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Abstract: A significant area in the region of pure and applied mathematics is the integral inequality. As it is well-known, inequalities
objective to establish various mathematical methods. Today, we need to pursue exact inequalities to demonstrate the uniqueness
and existence of mathematical methods. In the present research, we will develop some Ostrowski-type inequalities for the strongly
quasi-convex function. We also establish some fractional weighted Ostrowski-type inequalities for differentiable strongly quasi-convex
function. The remarks at the end of the results are also given. In order to show the effectiveness of our results, we present some

applications to special means. The derived results generalize and refine some well-known results.
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1 Introduction

Fractional calculus is natural generalization of classical
calculus which covers differentiation and integration of
non-integer order. The idea of fractional calculus has been
introduced virtually at the same time as the development
of classical ones. Fractional calculus studies different
possibilities of defining real number powers or complex
number powers of the differentiation operator, the
realistic use of fractional differential operators more
frequent in electrical transmission line analysis is
generally normal.

It has become evident that the subject of convex
analysis got a reasonable space among the areas of
research which has vast applications. The researchers can
not ignored the link of convexity and fractional calculus
in current scenario. For more on this study we refer (see
[1,2,3,4]). The subject of convex analysis is important
for both pure and applied mathematics. The advancement
of fractional calculus also sets new trends in developing
inequalities of convex functions (see [5,6,7,8]).
Convexity is frequently hidden in many other areas of
mathematics: complex analysis, functional analysis,
calculus of variations, partial differential equations, graph
theory, discrete mathematics, probability theory,

crystallography, algebraic geometry and several other
fields.

In this view, integral inequalities have played a
significant role in narrating real-world problems. In this
framework, Hermite-Hadamard inequalities are very
dominant in convex theory, which has been proved by
different ways and has several generalizations and
extensions [9, 10, 11,12, 13,14,15,16]. The Hermite
Hadamard inequality for convex function is as follows:
Let { : J C R — R be a convex function. Then

C<a;b)gﬁ/f@(é)diﬁaa);g(b)a

holds for all a,b € J with a # b. For more on this study
we refer the reader (see [17, 18, 19, 20, 21])

Several techniques are done by different authors to
analyze unique generalizations, modifications and
speculations for the Hermite-Hadamard inequality and its
various forms, we specify the associated phenomena
[22,23,24,25,26,27, 28] to concerned readers.

Definition 1.(Riemann-Liouville Fractional Integrals )
The Riemann-Liouville fractional integrals J)§1+C and

Jg,C of order 6 with 6 >0, 0 < x1 < xp and let
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£ € [x1,x2] are defined by
(45) € = 55 [ =8 £ @a 1)

forn > xi, and
()¢ =5 [ E-wC@E @

for n < xy respectively, where I'(§) = > e SEn-lg
Jo

and (10..) € (n) = (1%,-) () = € (n).

Definition 2.[29] Let J be an interval of real numbers. A
Sunction € : J — R is called convex, if
C(Ea+(1-¢)b)<&C(a)+(1-¢)(b), (€
holds ¥ a,b € J and & € [0, 1].

Definition 3.[30] A function § :J — R is called
quasi-convex, if

C(8a+(1-8)b) <max{{(a),C(b)}, )
holds ¥ a,b € J and & € [0, 1].

Definition 4.[31] A function § : J — R is called strongly
quasi-convex with modulus ¢ > 0, if

C(Ea+(1-8)b)

<max{{(a),{(b)} —cE(1-E)(a—b)%,  (5)
holds¥ a,b € J and § € [0,1].
The present paper is organized as follows. In section 2,
for strongly quasi-convex function, we proved
Ostrowski-type inequalities. In section 3, we will derive
fractional weighted Ostrowski-type inequalities for
strongly quasi-convex function and related results. In

section 4, we will write some applications and at last we
give concluding remarks to our present article.

2 Ostrowski-type inequalities

The aim of this section is to derive some new
Ostrowski-type inequalities for the class of functions
whose first derivatives in absolute value are strongly
quasi-convex functions.

