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Abstract: The world health organization (WHO) recommends breastfeeding is mandatory for two years. To support this

recommendation several research work have been done to suggest that breastfeeding has clear advantages, specially in eradicating

morbidity and mortality due to infectious diseases like pneumonia in childhood. Having these in consideration this work divides the

susceptible individuals in to two different classes depending on the level of adequate nutrition particularly breastfeeding to study the

transmission dynamics of Pneumonia. In addition the effect of hygiene care for children under five years is considered. The aim of

this work is to examine the effect of breastfeeding and hygiene care in reducing the risks associated with pneumonia. This studies also

compared breastfed with non-breastfed children that breastfed children have the highest protective immunity against infectious disease

(Pneumonia). Finally, we performed a large scale of numerical simulations to verify the theoretical work and the result of the simulation

reveals that hygiene care and infection reduction due to breastfeeding decreases the transmission dynamics of pneumonia disease.
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1 Introduction

Pneumonia is one of an acute respiratory infection disease
caused by pathogens (such as bacterial, viral, fungal) or
other pathogens [1]. Among it bacterial pneumonia is the
most common which is caused by Streptococcus
Pneumonia, also known as pneumococcus and it affects
the respiratory system specially lungs-particularly the
alveoli [2,3]. The alveoli are small air sacs in the lungs
that filled with pus or fluid in children with pneumonia,
resulting in difficult to breathe, painful breathing,
difficulty to intake oxygen, and ultimately a high risk of
death [4].

Globally among lower acute respiratory infections
(LARI) diseases, pneumonia and bronchiolitis, are a
leading cause of death among infants and children of
under five years of age which are parts of the population
[5]. As a data conducted from United Nations Children’s
Fund, in 2015 within an hour 100 children died due to
pneumonia and related causes, and in developing
countries, 20/100 of death due to pneumonia occur
compared to 4/100 in developed countries [3]. According
to the WHO(World Health Organization, 2021),
pneumonia killed 740180 children from under five years
in 2019 which accounts 14/100 of all death of children

under the age of 5 years old but 22/100 of all deaths in
children aged from one to five [6]. The majority of deaths
(99/100) due to pneumonia among children of less than
five years old occur in developing countries [7].

The risk factors associated with pneumonia incidence
and severity includes: parental smoking, malnutrition and
conditions of poverty, living in crowded conditions, lack
of breastfeeding or exclusive breastfeeding, pre-existing
illnesses, indoor air pollution, alcoholism and drug abuse
[1,3]. Since all the above increases a children
susceptibility to pneumonia, among thus lack of
breastfeeding is a vital one globally, especially in
developing countries [1]. The risk of mortality and
morbidity due to pneumonia and other infections can
increase in the infants who are not breastfeed at all or
partially breastfeed. For instance, according to WHO
45/100 of children deaths are associated with
under-nutrition like un-breastfeed [8,9].

While healthy children most of the time fight against
infection with their natural immunity, and children whose
immune systems are compromised are at high risk to
develop pneumonia. Since a children immune system may
be weakened either by malnutrition or undernourishment,
especially in infants who are not breastfed totally or
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exclusively breastfeed, then breastfeeding should be done
to any children as possible [6]. Whey protein is the main
element of breast milk that gives strengthens for infants’
immune system. This whey protein contains lactoferrin,
secretory IgA, lysozymes, and bifidus factor-which
ultimately protect breastfeed infants better than their
non-breastfeed counterparts [10]. Hence, breast milk is
undoubtedly the ideal food for a human child. It also
gives for children the best start in life. It is estimated that
over one million children die each year due to diarrhea,
respiratory and other infections because they are not
effectively breastfed or not breastfeed totally. Most of
children suffer from unnecessary illnesses (morbidity)
that they would not have if they were breastfeed.
Breastfeeding also helps to protect mothers’ health [11].
Low rates of breastfeeding has its own contribution on
infectious diseases (pneumonia) cases [12]. Effectively
breastfeeding decreases pneumonia cases among children
under-fives. Additionally feeding early infants with
human breastfeed increases brain growth and intelligence
quotients, and has an impact on mental development and
reduces the prevalence of necrotizing enterocolitis [10].

In developing countries non-breastfed children
experience a 14-fold increase in all-cause mortality
compared to those who are exclusively breast-fed for 6
months [13]. There are a few reasons why someone
should not or may not be able to breastfeed their baby.
For example, some parents cannot produce a healthy
breast milk supply, while others may take certain
medications or need to undergo a medical treatment that
is not breastfeeding safe. There are also a few medical
conditions that are not compatible with breastfeeding. In
addition, because of vertical transmission of infectious
diseases like HIV, Ebola, [14] and the like a mother can
pass the virus to his/her child through breastfeeding, in
this case breastfeed is not allowed and also some children
are not breastfeed due to death of mother during delivery
or after delivery due to different cases.

Mathematical model plays an important role to
understand easily the transmission dynamics of infectious
diseases such as pneumonia, cholera, HIV aids and so on.
The studies on these infectious diseases highlight how to
reduce or control the spread and predict its future damage
on the lives and economies of the country. Interestingly,
there are so many mathematical models developed on the
transmission dynamics and control mechanisms of
pneumonia infection, but non of them consider
susciptable variable as breastfeed and non-breastfeed to
show the impact of breastfeed on the reduction of
infectious diseases particularly pneumonia. Most of the
studies considered above did not consider a
compartmental approach which is used to develop the
mathematical model for pneumonia transmission
dynamics. The authors in [15,16], studied on the
transmission dynamics of infectious diseases using
mathematical model which gives a simple framework for
our understanding about the dynamics of infectious [17].

