern the estimates of 
one of the proofs. 

Corrections when finding u, t 

Lemma 4 shows what one can find u ≡ t (mod r) of type 
𝑛l𝑝l, 𝑖, 𝑗 ≥ 0, such that  |𝑢 − 𝑡| < 𝑛)!ij(U)!. One can make 
the following improvements. 

One should note that in ��
[�]

�(�)
 raising the polynomial to the 

pth degree is a reversible	
𝑛 
= 47940917743537973692644475812229992529786814872499245562292570755330643813134833171	
00458499922259011023504448867777071492685879122518530652291843944762804120812191729618	
87681039791349635530458534138304162846593055485126172037102380279251953595226831353710	
55658904063286578635833582214067827360654259330234894372332159730250159696606450783603	
91073101715445822433684928993232433968828438559337786465588280324886300918982672383912	
9681831756854480239463853251795610189200537854685347952906322421388521503 

For a given number n, 𝑟 = 2755759; 𝜙(𝑟) = 𝑜U(𝑛) =
27555758,                                                                  (20) 

𝑖 = 𝑗 = 0.047𝜙(𝑟) = 129520,       (21) 𝑑 = 0.5𝜙(𝑟) =
1377879,                                                   (22) 

𝑙𝑜𝑔)(0.5 ⋅ 129520) = 𝑙𝑜𝑔)(0.5 ⋅ 129520) =
1581626.22, and 𝑙𝑜𝑔)(1377897) = 1581407.72. 

The set S1 is presented as follows. 

Assume that 𝑛 < 10�<< = 28��<. Then √𝑛 < 2�)�.  

Let us consider the number 2 in the following form: 2)�� <
√𝑛. Then 2, 2), 2�, 2�, 28�, 2�), 2��, 28)�, 2)��, 2�8) ∈ 𝑆8 
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Let us consider the number 3 in the following form: 3)�� <
√𝑛. It follows that 
3, 3), 3�, 3�, 38�, 3�), 3��, 38)�, 3)��, 3�8) ∈ 𝑆8 

operation, since the size of the multiplicative 
group 𝑝4|� � − 1, then:  

(𝑤(𝑥)>)>��� � = 𝑤(𝑥)>��� � =
𝑤(𝑥)>��� �78𝑤(𝑥) = 𝑤(𝑥)                                           (18) 

Let us suppose that 𝑔�>� = 𝑔�>� ⇒ 𝑔� = 𝑔�. 
Therefore, it suffices to consider t, u of type (𝑛/𝑝)l𝑝n, 
moreover n/p is integer. Replacing 𝑛l𝑝l with (𝑛/𝑝)l𝑝n 
leads directly to the estimate 𝑢, 𝑡 ≤ 𝑛!ij(U)!.  

Thus, one should check whether n is an indicator 
of prime number power. With a positive solution of the 
algorithm, n is a composite number (Figure 1). 

Let us find the smallest prime number 𝑟 ≥ 3. Let 
us choose the following integers: 

d 0 ≤ 𝑑 ≤ 𝜙(𝑟) − 1	
0 ≤ 𝑖 ≤ 𝑑	

0 ≤ 𝑗 ≤ 𝜙(𝑟) − 1 − 𝑑                                             (19) 

The author chooses S that satisfies the requirement 

a2𝑆𝑖 d a𝑑𝑖 d �
2𝑆 − 𝑖
𝑗 � �𝜙(𝑟) − 1 − 𝑑𝑗 � ≥ 𝑛ij(U)/�. Let us 

define the set  

𝑆8 = 2, 2), … . , 2)�� ; 3, 3), … . , 3)�� ; 5, 5), … . . , 5)�� ; 

𝑏, 𝑏), . . . . , 𝑏)�� . One should note that the sum of a series 
(set) is equal to 𝑆8 = ∑ (𝑢Q + 1)�

Q¢8 . 

Let us choose a natural number of 500 orders and 
investigate it using the advanced AKS algorithm. To test, 
the author uses the simplest Fermat method by dividing by 
prime numbers. Let us generate the most probable prime 
number: 

Number 4 is 2) and it will not be considered, as it has been 
presented above. 