Lemma 1.[32] Ler { : J C R — R be a differentiable

mapping on J° where a,b € J with a < b. If { € Lla,b),
then

) - [ ctono

b ’
= (b=a) [ KOS Eat(1-E)0)a. @)
foreach & € 0,1
e gefo .
k(S) = f1, geln
forall x| € [a,b].

], where

Theorem 1.Let { : J C [0,00] — R be a differentiable
mapping on J° such that { € Lla,b), where a,b € J with

a<b. If | C/‘ is strongly quasi-convex with modulus ¢ > 0
on [a,b), then

\axl)%/bawl)dwl'

(( maX{‘C X1 | |C |} (7)
3 (b—x
( ))2 b—;))3> (x1 —b)?
x| —a)?
+(2(1b a)) max{|g )| |¢ (@ ‘} (11 — )
<i (b—n)  20b—x) (b—x1)4)
12 Z(b—a) 3(b_a)2 4(b—a)3 ;

foreach x; € [a,b].

Proof.Applying Lemma 2, properties of modulus and
strong quasi-convexity of ‘C /| yields that

o) - b% [ ct@nao

b—

< (b— a/ E|C (Eat (1 &)b)|aE
+o=a) [, = IIE (o (1-2)0)}ag

b—x|

<b-a) [ " & (A1-ct1-8)m b)) dé
Ho-a) [, (1-8) (A1~ E)(x1 —a)?) d&

b—a

<(b—a)A; X

bx| b—x;

|7 g =y b2 [T E201-2)az
+(b—a)A; x
1

[ (180 —clb—a)(si —a)? [, €01 -84

7(;77)(])2
S 2(b—a) A] X
((b=x1)  (b-x)*
—cC (3(1?*61)2 - 4(b7a)3) (X] *b)Z
a2,
2(b—a)
(1 _-x) 2b-x)  (b-m)
‘ (ﬁ* 26-a) " 3b—aP ’4<b_;>3) (a —a)”
where

Alzmax{]C/(xl) , /(b)]} and
Az =max{|¢' ()|, £ (0)] |

The proof is complete.
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Remark.For ¢ = 0 in Theorem 1, then we get Theorem 2
of [33].

Theorem 2. Consider § : J C [0,00] — R be a
differentiable mapping on J° such that {' € Lla,b], where
is strongly quasi-convex with

modulus ¢ > 0 on [a,b], then

o=, [ toaa

(b—x))P* \7
<(vatram)
[max {|¢'e0| | @'} ®)
,c((b*xl)z 3 I
2(b—a)?

—x)? a
o) 2]
(x; —a)P*!
b—a)p+1)

3(b—a)
[max {|¢'eo)".[¢'@|'}

L (-n?  (b-n) 5
- (6 T2 —ap " 3(bfa)3) (e _“)2} ’

q

)

foreachx; € [a,b] and g > 1 with%—i—% =1

Proof. By Lemma 2, properties of modulus, Holder’s

integral inequality and strong quasi-convexity of ‘C’]q
yields that

S

X

TUEL Eat (1-€)b)|dE

zw—@/

+(b- @AMKfHM§a+1f b)|ag
S@@(/kJH%) . o

(A”’ C%éa+<1éﬂané>q

+(ba)</yn(léVd€>px

(/blxl ¢ (Ea+(1- é)b)\%) '

ptl

_ (b xl) P
(b—a)7 (p+1)7

[max {|¢' e[| )]}

(- S Y]

X

p+1
+—(x1—a)]: X
(b—a)r (p+1)7

[max {|¢' | [¢' @]} (10)

1 Bex)? (b-x) ‘
- (6 Tob—ay " 3(b,a)3) (s 7a)2} ’

which completes the proof.

Remark. For ¢ = 0 in Theorem 2, then we get Theorem
3 of [33].

