
Inf. Sci. Lett. 12, No. 1, 1-8 (2023) 1

Information Sciences Letters
An International Journal

http://dx.doi.org/10.18576/isl/120101

Developing an Efficient Secure Query Processing
Algorithm on Encrypted Databases using Data
Compression
Ahmed I. Taloba, Mohamed A. Fouly∗ and Taysir H. A. Soliman

Information System Department, Faculty of Computers and Information, Assiut University, Assiut, Egypt

Received: 2 Mar. 2022, Revised: 25 Jun. 2022, Accepted: 28 Jun. 2022
Published online: 1 Jan. 2023

Abstract: Distributed computing includes putting aside the data utilizing outsider storage and being able to get to this information
from a place at any time. Due to the advancement of distributed computing and databases, high critical data are put in databases.
However, the information is saved in outsourced services like Database as a Service (DaaS), security issues are raised from both server
and client-side. Also, query processing on the database by different clients through the time-consuming methods and shared resources
environment may cause inefficient data processing and retrieval. Secure and efficient data regaining can be obtained with the help
of an efficient data processing algorithm among different clients. This method proposes a well-organized through an Efficient Secure
Query Processing Algorithm (ESQPA) for query processing efficiently by utilizing the concepts of data compression before sending
the encrypted results from the server to clients. We have addressed security issues through securing the data at the server-side by an
encrypted database using CryptDB. Encryption techniques have recently been proposed to present clients with confidentiality in terms
of cloud storage. This method allows the queries to be processed using encrypted data without decryption. To analyze the performance
of ESQPA, it is compared with the current query processing algorithm in CryptDB. Results have proven the efficiency of storage space
is less and it saves up to 63% of its space.

Keywords: CryptDB, Data Compression, Distributed Database, Information Security, Cloud Computing.

1 Introduction

Digital and technological transformation in learning,
medical field, and enterprises contributed greatly to the
need for innovative methods of data processing like
storage, analysis, and representation. Both cloud
computing and the advantages of distributed database
concepts is the best and optimal option in preserving and
processing data from different places [1,2,3].

Since information security has become necessary and
critical to maintaining the confidentiality, integrity, and
availability of data. Hence, recently there has been a shift
towards placing encrypted data in databases instead of
storing data in plain text format [2,4,5].

To ensure confidentiality, we define the data
encryption technique. The action of converting the
original data through a sequence of mathematical
operations to create different representations of data
format is known as encryption. Encryption is viably used
to conceal the information from everybody and even the

approved people can see the scrambled information
ciphertext. Essentially, the change of ciphertext to its
unique plaintext is called decoding [6] as illustrated in
Fig.1. There are two major techniques used in our
algorithm encryption, and compression

Encryption: Comprises two general types of key-based
encryption schemes:

1.1 Symmetric encryption

In Symmetric encryption, only one key is supported for
both encrypting and decrypting the message. To encrypt
the data first, give the key to the destination for decrypting
the message. This type of encryption is utilized when the
sender encrypts the data and, if the destination doesn’t
have a key to retrieve the original plain text, it sends the
key and code text independently to the destination. When
a key is received the information is decrypted. This

∗ Corresponding author e-mail: m.a.fouly@aun.edu.eg
c© 2023 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/isl/120101


2 A. I. Taloba et al.: Developing an Efficient Secure Query Processing Algorithm...

Fig. 1: Two Types of Encryptions [7]

scheme is simple and faster to actualize it yet has some
disadvantages; for occurrence, when a hacker notices the
key, it tends to be easier to decrypt messages. Single key
encryption is commonly more straightforward for
hackers. This means that the calculation used to encrypt
the data is simple for the hackers to understand, and
enables them to effectively translate the message.

1.2 Asymmetric encryption

This type of encryption uses two unique keys such as
public and private keys. The First one is used for
encryption and another one is used for decryption. The
Public key can be effortlessly scattered to communicate
with others since one must have the option to unscramble
the message using the private key. To check the messages
between the clients, the sender utilizes the public key to
see the information and in the objective private key is
utilized to unscramble the information. Here the private
key should be secured because decryption only takes
place at the destination point.