For number 5: 5)�� < √𝑛. Then 
5, 5), 5�, 5�, 58�, 5�), 5��, 58)�, 5)��, 5�8) ∈ 𝑆8 . For other 
numbers, the author checks similarly. 

It follows that 

𝑔𝑐𝑑(𝑛, |𝑏 − 𝑏_|) = 1, 𝑓𝑜𝑟𝑎𝑙𝑙pairwise differentb, b' ∈ S1 ; 

𝑔𝑐𝑑(𝑛, |𝑏 + 𝑏_|) = 1, 𝑓𝑜𝑟𝑎𝑙𝑙pairwise differentb, b' ∈ S1 

𝑔𝑐𝑑(𝑛, |𝑏𝑏_ − 1|) = 1, 𝑓𝑜𝑟𝑎𝑙𝑙b, b' ∈ S1 

𝑔𝑐𝑑(𝑛, |𝑏𝑏_ + 1|) = 1, 𝑓𝑜𝑟𝑎𝑙𝑙b, b' ∈ S1 

𝑏M78 = 1𝑚𝑜𝑑 𝑛𝑓𝑜𝑟𝑎𝑙𝑙𝑏 ∈ 𝑆8 

(𝑥 − 𝑏)M = 𝑥M − 𝑏(𝑚𝑜𝑑 𝑛, 𝑥U − 1)𝑓𝑜𝑟𝑎𝑙𝑙𝑏 ∈ 𝑆8 

Table 1. Testing the adequacy of the advanced AKS 
algorithm 
Range n Prime numbers Test time, s 
22 <n< 216 12 0.1005 
216 <n< 264 32 0.1082 
264 < n < 2128 48 1.0006 
2128 < n < 2256 50 1.2039 
2256 < n < 2512 256 2.3089 

 
Fig. 2. Comparative characteristics of Miller-Rabin 
algorithms and AKS algorithm 

Let us consider arbitrary ranges of prime numbers 
presented in Table 1, for example, in the number of 10,000 
random numbers each. All numbers were tested according 
to the Miller-Rabin algorithm and using the advanced AKS 
test (Figure 2). The Miller–Rabin primality test or Rabin–
Miller primality test is a probabilistic primality test: 
an algorithm which determines whether a given number 
is likely to be prime. It is of historical significance in the 
search for a polynomial-time deterministic primality test. 
Its probabilistic variant remains widely used in practice, as 
one of the simplest and fastest tests known. 

The maximum testing time was 2.3089 s. All 50,000 tests 
show that the two algorithms give consistent results. The 
error of calculations according to the Miller-Rabin test and 
the improved AKS algorithm is zero in all cases. An 
arbitrary set of basic numbers according to two algorithms 
is 22 prime numbers.  

4 Discussion  
It is known that tests to establish the simplicity of numbers, 
including in cryptographic schemes, face difficulties related 
to the execution time of the algorithm [15,17,18]. The 
author has proposed an improvement of the AKS algorithm 
for the set of integers represented by consecutive squares. 
The original AKS algorithm pays more attention to 
obtaining the best execution time, and therefore differs in 
some respects from the one formulated in this paper. In 
statements instead of “not more than r – 1”, they indicate “n 