Corollary 1.Considering x; = ‘”b in Theorem 2, we get
+b 1 b
(225 o
b—a
< an
27 (p+1)r

q

)

co)' |- o]

e (=52) ] Jerar) o) }
Theorem 3. Consider § : J C [0,00] = R be a

differentiable mapping on J° such that { € L[a,b], where
a,b e Jwitha<b. If ’ C/ ‘q is strongly quasi-convex with

modulus ¢ > 0 on [a,b], ¢ > 1, and }C/(xl) <M,
x| € [a,D), then

{50

O
b-n)
= 2b-a)
(max ¢ e[ e @[}
(55 s o)

(x(1 aa))2 (max{ /(M)’q’ C/(ﬂl)‘q}
ooy
6(x1 —a)>  (x;—a)>
4(b—x;)3 (b—x)* g
e (bﬂﬁ&rﬂy)m_®ﬁ7

foreach x; € [a,b).
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2
Proof. Take g > 1. Applying Lemma 2, properties of = L1 =) max{’C ’

42
modulus and power mean integral inequality yields that 2(b~-a)

L (b—x)* 20b-x) (b—x)*
_C(E_z(b—a) 2 30 =ap  db—a) )(“_x‘)z

C(x1) —L/bC (o01)doy

<(-a) [T El¢ o+ (1-Eag = 8 (e {0 ¢ )
(b-a) [ 1E-1[E a+ (1-E)p)]d o=@ (bmx)? 4box)?
s l C(amfa)z o S o

g(ba)(/o%éd§> " (b~ ";l_a )a ) )

Thus, we have
1

(/ 8¢ (Ga+(1-8)b y‘fdé;) c<xl>fbla,/abc<wl>dwl
7}1 (b*X])z / q ’ q
+(b—a) (/hln(l—é)dé) « = 2b—a) max {|¢' ()|, [ € 0"}
. 2Ab-x) (b-n) )’
. 7 —c - (x1 —D)
(/f“(1—5)!@’(éa+<1—5>b>rqdé) 4 G20 ap) 0 o7)
X1 —a 2 / /
Since ‘C’]q is strongly quasi-convex, we have +ﬁ (max{’C (xl)‘q ’C (“)’q}
B V. (R0
/ §|g (Ea+ (1 - E)b)|%dE 6(i—a? (n—a? 3b-a)m—a?
by B (b—x1)4 - —a)? é
< [ e (mme{lewl e e =) 1=
—cE(1—&)(x —b)2> dé This completes the proof.
(b—x)? C w Remark.For ¢ = 0 in Theorem 2, then we get Theorem 4
=5 ap max {|¢' (e[, |¢' )|} of [33].
¢ ( (b—x1)? _ (b*xl)4) (x1 —b)>2 Corollary 2.Considering x| = ‘”b in Theorem 2, we get
3(b—a)p 4(b—a)t) "

(12) ‘C(aer) lea/bC(a)l)da)l
zéb_xl)zx S(bTaK {’C (a+b) C’(b)]q}—%(b a));

o) (o (2] )00

3 Fractional weighted Ostrowski-type
and inequalities

)

)

1 ’
/h;x, (1 _5)’C (Sa+(1 _5)b)’qd§ The current section is devoted for fractional weighted
- Ostrowski-type inequalities via strongly quasi-convex

< /1_<1 ~&). (max {|¢' @] ¢} function.

b
Lemma 2.[34] Let { : J — Rbe a differentiable function
onJ® 0<a<b,and @ :J — R a continuous function. If

—c&(1-&)(a—x1)?) dé
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¢, o € L(J), then

P (@)+I2 o8 b)— |12 o (a)+ 1% or(@)] ¢ (x1)

X 0+1 ,
%/ ki(E)C (Eb+(1—E&)x1)dE

6+1
x —a)
r—a)™ / ko (€

{'(Ea+(1-&)x)dE,
1
k,(g)::/é (1—a)’ o (ab+ (1 —a)x))da, (13)

k(€)= /51(1 — )% o (aa+(1—a)x))da. (14)