Very few research works have been done in the last
decade on the transmission dynamics of pneumonia
which are abound and flourishing in the following
literature [18,19], to cite a few and the references therein.
Additionally, [20] studied the effect of hygiene care and
breastfeeding by developing and analyzing MSEIR
deterministic model for the transmission dynamics of
pneumonia. But, none of the above scholars considered
and incorporated breastfeeding and un-breastfeeding as
two susceptible variables in their model with hygiene care
efficiency simultaneously to the best of the researcher’s
knowledge. Hence, we are interested by the
above-reviewed researches to undertake this study for
fulfilling this entire gap.

Generally, the rest of this paper is organized as
follows: In section two of this paper, mathematical model
is formulated, parameters and state variables are also
discribed therein. The third section of this study is
devoted to how to compute equilibrium points and the
basic reproductive number to deals with the local and
global stability analysis of both of the equilibrium points
followed by sensitivity analysis of the basic reproduction
is conducted. In the fourth part numerical simulation is
carried out. Lastly, discussions and conclusions are
provided.

2 Dynamic Model Formulation and

Description of Pneumonia Epidemic

Mathematical modeling is the best techniques which is
used to analyzing the epidemiology of a disease. For the
proposed model, the total population N(t) is divided into
five compartmental model according to their disease
status. These, different classes include the number of
susceptible individuals without breastfeeding (S1), the
number of susceptible individuals with breastfeeding
(S2), the number of carrier individuals (C), the number of
infected individuals (I) and the number of recovered
individuals (R).

Susceptible class is divided into two classes as
breastfeeding and un-breastfeeding childes. Note that
breastfeed susceptible children (S2) have better immune
to pneumonia comparing to the un-breastfeed susceptible
children (S1). Therefore, the un-breastfeed susceptible
children (S1) will be infected in contact with the infected
populations (C and I) with higher rate in comparison with
the breastfeed susceptible children (S2). Thus, the
transmission rate for un-breastfeed susceptible children
(S1) should be considered larger than this rate for
breastfeed susceptible childes (S2) and their force of
infection are respectively given as, λ1 = ψ((I +ωC)/N)
and λ2 = kλ1 where 0 < k ≤ 1 and k represents the
infection reduction of breastfeed susceptible children
relative to un-breastfeed ones.

The parameters λ1,λ2 ≥ 0, are shows the rate (force
of infection) at which a susceptible individual can be
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Fig. 1: Flow diagram of the S1S2CIR model

infected with pneumonia if he/she comes into effective
contact with an infected individual. A composite
parameter measuring the contact rate and the probability
of transmission upon contact is given by ψ = κβ ≥ 0
were β is a contact rate and κ is the probability of
effective contact rate.The term (I +ωC)/N in λ1 denotes
the density or prevalence of infected and carrier
individuals in the population where ω ∈ [0,1] is, the
reduction in transmissible of carrier individuals. Note that
the nonlinearity of the incidence rate is one of the key
features of dynamic infectious disease models, because to
model a population of individuals, the status of each
individual is required. The transmission dynamics of
pneumonia epidemic associated with the above five
compartments are illustrated in Figure 1 and their sum
gives as a total population size at time t which is denoted
by N(t) and given by:

N(t) = S1(t)+ S2(t)+C(t)+ I(t)+R(t) (1)

Here we assumed that once the un-breastfeed or
breastfeed children are infected, they cannot regain their
previous innate immunity at the beginning of recovery
period. Thus, the recovered individuals become
re-infected and joins the un-breastfeed susceptible class
due to lower immunity. Which mean that as an individuals
once infected by any infectious diseases and recovered
from it; during infection period they lose some amount of
their immunity and they cannot regain their previous
immunity at the beginning of their recovery duration.
Hence the recovered individuals can re-infected again and
joins S1 rather than S2 because of this conditions.
The non-linear mathematical model of pneumonia
epidemic from the above flow chart is given as:







































dS1
dt

= (1−π)b+ δR− (1−q)λ1S1 − µS1
dS2
dt

= πb− (1− q)kλ1S2 − µS2
dC
dt

= (1− q)ρλ1S1 +(1− q)kρλ1S2 − (1− p)ηI

−(σ + γ + µ)C
dI
dt

= (1− q)(1−ρ)λ1S1 +(1− q)(1−ρ)kλ1S2+
γC− (η +α + µ)I

dR
dt

= σC+ pηI− (µ + δ )R
(2)

With the following initial conditions

S1(0)≥ 0,S2(0)≥ 0,C(0)≥ 0, I(0)≥ 0,R(0)≥ 0 (3)

In this model,b represents recruitment rate of
individuals into the population where π is the proportion
of recruited (migrated) childes into the population, with a
fraction π breastfeed and the remaining 1 − π
un-breastfeed susceptible when entering the community.
Newly infected individuals from both of susceptible class
can be infected by force of infection and join carrier class
C with the probability of ρ or transformed to the infected
class I with probability of 1−ρ . The total population in
this model are decreased by two different rates µ and α ,
where µ denotes the rate of natural death that decreases
populations of all compartments. Where as α is the rate
of pneumonia induced death and which decreases only
the population of infected class. Additionally if the carrier
class shows disease symptom, then we can move it in to
the infected class with a rate of γ and move to recovery
class if they can gain natural immunity by a per capita
rate σ . The individuals in infected compartment move to
recovered class at η rate by treatment, with effectiveness
of treatment p of proportion of individuals move to the
recovered class or join the carrier compartment with (1-p)
of proportion by adapting the treatment. Finally those
who recover due to different treatment intervention or
their natural immunity can possibly lose the immunity
and be infected again, therefore they can rejoin the
susceptible group at the rate of δ . And q is the percentage
of effectiveness hygiene care with 0 ≤ q < 1.