Moreover, a few data compression techniques are used
to minimize the usage of bandwidth over a network and
the storage space through reducing the size of the data,
as shown in Fig.2 and [8]. Compression: There are two
general categories for compression techniques:

1.3 Lossless Compression Technique

This technique is very efficient to transfer data over a
limited bandwidth channel and also prevents the data
from loss. The compression is carried out by representing
the file containing a smaller number of bits, with no loss
of information. This can be accomplished by different
numerical and statistical tools like, entropy coding, which
are also used to convert the compressed data back to the

Fig. 2: Data Compression Techniques

initial uncompressed data again. Traditional Lossless
compression algorithms used in prior methods consist of
Huffman Coding, Prediction by Partial Matching (PPM),
Deflate and Abraham Lempel and Jacob Ziv (LZ77).

1.4 Lossy Compression Technique

The compression is done by minimizing the data size by
eliminating pointless bits from the file. The output data
obtained is not the same data before compression but it is
the approximation of original data after decompression
because of the removal of unwanted bits. Compression
ratio is more in lossy compression techniques when
contrasted to lossless compression techniques. Lossy
techniques approximate the group of pixels into a solitary
value which is frequently used in image and video
compression schemes, by using change encoding or
differential encoding methods. Joint Photographic
Experts Group (JPEG) and MPEG Audio Layer-3 (MP3)
are the common examples of lossy compression
strategies.

We proposed an efficient secure query processing
algorithm (ESQPA) on encrypted compressed databases
that guarantees data confidentiality and efficiency through
encryption and compression respectively. We design a
strategy utilizing an ESQPA approach, which is efficient
for reducing storage space by applying the LZ77 lossless
compression algorithm upon the CryptDB server.
Because it is a very simple technique that requires no
earlier information on the source and appears to require
no assumptions about the characteristics of the source.
LZ77 exploits the fact that words and phrases within a
text file are likely to be repeated. When there is a
repetition, they can be encoded as a pointer to a previous
occurrence, with the pointer followed by the number of
characters to be matched [9]. We implement the ESQPA
algorithm on the CryptDB system. Comparing our
method with the existing server CryptDB, storage space is

c© 2023 NSP
Natural Sciences Publishing Cor.



Inf. Sci. Lett. 12, No. 1, 1-8 (2023) / www.naturalspublishing.com/Journals.asp 3

less and it saves up to 63% of its space. Experimental
results have proven the efficiency of the proposed method
with respect to space complexity.

The paper is contributed as follows: in Section 2, we
discuss the related work. Then, we explain the proposed
ESQPA algorithm briefly in Section 3. In Section 4, we
describe the implementation and evaluation of the
algorithm. The conclusions of our work and future work
are discussed in Section 5.

2 Related Work

In a few recent years, many algorithms and model
systems were developed to execute query processing over
the encrypted database. One of the most popular practical
systems is CryptDB, which was developed by Popa [10,
11].There are three connected components in the system:
database server, proxy server, and clients.

CryptDB encrypts various table columns by various
encryption algorithms called onion layers encryption
technique. The proxy server is placed between the clients
and the main database server to encode the plain text
query from the client to secure the data and the encrypted
text is then sent to the database server. The server packs
the information and gets the encoded response from the
information base and sends it back to the intermediary
server and the decoded structure is shipped off the clients,
as illustrated in Fig.3.

Fig. 3: CryptDB System Uses Onion Layers Encryption
Techniques [10]

Ryan Su present [12] deals with secure database
methods and encrypted database systems. CryptDB is an
implementation that allows query processing over
encrypted databases. It provides confidentiality for
applications on those systems by tending two threats,
DBMS Server Compromise and Adversary that gains
complete control of application and DBMS servers.

Moreover, Ihsan H. Ak?n and B. Sunar also
demonstrate in [13] that the data integrity is not sufficient
to protect the databases, when query integrity and
frequency attacks are considered. And propose a variety

of practical countermeasures to mitigate attacks targeting
the integrity of the CryptDB database.