Theorem 4. Consider { : J — R be a differentiable
function with C/ € L(J) where 0 < a < b, and let

@ : J = R be a continuous function. If |C/‘ is strongly
quasi-convex with modulus ¢ > 0, then

I @i L(@)+ 2 £ (b) = [12 1 (a) + 2 @ (@) £ ()]

b—x)%t
s((aifzmax{\c DL O} 01l
—X 5+1 —x S+1
_<(l}(523) _([;“(61424) )C(xl_b)z o1 [, 5]
(x],a)t‘H

1
rogy ™ IS @LE @I} 0l

X1 —a o+1 X1 —a o+1
_<(F](6+)3) _(11(534) )C(xl_a)z o1 [, 5]

Proof. Applying properties of absolute value, Lemma 2 and
strong quasi-convexity of |C ' | yields that

2 oig(a >+J§ 01 g(b) - [72 01(@) + 12 (@) E()]

S(b x1

% ha@le @b (- 2o

X*a
NOE

/|k2 ¢ Ea+(1-Epm)|de

—xy )0+
<O [

(x1 — a)‘s“

Ll /01|k2(§)<A27c§(17§)(x] *a)z)dé

)| (41— c&(1-&)(n —b)?) d&

+

_ (b—x)?!
- I

{Al'/ol '/;(l—a)571w1(ab+(1 —a)xl)da‘dg
—c(x1 —b)* x

/51 5’/ 1—a)° o (ab+(1- )X1)d(x‘d§}
Jr(XII:(C(!S))(S+1 {Az X

/01 /él(lfa)ﬁflw,(awr(l7a)xl)da’d§
—c(x; —a)? x

/51 é’/ (1— @) oy (aa+ (1 — i dar| e |

i /‘/ @’ dald

el =B 01y [ E01-8)

m-(“)) {Azuwl [ / ‘/
—c(x1 —a)* || O [|jgx, )0 /51_ ’/

(b x])‘s“
= T©6+2)

- ((bxl)‘s“ -

(1 —a)? da dé-

)5 lda‘
)% ldoc‘dé}

At || o1 [y, )0

(bfxl)‘s“

T(5+4) )C(xl =0 [ @1 [l ).

Ay H (Y} H lax],

r(5+3)

(x1 7a)6+
r(5+2)

(x1 7a)6+l (x1 ,a)6+l
(F<6+3> T+ )C("‘“) 1 o)
where

Ar=max {|¢' ()|, [£ )]} and
Ay =max {|¢' ()], |¢' )]}

This completes the proof.

+

Corollary 3.Choosing x| = “;b in Theorem 4, we obtain

2, o)+, o (b)
2 2

- {Jf%rwl (a)+1f;+w1 (a)} ¢ (a;b) ‘

e L (AN
- (2&'}2:13) - 2f5(f'_1f£);r4)> ¢l orliap (b;a)z
P { € L @1} 01
B (231;2);13) B 231;2:14)) ¢ (bza)z IF e lla o -
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Corollary 4.Substituting @, (u) = blTa in Theorem 4, we modulus ¢ >0, g > 1 and ;7 +$ =1, then
get

‘Jf], o1 §(a) +J-’§T 1 §(b) — [Jfl— o1 (a) +Jfl+ @] (a)} E(x)