3 Analysis of the model

3.1 Invariant region

Since the model given as a system on equation (2) shows
human beings, it is assumed that all parameters and state
variables in (2) are positive ∀t ≥ 0. In this region we
discuss the epidemiological sense of solution of (2) which
means the solution of the system should be well posed
and biologically meaning full in this region.

Theorem 1.The region Ω = {(S1,S2,C, I,R)∈R5
+ : N(t)≤

b
µ } is positively invariant under the flow induced by (2)

which means the corresponding should be well posed and

biologically meaning full in this region.

Proof: From the total population size at any time t we have:

dN

dt
= b− µ(S1+ S2 +C+ I+R)−αI (4)

From the (4) and equation (1) we have

dN

dt
= b− µN−αI (5)
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If mortality due to pneumonia doesn’t exist,then equation
(5) becomes:

dN

dt
= b− µN (6)

Use separation of variable and integrate both sides of
equation (6) with respect to t gives:

b− µN ≥ Ae−µt (7)

use the initial condition N(0) = N0 and apply some
rearrangement on (7) gives

N ≤
b

µ
−

b− µN0

µ
e−µt (8)

Therefore, the feasible steady states set of the model enters
and remain in the region

Ω =
{

(S1,S2,C, I,R) ∈ R5
+ : N(t)≤

µ

b

}

Therefore, the region Ω is a positively invariant set and
on this set the basic model is well posed
epidemiologically and mathematically. Hence, it is
sufficient to study the dynamics of the model in Ω .

3.2 Positivity of the solutions

This section is devoted to the non-negativity of the steady
state of the proposed model system (2)

Theorem 2.Let Ω = {(S1,S2,C, I,R) ∈ R5
+ : S1(0) >

0,S2(0) > 0,C(0) > 0, I(0) > 0,R(0) > 0} then the

steady state set S1,S2,C, I,R are all positive for all t ≥ 0.

Proof: We can verify this theorem by choosing any one
of equation from system (2) above. Let us take the first
equation of system (2)

dS1

dt
= (1−π)b+ δR− (1−q)λ1S1 − µS1

which implies

dS1

dt
≥−[(1− q)λ1− µ ]S1 (9)

Integrating both sides (9) with respect to t will give as:

S1(t)≥ Ae−((1−q)λ1−µ)t (10)

Using initial condition S1(0) = S10 and (10) we obtain:

S1(t)≥ S10e−((1−q)λ1−µ)t ≥ 0 where S10 = A.
In a similar fashion, the remaining equations of system (2)
can be proved and gives the following out puts:

S2(t)≥ S20e−((1−q)kλ1−µ)t ≥ 0 where S20 = ec2

C(t)≥C0e−(σ+γ+µ)t ≥ 0 where C0 = ec3

I(t)≥ I0e−(η+α+µ)t ≥ 0 where I0 = ec4

R(t)≥ R0e−(µ+δ )t ≥ 0 where R0 = ec5

which is the complete proof of the theorem.
Hence all solutions of the model system (2) are

positive ∀t ≥ 0 in Ω .

3.3 Disease free-equilibrium of the Model

To obtain the disease-free equilibrium (DFE) point (E0) of
the model equate the right-hand side of system (2) to zero
and make the disease state variables C=0 and I=0. After
that solving the remaining equation will give us:

E0 =

(

(1−π)b

µ
,

πb

µ
,0,0,0

)

(11)

3.4 The Basic Reproductive Number(R0)

The basic reproduction number is defined as the average
number of secondary infections produced by a single
infected individual in a completely susceptible population
by a typical infected individual through out his/her
infectious entire lifetime. To calculate the basic
reproduction number use the next generation matrix
method [21] and which is calculated as follows. From
equation (2) and using the notation X=(C,I) we have the
following vector functions:

F =

[

(1− q)ρλ1S1 +(1− q)ρkλ1S2

(1− q)(1−ρ)λ1S1 +(1− q)(1−ρ)kλ1S2

]

and

V =

[

(σ + γ + µ)C− (1− p)ηI

(η +α + µ)I− γC

]

=

[

p1C− (1− p)ηI

p2I− γC

]

where p1 = (σ + γ + µ) and p2 = (η +α + µ). Shows
the appearance of new infections, and the transfer of
individuals in to and out of the infected compartments,
respectively. The Jacobian matrices of F(X) and V(X) at
DFE are, respectively given as:

F = DF(E0) =

[

∂F1(E0)
∂C

∂F1(E0)
∂ I

∂F2(E0)
∂C

∂F2(E0)
∂ I

]

where F1(t) = (1− q)ρλ1S1 +(1− q)ρkλ1S2 and F2(t) =
(1− q)(1−ρ)λ1S1 +(1− q)(1−ρ)kλ1S2 and

V = DF(E0) =

[

∂V1(E0)
∂C

∂V1(E0)
∂ I

∂V2(E0)
∂C

∂V2(E0)
∂ I

]

where V1 = (σ + γ + µ)C− (1− p)ηI and V2 = (η +α +
µ)I − γC. Now it is easy to calculate the inverse of V and
given by:

V
−1 =

1

p1 p2 − (1− p)ηγ

[

p2 (1− p)η
γ p1

]