The objective for Kevin Foltz and William R.
Simpson [14] was to decide achievability for a full-scale
usage on a real Oracle Enterprise Resource Planning
(ERP) framework. This requires obliging additional
highlights, for example, stored procedures, views and
multi-client access controls. In addition, it shows that
these extra functionalities can be basically actualized
utilizing encrypted data, and they can be executed in a
way that requires no code changes to the ERP application
code.

Likewise, Hebah Nasereddin and Ali Darwesh in [15]
also proposed object-oriented programming such as
insert, update and delete objects on encrypted database
system CryptDB. To insert new records, update and delete
records, using Java language. This object can be called by
the developer without the need to write the SQL query
every time as it is built in the object.

In [16], K. Sood proposed a structure model by
combining different procedures to perform the task of
information security in the cloud. The model includes two
phases namely the first phase manages with the process of
transmitting and putting away information safely into the
cloud and the second phase manages the recovery of
information from the cloud and showing the generation of
requests for information access.

To provide an overview of existing systems and
approaches that can be used to handle encrypted data, E.
Saleh, A. Alsa?deh and A. Kayed in [17] examine
business utilization of such frameworks, and investigate
the current advancements.

Xing bang Tian and et.al [18,19,20,21] use NoSQL
databases for high scalability, availability, and
high-efficiency storage and access. Security risk in these
databases can be overcome by transparent middleware. In
MongoDB Enterprise Advanced edition, it uses an open
SSL library to encrypt pages and it improves the
exhibition and it also uses two types of encryptions such
as Order revealing encryption and homomorphic
encryption. Also, JSON is used for the security plan.
High-performance NoSQL Cassandra database is also
used in health care services which provide data security
during transmission. However, the performance may
decrease owing to the assurance of confidentiality.

Encryption-then-Compression approach proposed by
Manoj Kumar and Ankita Vaish [22] employ singular
value decomposition for encrypting the images. Here loss
in the compressed bit stream was overcome by Huffman
coding. This technique also improves the image class and
the compression exhibition is better when compared with
the CTE method. To secure, storing, searching, and
retrieving the encrypted data from the cloud.

Main idea in I. Demertzis, R. Talapatra and C.
Papamanthou [23] is to utilize compression so as to
reduce the size of the plaintext indexes before producing
the encrypted searchable indices. Solution can use any
existing Searchable Encryption (SE) scheme as a

c© 2023 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


4 A. I. Taloba et al.: Developing an Efficient Secure Query Processing Algorithm...

black-box and any combination of lossless compression
algorithms, without trading off security.

Present Yiwen Shao, Sa Wang and Yungang Bao, a
backup and recovery system that could profoundly
decrease the backup storage cost of encrypted databases.
The key idea in [24] is to leverage the metadata
information of encryption schemes and selectively
backup one or more columns among semantically
redundant columns.

Sultan Almakdi and Brajendra panda [25] proposed a
model called BVM (bit vector-based model). This model
uses QM (Query manager) for retrieving, encryption, and
decryption means to decrease the quantity of recovery of
encrypted data and minimizes up to 35 % of entire
encrypted data.

W. Zhengy, F. Liy, Raluca Ada Popay, Ion Stoicay and
R. Agarwal [26] introduced a first big data key-value
store that reconciles encryption and compression.
MiniCrypt mentions an experimental objective fact about
data compression trends and provides a set of distributed
systems techniques for recovering, updating, blending
and parting encrypted packs while saving consistency and
performance.

Similarly, Meng Zhang and et.al [27] also proposed a
new encrypted key-value storage structure for
compression which is executed on a NoSQL Cassandra
database. Similar to the previous technique it also
improves the system performance and furthermore builds
the throughput. It upholds key-valve query and range
query.

3 Proposed Work

Our algorithm (ESQPA) is applied to the CryptDB system
below in Fig.4. There are three connected components in
the system: database server, proxy server, and clients.
CryptDB encrypts table columns by various encryption
algorithms called onion layers encryption techniques. The
proxy server takes the plain text query from the client
which is situated between the client and the database
server. Once the original text is received it encrypts the
text and these encrypted queries are then sent to the
information base server. Through comparing the proposed
architecture with Fig.3, it is found that before storing the
data into the database, the server compresses the
information and decompresses it before processing a
query to fetch the encrypted information from the
database and send it to the proxy server. In this way the
query results are decrypted and sent it to the clients. Data
compression is implemented with the LZ77 Lossless
compression algorithm.