ot more than 2√𝑟 𝑙𝑜𝑔) 𝑛”. To see this, one would also need 
to make some changes to the previous results, for example, 
as a result, 2.25 hypothesis l > t-1 can be replaced by a 
weaker condition 𝑙 ≥ 2√𝑡 𝑙𝑜𝑔) 𝑛 − 1. All this leads to the 
optimization of the execution time in the algorithm, 
because one can replace the limit r of the third step by 
2√𝑟 𝑙𝑜𝑔) 𝑛 < 𝑟. In addition, it should be noted that it is not 
really necessary to require the primacy of r. [9] states that 
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one can study irreducible factors r modulo the prime 
number p, and r and p are mutually prime, and Lemma 2.29 
will still be tested (although the proof becomes much more 
complicated). Given that this lemma is the only place in the 
proof of Theorem 2, where the primacy of r is applied, one 
concludes that this assumption can be excluded from the 
theorem and, consequently, from the algorithm [3]. Again, 
this speeds up the algorithm for two reasons: 1. One can do 
without checking the simplicity on r (in this case the 
Eratosthenes sieve) 2. The smallest positive integer r that 
checks that the order (n) > 4 (log2 n)2 cannot be simple and 
is therefore found earlier than in the case of its simplicity 
requirement. Note that step 2 is accelerated. In the literature 
on efficient algorithms, one can find information on other 
AKS improvements using the most well-known polynomial 
arithmetic algorithms [3]. Usually, the same problem can 
have different algorithms that solve it, so one needs to 
somehow compare them to know which one is most 
appropriate [19,20]. Intuitively, algorithmic complexity is a 
theoretical metric that is applied to algorithms. The 
comparison between algorithms can be approached in two 
main ways: temporal complexity (the time required by the 
algorithm to solve the problem) and spatial complexity (the 
amount of memory required by the algorithm) 
[11,21,22,23,24]. In the current study, the author limited 
themselves to temporal complexity, so when this is about 
ordinary complexity, this is about temporal complexity. 
Thus, the author concludes that the algorithmic complexity 
is the number of (temporary) resources required by the 
algorithm to solve the problem, and, therefore, allows one 
to determine the effectiveness of this algorithm. The 
complexity of a problem is defined as the complexity of the 
best algorithm that solves it, and its study is known as 
complexity theory [25,26,27,28]. To understand these 
definitions, it is necessary to introduce the concepts of 
algorithm execution time and asymptotic growth. In 
Bernstei [8], the improvements provided by other 
researchers in this field are analyzed. Shortly after Agrawal 
et al. [4] published their paper, several people developed 
improvements to this algorithm. Initially, with adjustments 
made by Lenstra and Pomerance [29], AKS was set for 𝑟 =
𝑂%(𝑙𝑜𝑔) 𝑛)�

¤�*. Later, they also made changes to the 
algorithm of Berstein, as well as Berrizbeitia [8]. The basic 
idea is essentially the same as in AKS, but another Q 
polynomial is used to prove congruence in step 3. This 
significantly improves execution time, but instead makes it 
much more difficult to prove. 

5 Conclusions 

The advanced AKS algorithm provides an effective 
approach to solving the global problem of proving the 
simplicity of integers. The author has improved the original 
AKS algorithm, as it is characterized by algorithm 
complexity and difficulties in implementing calculations. 
High reliability can be achieved with a public key scheme 
based on the discrete logarithm of an elliptic curve when 

the number n of 500 orders is of interest. An advanced 
algorithm can be used on a supercomputer to test the 
simplicity of n. However, this type of complete algorithms 
is not feasible for RSA (Rivest-Shamir-Adleman algorithm) 
in electronic transactions. The analysis of necessary and 
sufficient conditions for AKS is presented in the article and 
the equivalence transformation in the algorithm equations is 
performed using the little Fermat theorem. An advanced 
AKS algorithm for checking integers by sequential 
squaring in the form of squares 
𝑏, 𝑏), 𝑏�, 𝑏�, 𝑏8�, 𝑏�), 𝑏��, 𝑏8)�, 𝑏)��, 𝑏�8) ∈ 𝑆8 is presented. 
It is proved that these algorithms can be applied to a 
number 
−𝑏,−𝑏),−𝑏�,−𝑏�,−𝑏8�, −𝑏�), −𝑏��, −𝑏8)�, −𝑏)��, −𝑏�8) ∈
𝑆8. Thus, the algorithm can be used to test twice as many 
numbers. Accordingly, the computational complexity of the 
algorithm is halved. It is proved that the developed 
algorithm can be represented in the form of the Miller-
Rabin algorithm with two additional restrictions when 
narrowing the set of base numbers. The results of 
experimental studies have shown that the efficiency of the 
advanced AKS algorithm may be higher than the Miller-
Rabin algorithm and is more suitable for practical 
application. 
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