Using the next-generation matrix

FV
−1 =

(1− q)(1+π(k− 1))ψ

p1 p2 − (1− p)ηγ

[

ρk1 ρk2

(1−ρ)k1 (1−ρ)k2

]

c© 2023 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 17, No. 1, 95-107 (2023) / www.naturalspublishing.com/Journals.asp 99

where k1 = (ω p2 + γ) and k2 = (ωη(1− p)+ p1), and the
corresponding eigenvalues are: λ1 = 0 and

λ1 =
(1− q)(1+π(k− 1))ψ

p1 p2 − (1− p)ηγ
(ρk1 +(1− p)k2)

The spectral radius (the governing eigenvalue) of the next
generation matrix will give as the required basic
reproduction number of the model.That is

R0 =
(1− q)(1+π(k− 1))ψ

p1 p2 − (1− p)ηγ
(ρk1 +(1− p)k2) (12)

General, if R0 > 1, then pneumonia infections will
persist in the community. If R0 < 1, then pneumonia
infections will eventually disappear from the populations.
This threshold can be used to portray parameters which
are most sensitive and important during the infection [21].

3.5 Local and global stability of disease free-

equilibrium point

3.5.1 Local stability of disease-free equilibrium (DFE)

In this section, we investigate the local stability of the
disease-free equilibrium of the model system (2). For
local stability, the spread of infection depends on the
initial sizes of the subpopulation. To prove the local
stability of the disease-free equilibrium, the eigenvalues
of the Jacobian matrix of the system computed at the DFE
point are obtained. The Jacobian matrix is obtained from
the linearization of the model system (2). The Jacobian
matrix J evaluated at DFE point E0 is given by [22].

Theorem 3.The disease-free equilibrium point E0 is

locally asymptotically stable if R0 is less than unity and

unstable if greater than unity.

Proof. The locally asymptotical stability of DFE (E0) is
analyzed using the sign of the eigenvalues of a Jacobian
matrix evaluated at the disease-free equilibrium point E0.

J(Eo) =











−µ 0 B1 B2 δ
0 −µ B3 B4 0
0 0 B5 B6 0
0 0 B7 B8 0
0 0 σ pη −(µ + δ )











where B1 = −(1 − q)(1 − π)ωψ , B2 =
−(1 − q)(1 − π)ψ , B3 = −(1 − q)ωψkπ , B4 =
−(1 − q)ψkπ , B5 = (1 − q)ωψk1 − p1, B6 =
(1 − q)ψk1 + (1 − p)η , B7 = (1 − q)ωψk2 − γ and
B8 = (1− q)ψk2+ p2.
By expanding the characteristic equation |λ I− J(Eo)|= 0
with the first and second columns, we obtain two
eigenvalues λ1,2 = −µ . We calculate the remaining three
eigenvalues from the reduced matrix as:

J(3) =





B5 B6 0
B7 B8 0
σ pη −(µ + δ )





The characteristic equation corresponding to J(3) is given
by |λ I − J(3)|= 0. From this λ3 = −(µ + δ )< 0 and the
other values are obtained from:

λ 2
1 +D1λ1 +D2 = 0

where

D1 =−(1− q)ψ(ωk1+ k2)+ (σ + γ + µ)+ (η +α + µ)

D2 =−(1− q)ψ(ωk1p2 + k2 p1 +ωk2η(1− p)+ k1γ)+

p1 p2 +(1− p)ηγ

By Routh-Hurwitz criteria, D1 > 0 which mean that:

−(1− q)ψ(ωk1+ k2)< (σ + γ + µ)+ (η +α + µ)

Following the same criteria, D2 > 0 mean that:

D2 =−
(1− q)ψ

p1 p2 +(1− p)ηγ
Φ + 1

where Φ = (k1(ω p2 + γ)+ k2((1− p)ηγ + p1))
From the fact (S1 + kS2)/N = 1+π(k− 1)≤ 1.
Hence

−
(1− q)(1+π(k− 1))ψ

p1 p2 +(1− p)ηγ
Φ + 1 ≤ D2

which implies

−R0 + 1 ≤ D2

D2 = 1−R0

Therefore, the sign of D2 is positive if R0 < 1. Using
Routh-Hurwitz stability criterion the disease-free
equilibrium point E0 is stable if R0 < 1 and unstable
if R0 > 1.

Hence, the disease-free equilibrium (E0) is locally
asymptotically stable if R0 < 1 otherwise unstable.

3.5.2 Global stability of E0

In this section we analyze the global stability of disease
free-equilibrium point E0 by following [1]
Proof: To prove the global asymptotic stability of E0 we
start the proof by constructing the Lyapunov function
define by:

L = k1C+ k2I

Its derivative along the solutions of system (2) is

dL

dt
= k1

dC

dt
+ k2

dI

dt

dL

dt
= k1((1− q)ρλ1S1 +(1− q)ρλ1S2 − (1− p)ηI−

(σ + γ + µ)C)+ k2((1− q)(1−ρ)λ1S1+

(1− q)(1−ρ)kλ1S2 + γC− (η +α + µ)I)
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dL

dt
= (1− q)ψ

S1 + kS2

N
(ρk1 +(1−ρ)k2)(I +ωC)