The first Lempel-Ziv compression algorithm used for
sequential data compression is a Lempel-Ziv 77 (LZ77)
algorithm. A portion of the previously encoded sequence
is described as a dictionary. The encoder scrutinizes the
input sequence using a sliding window. The window
comprises of two parts namely. A search buffer holds the

Fig. 4: Our Proposed ESQPA Algorithm as Flow Diagram

portion of the recently encoded sequence, and a
look-ahead buffer that contains the byte sequence from
the coding position to the end of the input stream.

Algorithm 1: LZ77 Compression Algorithm [9].
Pseudocode of lossless compression Lempel-Ziv 77.
Input: sequence of bytes (S = b1,b2, ..., bn). Output: a
triple < o, l, c >, where ’o’ meant for an offset to the
match, ’l’ constitutes the length of the match, and ’c’
specifies the next symbol to be encoded.

1.Divide a sequence of bytes into search and look-ahead buffer.
2.While (look-Ahead Buffer is not empty):
3.Get a pointer (o, l) to longest match
4.if (l > 0) then Output < o, longest match l, c >, Shift the

window by (l+1) positions along.
else
Output < 0, 0, first symbol c in the look-ahead buffer>, Shift
the window by 1 character along.

5.Go to step 3 if look-Ahead Buffer is not empty

4 Implementation and Evaluation

In this section, the proposed ESQPA data server is
compared with two similar database servers like the
MySQL and the CryptDB server. For the experiments, the
ESQPA was implemented by C++ programming
language, on an Intel R Core (TM) i7-3770 3.4 GHz
processor, and memory size of 32 GB.

ESQPA is tested on several random large-scale
datasets and three real datasets, as shown in tables [1, 2].

c© 2023 NSP
Natural Sciences Publishing Cor.



Inf. Sci. Lett. 12, No. 1, 1-8 (2023) / www.naturalspublishing.com/Journals.asp 5

Algorithm 2: Pseudocode of creation database and
tables. Creation Database Tables DB= (T1, T2,..., Tn):
database and tables creation in CryptDB server algorithm.
Input:DB name, Table T = (Ri ,Cj). Output: Database and
Tables are created.
Client application

1.Enter database name db name, then write command ”create
database db name if not exist”

2.Enter table name t name and table properties columns Cj,
then write command ”create table t name (Cj)”

3.Insert the data for each column Cj as rows Ri format in the
CryptDB proxy server.
CryptDB Proxy server

4.Takes plain text data inserted from the client and changes it
into encrypted form.

5.Forward encrypted data to the DBMS server.
DBMS server

6.Compress encrypted data by executing the LZ77 algorithm,
then storing compressed encrypted data.

Algorithm 3: Pseudocode of ESQPA algorithm.
Algorithm ESQPA (Q).
An Efficient and Secure Query Processing on encrypted
CryptDB. Input:query Q as a selection command.
Output:response from CryptDB server to client
application as a query result.
Client application

1.Write a selection command query (Q) in plain text format to
execute an encrypted database.
CryptDB Proxy server

2.Takes a plain text data query from the client and changes it
into encrypted form.

3.Forward encrypted query to the DBMS server.
DBMS server

4.Decompresses encrypted stored data by executing the LZ77
decoding.

5.Execution of an encrypted query on encrypted data, then
return the encrypted result to a proxy server.
CryptDB Proxy server

6.Similar to encryption in step 2, Decrypts the query result and
sends it to the client.

4.1 Random Dataset Description

I have used the [28] tool to generate random data, as
illustrated in Fig.5. It does support many field data types
like integer, float, double, varchar, date, text and binary
long object. In addition to supporting foreign keys
constraints.

4.2 India News Headlines (INH) Dataset
Description

This news dataset is real constant historical file of notable
events in the Indian subcontinent from start-2001 to
end-2020, recorded progressively by the columnists of
India [29]. It contains roughly 3.4 million events
distributed by Times of India. A majority of the data is
focusing on Indian local news including national, city
level and diversion. Dataset contains 3.4 million records
and three columns defined as follow:

1.Publish Date: Date of the article being published
online in yyyy-MM-dd format.