—x1)%+(x; —a)®
J?ﬂfwlé’(a)+JL+w1C(b)_ (b })(3—:_(11) ) §(x1) (b—2x)5+1 Lol
’ i S 0 e X
— )0t , , »
<otz (I aico) e
(b—x)0t1 (b—ux;)%+! > (max{’C(x1)|q,’{,’(b)’q}—g(xl—b)2>"
- ( L(§+3)  I(5+4) )C(X' Y ot [P
(x1 —a)®+1 {‘C/( )’ ’C/( )’} (bp+1)rI(6+1) Al
+— = max X1) |, a , , ¢ 1
ro+2) (max {|¢' ()] 18 @]} = Sn —a?) "
- (W —at_ ‘“Vm) —
Ie+3) FE+4) Proof. Applying Lemma 2, properties of modulus, Holder’s
inequality and strong quasi-convexity of ‘C ' ’q yields that
Corollary 5.For oo = 1 in Theorem 4, we get S L (a) 45 anE(5) [157 o1(a) 475 o, (a)} £
b—x)0t! 1 b
/ab o (u)§ (u)du— (Lb ol (u)du) $(x1) < % (/0 |k1(5)|pd5) X
< (b*X])z %
S | é
(max{ &)l [E @)} - o —b)2) o1 I, pjee (/0 ¢ (gb+(1 *é)xl)‘qdé)
X1 —a)? X1 —a)dt! 1 ,
plna SO ([ hairag)

c

(max{I¢ 01 @I} - 3501 =0) 1 01 e

1 !
[ 1€ Gar - g faz)
Moreover, if we we choose x; = #, we obtain ( 0

[ ot [ orwar) ¢ (452))
< (b_g")z « (/01 /;(lfa)‘s’lwl(abJr(lf(x)x])da

max {1 (452 ) LIE @) | = 5002 ) 1 an Lo ([ [1-cea-e 7] dg)"'

(b*X])6+]
- I

Pdg)% y

(b—a)?
* 8
’ Ll+b ’ c
(max{|EFDLIE @ - 55002 ) No a0
I(é)
Hort 5-1 AT
1— - 1 — do| d
Remark.For ¢ = 0 in Theorem 4, then we get Theorem 8 (/0 /5 (1=a)" o (aa+ (1 - o)x)da 5)
of [34].

1
By —c&(1— —a)?|d
Theorem 5.Let { : J — R be a differentiable function with 8 (/0 [ 2= ¢6(1=¢)0x1 —a) ] 6)

C/ € L(J) where 0 < a < b, and consider @, : J — R be a (b—2x)5+1 a1l s |P 3
continuous function. If ‘ C, ’q is strongly quasi-convex with = r(s) Il o1 [l p].c0 (/0 / (1-a) da’ dé)
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EyE

x (max{mx])\‘% S B} -t —0)?)
=)

o) le H[a,xl]m(/ ‘/

X <max{|§ (x1)|q,’C (a)’q} - 8(x1 fa)2>é

1
)% lda‘ d&)

(b*X])er]
<————— ol 4. %
(Sp+1)rT(5+1)
<max{‘g/(x1)“17 ,g’(b),q} - g(xl 4;)2);
(xl 7a)5+l

1 O gy e X
(bp+1)rI(6+1)

<max{‘é’/(x1)‘q7’§/(a)’q}7%()‘1 7a)2>97
where
B, :max{‘c/(xl)|q7‘c/(b)|q}
B, :max{‘C,(xl) ! C/(a)’q}

This completes the proof.

)

Corollary 6.Choosing x; = “+b in Theorem 5, we obtain

M—(DlC( )+Jf%b+w1§(b)

{Jfﬂ,fwl(a)ﬂf;ml(a)} ¢ (a+b) ‘

2
_ . \O+1
< (b a)]
26+ (Sp+ 1) (S +1)

((max{\d(“*b)!"\a O} 5 o-a?)’
= (max{ 1 (452 c’wﬂ"}—iw—aﬂ)é)

Corollary 7.Putting o, (1) = ﬁ in Theorem 5, we get

| @1 [l[4,5].00 %

(b—21)% + (xi —a)®
]r(5+1]) §(a)

M—(DlC( )+Jf_;b+ﬂ)1§(b)—
o (bmm)
(Sp+1)FC(5+1)

(max{|C/(X1)|q¢’C,(b)’q} - %(xl _b)z>é

5+1

(x1 —a)
(5p+1)rT(5+1)

(max{|¢"G)[%, |8 @]} — £n —a)?) "

+ X

EyE

Corollary 8.For o« = 1 in Theorem 5, we get

./ub @ () ()t — (/ab ) (u)du) ¢ (x1)

b—x)?
% | @ H[x..,b],oo X
(p+1)r

(max{|C/(x1)’q,

<

C B} S —02)
(x1 —a)?