+((1− q)ηk1I − p2k2I + k2γC− p1k1C)

dL

dt
≤ (1− q)ψ(1+π(k− 1))(ρk1+

(1−ρ)k2))(I +ωC)+ ((1− q)η(ω p2+ γ)−

p2(ωη(1− p)+ p1))I +((ωη(1− p)+

p1)γ − p1(ω p2 + γ))C

dL

dt
≤

(1− q)ψ(1+π(k− 1))

p1 p1 +(1− p)ηγ
∗

(ρk1 +(1−ρ)k2)(I +ωC)− (I+ωC)

dL

dt
≤ (R0 − 1)(I+ωC)≤ 0

Clearly dL
dt

≤ 0 if R0 ≤ 1 because all parameter values

are positive. Furthermore dL
dt

= 0 if and only if R0 = 1
or I = C = 0. Hence, L is a Lyapunov function on Ω and
the largest compact invariant set in
{

(S1,S2,C, I,R) ∈ Ω : dL
dt

≤ 0
}

is the singleton E0.
Therefore, by LaSalle’s invariance principle [1] every
solution corresponding to system (2), with initial
conditions in Ω , close to E0 as t −→ ∞ if R0 < 1.

Hence the E0 is globally asymptotically stable on the
set Ω if R0 ≤ 1 completing the proof.

3.6 Endemic Equilibrium

Endemic equilibrium of the model system (2) is denoted
by Ee and defined as a steady state (2). At this equilibrium
point (Ee) disease persists in the community. Hence, the
endemic equilibrium Ee =(S∗1,S

∗
2,C

∗, I∗,R∗) is determined
by setting the right-hand side of system (2) equal to zero
as follows:

(1−π)b+ δR− (1−q)λ1S1 − µS1 = 0

πb− (1− q)kλ1S2 − µS2 = 0

(1− q)ρλ1S1 +(1− q)kρλ1S2 − (1− p)ηI

−p1C = 0

(1− q)(1−ρ)λ1S1 +(1− q)(1−ρ)kλ1S2

+γC− p2I = 0

σC+ pηI− (µ + δ )R = 0















































(13)

Then we get

S∗1 =
(1−π)b+ δR∗

(1− q)λ ∗
1 + µ

S∗2 =
πb

(1− q)kλ ∗
1 + µ

C∗ =
(1−ρ)(1− p)η+ρ p2

(1−ρ)p1+ργ

I∗ =
p5(kbπ p1A3A4 +(1−π)bA1)

A1A2A3A4 p3 − p5A1δA5

R∗ =
σ((1−ρ)(1− p)η+ρ p2)+ pη((1−ρ)p1+ργ)

(µ + δ )((1−ρ)p1+ργ)

where
A1 = (1− q)kλ ∗

1 + µ

A2 = p1 p2 − (1− p)ηγ

A3 = (1− q)λ ∗
1 + µ

A4 = (1−ρ)p1 +ργ

A5 = (σ(1−ρ)(1− p)η+ρ p2 + δ pηA4)

Therefore, Ee = (S∗1,S
∗
2,C

∗, I∗,R∗) is the required
endemic equilibrium of system 2.
Lemma 3. A unique endemic equilibrium Ee exists for
R0 > 1, and no endemic equilibrium otherwise.

The proposed disease to be persist when dC
dt

> 0 and
dI
dt

> 0 that is

(1− q)ρλ1S1 − (1− q)kρλ1S2 − (1− p)ηI− p1C ≥ 0
(14)

(1− q)(1−ρ)λ1S1 +(1− q)(1−ρ)kλ1S2 + γC− p2I ≥ 0
(15)

From Equation (14),

p1C ≤ (1− q)ρψ(I+ωC)
S1 + kS2

N
+(1− p)ηI

From the fact that

S1 + kS2

N
= (1+π(k− 1))≤ 1

Then

C(t)≤
(1− q)ρψ +(1− p)η

p1 − (1− q)ρψω
(16)

From equation (15) we have

p2I ≤ (1− q)(1−ρ)kψ(I+ωC)
S1 + kS2

N
+ γI

⇒ p2I ≤ (1− q)(1−ρ)kψ(I+ωC)+ γI

(p2 − (1− q)(1−ρ)kψ)I < ((1− q)(1−ρ)kψω+ γ)C
(17)

substituting (16) in to (17) will give as

(p2 − (1− q)(1−ρ)kψ)I <

((1− q)(1−ρ)kψω+ γ)
(1− q)ρψ+(1− p)η

p1 − (1− q)ρψω

⇒ p1 p2 − (1− p)ηγ < (1− q)ψ(ρk1+(1− p)k2)

⇒ 1 <
(1− q)ψ

p1 p2 − (1− p)ηγ
(ρk1 +(1− p)k2)

⇒ 1 <
(1− q)(1+π(k− 1))ψ

p1 p2 − (1− p)ηγ
(ρk1 +(1− p)k2) =R0

⇒ 1 <R0

Thus a unique endemic equilibrium of system (2) exist
provided that R0 > 1.
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3.6.1 Local and global stability of the endemic
equilibrium

In this section we analyze local and global stability of the
endemic equilibrium by applying the Routh-Hurwitz
criterion and LaSalle’s invariance principle [23]
respectively.

3.6.2 Local stability of the endemic equilibrium

Theorem 4.The endemic equilibrium (Ee) of system (2) is

locally asymptotically stable if R0 > 1.

Proof. To show the local stability of endemic equilibrium
first determine the Jacobean matrix of system (2) at
endemic equilibrium which is given on (18).