2.Headline Category: Category of the headline, ASCII,
dot delimited, lowercase values.

3.Headline Text: Text of the Headline in English, only
ASCII characters.

4.3 PubMed Abstracts Dataset Description

This dataset is real scraped data from the National Library
of Medicine [30]. Dataset contains 13.2 thousand records
and 17 columns. The columns correspond to some topics,
and the records correspond to the data from the pages
with articles. To be specific, abstracts where the features
of the topic are indicated and the essence of the articles.
There are main topics such as deep learning, covid 19,
virtual reality, human connectome, brain machine
interfaces, electroactive polymers, PEDOT electrodes,
and neuroprosthetics.

4.4 Amazon Review Polarity Dataset
Description

This dataset is a real Amazon review from 6,643,669
users on 2,441,053 products, from the Stanford Network
Analysis Project (SNAP) [31]. Dataset contains about 4
million records (reviews) and three columns defined as
follow:

1.Polarity: Integer value refers to sentiment opinion such
that 1 for negative and 2 for positive.

2.Title: Text value refers to review heading.
3.Body: Text value refers to the review body.

Table 1: Information about random datasets

Dataset Number of columns Number of records

1M 8 1 million
2M 8 2 million
4M 8 4 million
8M 8 8 million
16M 8 16 million

c© 2023 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


6 A. I. Taloba et al.: Developing an Efficient Secure Query Processing Algorithm...

Fig. 5: Table structure for eight millions records

Table 2: Information about real datasets

Dataset Number of columns Number of records

PubMed Abstracts 17 13.2 thousand
India News Headlines 3 3.4 million

Amazon Reviews Polarity 3 4 million

Table 3: Numerical results for storage space of MySQL,
CryptDB, and our algorithm ESQPA on random datasets

Dataset MySQL server CryptDB server ESQPA server Com. Ratio

1M 0.27 G 0.74 G 0.33 G 55%
2M 0.53 G 1.5 G 0.63 G 58%
4M 1.1 G 3.0 G 1.3 G 56%
8M 2.1 G 6.1 G 2.3 G 62%

16M 4.3 G 12.0 G 4.8 G 60%

Table 4: Numerical results for storage space of MySQL,
CryptDB, and our algorithm ESQPA on real dataset

Dataset MySQL server CryptDB server ESQPA server Com. Ratio

PubMed Abstracts 0.21 G 0.58 G 0.24 G 59%
India News Headlines 0.78 G 2.21 G 0.92 G 58%

Amazon Reviews Polarity 1.83 G 5.86 G 2.17 G 63%

Tables [3,4] and figures [6,7] show an illustrative
execution for the ESQPA algorithm. The performance of
the proposed algorithm is evaluated and compared with
those existing in MySQL and CryptDB servers in storage
space term measured in a gigabyte.

Tables [5,6] and figures [8-10] show an illustrative run
time measured in seconds for the ESQPA algorithm. The
execution time of the proposed algorithm is evaluated and
compared with those existing in MySQL and CryptDB
servers.

As illustrated in figures[6,7], storage space at ESQPA
is much less than CryptDB server storage by more than
55% saving. While the run time at ESQPA is a little
higher than CryptDB as illustrated in figures [8-10]. This
is due to the data compression and decompression
operations that take place after encrypting the data. The
sequence of operations is the key factor in a very small
increase in run time. Depending on [32,33] the
performance analysis of ESQPA is calculated from the
product of complexity for order preserving encryption O

Fig. 6: Relation between storage space and number of
records for these three database servers

Fig. 7: Relation between storage space and real datasets
for these three database servers

(n log n) by complexity for LZ77 compression O (m).
Thus, time complexity for ESQPA is O (m*n log n). In
general, the advantage of saving server storage space
allows acceptance of a small amount of time to increase.
Finally, the experimental results show that our algorithm
is better and optimal for saving space. In addition to
having the advantages of being intuitive, extremely less
storage space specifically when applied to the encrypted
database management system.

Table 5: Execution time for random datasets in MySQL,
CryptDB, and ESQPA server.