J(Ee) =











B1 0 0 0 δ
0 B2 0 0 0

B3 B4 −p1 (1− p)η 0
B5 B6 γ −p2 0
0 0 σ pη −(µ + δ )











(18)

where B1 =−(1− q)λ̄1− µ , B2 =−(1− q)λ̄1k− µ ,
B3 = (1− q)ρλ̄1S1, B4 = (1− q)ρkλ̄1S2,

B5 = (1− q)(1−ρ)λ̄1S1, B6 = (1− q)(1−ρ)kλ̄1S2

The trace of the Jacobian matrix (18) is negative and
where λ̄1 is defined as the force infection at the endemic
equilibrium. We obtain the determinant of the Jacobian
matrix at endemic equilibrium (detJ(Ee))

det(J(Ee)) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

B1 0 0 0 δ
0 B2 0 0 0

B3 B4 −p1 (1− p)η 0
B5 B6 γ −p2 0
0 0 σ pη −(µ + δ )

∣

∣

∣

∣

∣

∣

∣

∣

∣

det(J(Ee)) = ((1− q)k+ µ)[−p1p2 p3((1− q)λ̄1+ µ)

+δ ((1− q)ρ)λ̄1(pηγ +σ p2)+ (1− q)(1−ρ)kλ̄1pp1η

+(1− q)(1−ρ)(1− p)σηλ̄1]

which is positive if

((1− q)k+ µ)p1p2 p3((1− q)λ̄1+ µ)<

((1− q)k+ µ)[((1− q)λ̄1+ µ)(1− p)p3ηγ+

δ ((1− q)ρ)λ̄1(pηγ +σ p2)+ (1− q)(1−ρ)kλ̄1pp1η

+(1− q)(1−ρ)(1− p)σηλ̄1]

If the determinant of Jacobian matrix (18) above is
positive and since there exist a unique endemic
equilibrium of system (2) provided that R0 > 1 as it
stated in lemma 3 above,then by Routh-Hurwitz criteria,
the endemic state Ee = (S∗1,S

∗
2,C

∗, I∗,R∗) is locally
asymptotically stable [23]

3.6.3 Global stability of the endemic equilibrium point

We can verify the global stability of the endemic
equilibrium Ee by constructing the Lyapunov function as
in theorem 5 below.

Theorem 5.If R0 > 1, the endemic equilibrium Ee of

system (2) is globally asymptotically stable.

Proof. We apply [22] approach to prove global stability of
Ee by defining Lyapunov function as

n

∑
1

(

xi − x∗i − x∗i ln

(

xi

x∗i

))

(19)

where xi is a population in compartment i=1,...5 and x∗i is
the endemic equilibrium point. This is defined as

L(S∗1,S
∗
2,C

∗, I∗,R∗) =

(

S1 − S∗1 − S∗1ln

(

S1

S∗1

))

+

(

S2 − S∗2 − S∗1ln

(

S2

S∗2

))

+

(

C−C∗−C∗ln

(

C

C∗

))

+

(

I− I∗− I∗ln

(

I

I∗

))

+

(

R−R∗−R∗ln

(

R

R∗

))

The derivative of L is

dL

dt
=

(

1−
S∗1
S1

)

dS1

dt
+

(

1−
S∗2
S2

)

dS2

dt
+

(

1−
C∗

C

)

dC

dt
+

(

1−
I∗

I

)

dI

dt
+

(

1−
R∗

R

)

dR

dt

(20)

Next, we replace
dS1
dt

, dS2
dt
, dC

dt
, dI

dt
, dR

dt
in (20) using system

(2), to have

dL

dt
=

(

1−
S∗1
S1

)

((1−π)b+ δR− (1−q)λ1S1 − µS1)+

(

1−
S∗2
S2

)

(πb− (1− q)kλ1S2 − µS2)+

(

1−
C∗

C

)

((1− q)ρλ1S1 − (1− q)kρλ1S2−

(1− p)ηI− p1C)+

(

1−
I∗

I

)

((1− q)(1−ρ)λ1S1+

(1− q)(1−ρ)kλ1S2 + γC− p2I)+
(

1−
R∗

R

)

(σC+ pηI− (µ + δ )R)

(21)
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At endemic equilibrium EE from system (2), we have

(1−π)b =−δR∗+(1− q)λ1S∗1 + µS∗1

πb = (1− q)kλ1S∗2 + µS∗2

(σ + γ + µ) =

(1− q)ρλ1
S∗1
C∗

+(1− q)kρλ1
S∗2
C∗

+(1− p)η
I∗

C∗

(α +η + µ) =

(1− q)(1−ρ)λ1

S∗1
I∗

+(1− q)(1−ρ)kλ1

S∗2
I∗

+ γ
C∗

I∗

(µ + δ ) = σ
C∗

R∗
+ pη

I∗

R∗

(22)

Substituting (22) into (21), we get

dL

dt
= δ

(

R+R∗S∗1
S1

)

− δ

(

R∗+R
S∗1
S1

)

−

(1− q)λ1

(S1 − S∗1)
2

S1
− µ

(S1 − S∗1)
2

S1
−

(1− q)kλ1

(S2 − S∗2)
2

S2

− µ
(S2 − S∗2)

2

S2

+

(1− q)ρλ1(S1 + S∗1)+ (1− q)ρλ1k(S2 + S∗2)+

(1− p)η(I+ I∗)− (1− q)ρλ1

(

C
S∗1
C∗

+ S1

C∗

C

)

−(1− q)ρλ1k

(

C
S∗2
C∗

+ S2
C∗

C

)

−

(1− q)η

(

C
I∗

C∗
+ I

C∗

C

)

+

(1− q)(1−ρ)λ1(S1 + S∗1)+

(1− q)(1−ρ)kλ1(S1 + S∗1)+ γ(C+C∗)−

(1− q)(1−ρ)λ1

(

I
S∗1
I∗

+ S1
I∗

I

)

−

(1− q)(1−ρ)λ1k

(

I
S∗2
I∗

+ S2
I∗

I

)

−

γ

(

I
C∗

I∗
+C

I∗

I

)

+

σ(C+C∗)+ pη(I+ I∗)−

σ

(

R
C∗

R∗
+C

R∗

R

)

− pη

(

R
I∗

R∗
− I

R∗

R

)

(23)

Thus collecting positive terms and negative terms together
from Equation (23) we obtain

dL

dt
= P−N

where

P = δ

(

R+R∗S∗1
S1

)

+(1− q)ρλ1(S1 + S∗1)+

(1− q)ρλ1k(S2 + S∗2)+ (1− p)η(I+ I∗)+

(1− q)(1−ρ)λ1(S1 + S∗1)+ (1− q)(1−ρ)kλ1(S1 + S∗1)

+γ(C+C∗)+σ(C+C∗)+ pη(I+ I∗)

N = δ

(

R∗+R
S∗1
S1

)

+(1− q)λ1
(S1 − S∗1)

2

S1

+ µ
(S1 − S∗1)

2

S1

+(1− q)kλ1
(S2 − S∗2)

2

S2

+ µ
(S2 − S∗2)

2

S2

+

(1− q)ρλ1

(

C
S∗1
C∗

+ S1
C∗

C

)

+

(1− q)ρλ1k

(

C
S∗2
C∗

+ S2

C∗

C

)

+(1− p)η

(

C
I∗

C∗
+ I

C∗

C

)

+(1− q)(1−ρ)λ1

(

I
S∗1
I∗

+ S1
I∗

I

)

+(1− q)(1−ρ)kλ1

(

I
S∗2
I∗

+ S2
I∗

I

)

+

γ

(

I
C∗

I∗
+C

I∗

I

)

+σ

(

R
C∗

R∗
+C

R∗

R

)

+pη

(

R
I∗

R∗
− I

R∗

R

)

Thus if P < N, then dL
dt

≤ 0.

It is sure that dL
dt

= 0 if and only if
S1 = S∗1,S2 = S∗2,C =C∗, I = I∗,R = R∗. Thus, system (2)
has a unique endemic equilibrium point Ee which is
globally asymptotically stable if R0 > 1.

Therefore, the largest compact invariant set in
(S∗1,S

∗
2,C

∗, I∗,R∗) ∈ Ω : dL
dt

= 0 is the singleton Ee, where
Ee is the endemic equilibrium of the system (2). By
LaSalle’s invariant principle [19,23], it implies that Ee is
globally asymptotically stable in Ω if P < N.

3.7 Sensitivity analysis of the model parameters

Under this subsection we identify the most influential
parameters for the expansion as well as for eradication of
pneumonia in the community. In addition to this to reduce
the mortality and morbidity due to pneumonia we should
have to focus on the parameters that have a great
influence on the tread shoot number which is denoted by
R0 as discussed earlier. Sensitivity analysis is used to
determine the sensitivity index which is a measure of the
relative change in a state variable when a parameter
changes. We compute the sensitivity indices of R0

corresponding to the model parameters with the approach
used by [24]. These indices show the importance of each
individual parameter in the disease transmission
dynamics and prevalence.

The sensitivity index of R0 with respect to a
parametersay X is given by:

Λ
R0
X =

∂R0

∂X

X

R0

(24)

Where X stands for all parameters in the R0. That is

R0 =
(1− q)(1+π(k− 1))β κ

p1 p2 − (1− p)ηγ
(ρk1 +(1− p)k2)
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For X = π

Λ
R0
π =

∂R0

∂π

π

R0
=

π(k− 1)

1+π(k− 1)

For X = ρ

Λ
R0
ρ =

∂R0

∂ρ

ρ

R0

=
ρ(k1 − k2)

ρk1 +(1−ρ)k2

For X = κ

ΛR0
κ =

∂R0

∂κ

κ

R0

=
κ

κ
= 1 > 0

For X = q

ΛR0
q =

∂R0

∂q

q

R0

=−
q

1− q
< 0

For X = β

Λ
R0

β =
∂R0

∂β

β

R0

=
β

β
= 1 > 0

For X = k

Λ
R0

k =
∂R0

∂k

k

R0

=
kπ

1+π(k− 1)

For X = ω

ΛR0
ω =

∂R0

∂ω

ω

R0

= ω
ρ p2 +(1− p)(1−ρ)

(ρk1 +(1−ρ)k2)

For X = p

ΛR0
p =

∂R0

∂ p

p

R0
=−pη

ω(1−ρ)Φ2+Φ1γ

Φ1Φ2

For X = σ

Λ
R0
σ =

∂R0

∂σ

σ

R0

= σ
(ωρ +(1−ρ))Φ2− p2Φ1

Φ1Φ2

For X = γ

Λ
R0
γ =

∂R0

∂γ

γ

R0
= γ

Φ2 −Φ1(p2 − (1− p)η)

Φ1Φ2

For X = α

Λ
R0
α =

∂R0

∂α

α

R0
= α

ωρΦ2 − p1Φ1

Φ1Φ2

For X = η

Λ
R0
η =

∂R0

∂η

η

R0
= η

ωΦ2 −Φ1(p1 − (1− p)γ)

Φ1Φ2

For X = µ

Λ
R0
µ =

∂R0

∂ µ

µ

R0

= µ
(ωρ +(1−ρ))Φ2−Φ1(p1 + p2)

Φ1Φ2

Table 1: Model parameter values with their source

Parameters Value References

α 0.33 [19]