Dataset MySQL server CryptDB server ESQPA server

1M 167 s 1653 s 1773 s
2M 328 s 3281 s 3525 s
4M 666 s 6644 s 7156 s
8M 1352 s 12801 s 13773 s

16M 2716 s 24518 s 26446 s

c© 2023 NSP
Natural Sciences Publishing Cor.



Inf. Sci. Lett. 12, No. 1, 1-8 (2023) / www.naturalspublishing.com/Journals.asp 7

Table 6: Execution time for real datasets in MySQL,
CryptDB, and ESQPA server.

Dataset MySQL server CryptDB server ESQPA server

PubMed Abstracts 148 s 1532 s 1728 s
India News Headlines 417 s 4225 s 4460 s

Amazon Reviews Polarity 1237 s 12682 s 13526 s

Fig. 8: Relation between time and number of records for
these three database servers

Fig. 9: Relation between time and number of records for
these three database servers

Fig. 10: Relation between time and real datasets for these
three database servers

5 Conclusion

The main purpose of this paper is used to minimize space
consumption and to maximize the secure and efficient
retrieval of data. For this approach ESQPA algorithm is
established to reduce the time and space complexity.
Comparing the ESQPA method with the existing servers
such as MySQL and CryptDB, storage space is less and it
saves up to 63% of its space. In the case of execution
time, it is a little bit higher than the prior methods because
of compression and decompression. However, our
proposed method performs well in saving space. For
future work, we plan to improve query processing
efficiency on encrypted databases by reducing the overall
processing time using advanced algorithms and
unconventional methods.

Conflict of Interest

All authors declare that there is no conflict regarding the
publication of this paper.

Authors contributions

All authors actively equally contributed to the preparation,
authorship and reviewed of the manuscript .

References

[1] Curino, Carlo et al., Relational Cloud: A Database-as-a-
Service for the Cloud.,5th Biennial Conference on Innovative
Data Systems Research,CIDR 2011, January 9-12, (2011).

[2] Amjad F. Alsirhani , Combining Multiple Encryption
Algorithms and A Distributed System to Improve Database
Security in Cloud Computing., , (2014) .

[3] E. S. A. Ahmed,R. A.Saeed, A Survey of Big Data Cloud
Computing Security, International Journal of Computer
Science and Software Engineering (IJCSSE), Volume 3, Issue
1, (2014).

[4] L. Ferretti, M. Colajanni, and M. Marchetti, Supporting
Security and Consistency for Cloud Database, Proc. Fourth
Int?l Symp. Cyberspace Safety and Security, Dec, (2012).

[5] J. Vyas,P. modi, Providing Confidentiality and Integrity
on Data Stored in Cloud Storage by Hash and Meta-data
Approach. , International Journal of Advance Research
in Engineering, Science & Technology e-ISSN: 2393-9877,
Volume 4, Issue 5, May (2017).

[6] A.P.A.G.Deshmukh,R.Qureshi, Transparent Data
Encryption- Solution for Security of Database Contents,
(IJACSA), Vol. 2, No.3, March (2011).

[7] http://www.stonefly.com/blog/data-encryption-essential-for-
data-storage.

[8] A. Gupta,V.i Khanduja,A. Bansal , Modern Lossless
Compression Techniques: Review, Comparison and Analysis,
ICECCT.2017.8117850, (2017).

c© 2023 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


8 A. I. Taloba et al.: Developing an Efficient Secure Query Processing Algorithm...

[9] S. M. Choudhary, A. S. Patel and S. J. Parmar, Study of
LZ77 and LZ78 Data Compression Techniques, International
Journal of Engineering Science and Innovative Technology
(IJESIT), Volume 4, Issue 3, May (2015).

[10] Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan,
H, CryptDB: protecting confidentiality with encrypted
query processing, : Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles,ACM, New
York (2011) 85-100.

[11] A. Kumar, M. Hussain, Secure Query Processing Over
Encrypted Database Through CryptDB, Springer Nature
Singapore Pte Ltd, (2018).

[12] R. Su, Secure Database Techniques in Encrypted Database
Systems, June (2018) .