π 0.867 [16]

η 0.0238 [19]

β 1-10 [8]

µ 0.002 [19]

b N0µ [25]

σ 0.0116 Assumed

ρ 0.338 [1]

k 0 < k ≤ 1 Assumed

q 0 ≤ q < 1 Assumed

δ 0.2 [25]

ω 0.001124 [1]

κ 0.89-0.99 [1]

p 0.5 [22]

γ 0.01096 [1]

where
Φ1 = (ρk1 +(1−ρ)k2) and Φ2 = (p1 p2 − (1− p)ηγ)

From Table 2, we observe that the sensitivity indices
of some model parameters are positive and the others are
negative. The parameters with positive sensitivity indices
show that there is a direct relationship of the parameters
and the basic reproduction number of the model.
Similarly, parameters with negative sensitivity indices
shows inverse relationship is there between the model
parameters and the basic reproduction number. In this
case, increasing or decreasing the value of the model
parameters will decrease or increase the basic
reproduction number. For instances, q,π , and ρ have
negative sign, which implies that they have negative effect
on the basic reproduction number. On the other hand, the
parameters κ ,β have positive sign, which implies that
they have positive impact on the basic reproduction
number. practically, this shows increasing (or decreasing)
these parameter values automatically increases (or
decreases) R0. Figure 2 shows the diagrammatic
representation of sensitivity indices of basic model
parameters with their relative contribution on pneumonia
management. From Figure 2, we easily see the impact of
each basic parameter on the basic reproduction number
for instance κ and β has great impact and p has almost
zero contribution on R0.

4 Numerical Simulation

To show the theoretical results of the model numerical
simulations are carried out by using different set of
parameter value obtained from published articles as
presented in Table 1. When the parameter values are not
available in the literature, we assume it depending on the
realistic value according to our purpose of goal. The
system corresponding to the model is simulated using
MATLABr2018a and MAPL18 programming language
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Table 2: Sensitivity analysis of model parameter

parameters sensitivity index

κ 1.0000

β 1.0000

k 0.765

ω 0.2448

γ 0.1070

p -0.01594

η -0.0845

σ -0.1012

ρ -0.2230

µ -0.2772

π -0.765

α -0.9567

q -1.0000

Fig. 2: Sensitivity indices of model parameter

and it identify which parameters influences the spread of
pneumonia and how its influence can be managed.

5 Result and discussions

We investigate the impact of hygiene care
rate,transmission rate and infection reduction of
breastfeed susceptible on the spread or reduction of
pneumonia diseases in the community.

Figure 3(a) and (b) demonstrate respectively that the
numerical solutions of the model found by MAPLE18
converge to disease free equilibrium (DFE) and S1 is
more susceptible than S2. From Figure 3(b) we see that at
the beginning S2 decreases while after it increases due to
the parameter value k.

To consider the effect of hygiene care and infection
reduction due to breastfeed on the transmission dynamics
of pneumonia, we plot the trajectory of carrier and
infected class for different values of q and k see(Figure 4
and 5). Figure 4 (a) and (b) show that infection reduction
of breastfeed susceptible children decrease while the
number of infected and carrier population disease. This
gurants that the locally asymptoticly stability of diseases
free equilibrium. On the contrary, increasing the

(a) (b)

Fig. 3: (a) A population dynamics with time for DFE point and

(b) Variation of the S1 and S2 under hygiene care and breastfeed

interventions

(a) (b)

(c)

Fig. 4: Impact of k on susceptible2,carrier and infected classes

parameter k will decrease the number of breastfeed
susceptible children see Figure 4(c).

As clearly seen from Figure 5 (a) and (b) when the
hygiene care rate (q) increase then the two disease state
variables will decrease. Similarly from Figure 5 (c) and
(d) we conclude that q and the two susceptible classes have
direct relation sheep. That is as hygiene care rate increases
then S1 and S2 are also increases.

From Figure 6 we observe that the hygiene care and
infection reduction rate due to breastfeed decreases the
transmission rate of pneumonia. This implies that as the
vale of β decreases then the diseases state variables will
decrease.

Both the Figures 7(a) and (b) evidently show that an
increase in the susceptible1 population also increases the
carrier or infected population and vies-verse. It can
noticed from Figure 8(a) decreasing susceptible2 will
increase carrier and the inverse is also true.
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(a) (b)

(c) (d)

Fig. 5: Impact of q on the two susceptible,carriers and infected

compartments

(a) (b)

Fig. 6: Impact of transmission rate on carriers and infections

6 Conclusion

In this paper, we formulate a susceptible1, susceptible2,
carrier, infected and recovered deterministic mathematical
model with two kinds of controlling or eradicating the
dynamics of pneumonia, that is the hygiene care efficacy
and infection reduction due to effective breastfeed. The
proposed model has two equilibrium points: diseases free
and endemic equilibrium. The well-posedness of the
model are verified by establishing existence and
uniqueness, positivity and boundedness theorems. The
basic reproduction number have been derived using next
generation matrix and it shows that pneumonia will wiped
out from the community if R0 < 1 and persist in the
society if R0 > 1. The main finding of sensitivity analysis
shows that the parameters q, β and κ have hight
contribution in diseases control. A large scale of
numerical simulations is performed using
MATLABr2018a and MAPLE 18 to verify the theoretical
work.

(a) (b)

Fig. 7: (a) The relation sheep between S1 and C population and

(b) The relation between S1 and I population

(a) (b)

Fig. 8: (a) The relation sheep between S2 and C population and

(b) The graph of C verses I
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