[13] I. H. Ak?n and B. Sunar, On the Difficulty of Securing Web
Applications using CryptDB, IEEE International Conference
on Big Data and Cloud Computing (BdCloud), (2014)

[14] K. Foltz and W. R. Simpson, Extending CryptDB to Operate
an ERP System on Encrypted Data, Proceedings of the
20th International Conference on Enterprise Information
Systems,pages 103-110 (ICEIS) (2018).

[15] , Hebah H. O. Nasereddin and Ali Jawdat Darwesh ,
An Object Oriented Programming on Encrypted Database
System (CryptDB) Talent Development & Excellence, Vol.12,
No.1, 5140 - 5146, (2020).

[16] Sandeep K.Sood, A combined approach to ensure data
security in cloud computing, Journal of Network and
Computer Applications , 35, 1831?1838, (2012).

[17] E. Saleh, A. Alsa?deh, Ch. Meinel and A. Kayed, Processing
Over Encrypted Data: Between Theory and Practice.,
SIGMOD Record,(Vol. 45, No. 3) September (2016).

[18] X. Tian,B. Huang,M. Wu, A Transparent Middleware
for Encrypting Data in MongoDB, IEEE Workshop on
Electronics, Computer and Applications, (2014)

[19] M.W. Grim,A.T. Wiersma, F. Turkmen, Security and
Performance Analysis of Encrypted NoSQL Databases,
,February 12, (2017).

[20] M. Ahmadian, F. Plochan, Z. Roessler, and D. C. Marinescu,
SecureNoSQL: An approach for secure search of encrypted
nosql databases in the public cloud, International Journal of
Information Management, vol. 37, no. 2, pp. 63-74, (2017).

[21] S. Saha,T. Parbat,S. Neogy, Designing a Secure Data
Retrieval Strategy Using NoSQL Database, Springer
International Publishing, ICDCIT, LNCS 10109, pp.
235?238, (2017).

[22] M. Kumar, A. Vaish, An efficient encryption-then-
compression technique for encrypted images using SVD,
Digital SignalProcessing, 81?89, (2016).

[23] I. Demertzis, R. Talapatra and Ch. Papamanthou, Efficient
Searchable Encryption Through Compression, Proceedings
of the VLDB Endowment, Vol. 11, No. 11, (2018).

[24] Y. Shao, Sa Wang and Y. Bao.: CryptZip, Squeezing out the
Redundancy in Homomorphically Encrypted Backup Data,
APSys ?18, August 27?28, Jeju Island, Republic of Korea,
(2018).

[25] S. Almakdi,B. Panda, Secure and Efficient Query
Processing Technique for Encrypted Databases in Cloud, 2nd
International Conference on Data Intelligence and Security
(ICDIS), (2019)

[26] W. Zhengy, F. Liy, R. A. Popay, Ion Stoicay and R. Agarwal,
MiniCrypt: Reconciling Encryption and Compression for Big

Data Stores, . EuroSys ?17 , April 23-26, Belgrade, Serbia,
(2017).

[27] M. Zhang,S. Qi,M. Miao,F. Zhang, Enabling Compressed
Encryption for Cloud Based Big Data Stores, Springer Nature
Switzerland,CANS 2019, LNCS 11829, pp. 270?287, (2019).

[28] https://github.com/Percona-Lab/mysql random data load
[29] https://www.kaggle.com/therohk/india-headlines-news-

dataset
[30] https://www.kaggle.com/bonhart/pubmed-abstracts
[31] Zhang, Xiang, Junbo Zhao, and Yann LeCun, Character-

level convolutional networks for text classification, arXiv
preprint arXiv, 1509.01626 (2015).

[32] T. Bell, Better OPM/L Text Compression, IEEE
Transactions on Communications, vol. 34, no. 12, doi:
10.1109/TCOM.1986.1096485 , December 1986, 1176-1182

[33] F. Kerschbaum, A. Schröpfer, Optimal Average-Complexity
Ideal-Security Order-Preserving Encryption, CCS?14,
November 3?7, Scottsdale, Arizona, USA, (2014).

c© 2023 NSP
Natural Sciences Publishing Cor.


	Introduction
	Related Work
	Proposed Work
	Implementation and Evaluation
	Conclusion