Tt H o1 H[a,xl]ﬁoo X
(p+1)r

<max{‘g/(x1)’q7 ’C/(“)‘q} - g(xl 7a)2)é ’

Moreover, if we we choose x| = “Ter, we obtain
b b
[ ot wl(u)du) (3]
b—a)?
< oD o .
4(p+1)r

(o))
+ (w1 (“0) 11 @ };waﬂ)é).
Corollary 9.In Corollary 8, for o;(u) = —

b—a
’—/ C(u)du— ¢ (x, ‘

‘%(m{! CElnIE B - S -2’
+(b—(iz‘)(;—):1)% <max{|§/(m)|‘17’§'(a)’ }7 g(xl 7a)2>%

Remark.For ¢ = 0 in Theorem 5, then we get Theorem 9
of [34].

Theorem 6.Consider { : J — R be a differentiable
function with C/ € L(J) where 0 < a < b, and let
@y : J — R be a continuous function. If }C,|q is strongly

quasi-convex with modulus ¢ > 0, where g > 1, then
72 (@) 5 0 £(0) - [12 @)+ 1% 1@ )

(bfx] )6+]
r(6+2)

(x] _a)5+1
Ty |l

) (Bz_c((gié) - (ii;)) (xl—a)z);,

S H (D] H)C]7

+
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where

B =max {|¢' ()|, ¢ (8)]"}
82:max{’é‘/(xl)‘q,’{,’,(a)’q}
ProofBy properties of modulus, applying Lemma 2,

power mean inequality and strong quasi-convexity of
! .
£’ yields that

‘jfl,a)lé'(a)+Jf]+a)]C( )— [15 o (@) +J7 o (a)] E(xr)

([merag) "

(/(;lkl(é)‘cl(éb+(lé)xl)‘qdé)}/

O (gyig)

( o (E)I[C (Eat (1-E)xy) |‘fd§)l

( G |d5)

B1 c(1-8)(x

- (b—x1)5+1

bX1

/ k1 (&
+ (M;(L:s))éﬂ (/0 |k2(§)d’g’)1"
’ ('/Ol\kz(iﬂ [Bz_cé(l —&)(x —a)z} dé);

—x 5+1 175
< (b F(lé)) | @1 [lx, ,5],00 [(/0] (A(é))dg)

() e o —ca -y —or]az)°

X1 —a)0t! ]7}1
1 1F(5))+ [ @1 lljax,) o0 {(/0] (A(é;))dg)

b)2] d&) é

<([ 4@ [pmcs0-800 -] dé);

(bfxl)‘s“
S TE+2) | @1 [|[x, 5.0

“(me(5iagiy) o)
(=

_a)5+1

+

Il @1 Nl

r(5+2)

x (Bz—c((gié) - (21;)) . —a)2);,

/51(10‘)515105
= max {[¢' ()|, | )]}
By = max{yc/(xl)‘q’ ’C/(a)‘q}

This completes the proof.

Corollary 10.Choosing x| = ‘”b in Theorem 6, we obtain

% o §(a)+ ,,+(01C( )
[Jf;bwl( )+J%+“’1( )}Cc;b)’
(b—a)®+!

—— || ® 0 X
=25+ (§+2) | @ ||[a,b],

(o5 (i) o)

Q=

G max{‘c/ (a;b) |q,|C/(b)|q}
(@} max{‘c, (a;b) ]q,]C/(a)]q}
Corollary 11.Putting @ (u) = ;— in Theorem 6, we get
—X X1 —da 8
@xww@mm—(b ‘F)((;(l‘) Pt w)
_ b_xl)5+l
= T(6+2)
S+1  8+1 )\
(5-(Grywrw) )
(xlfa)‘s“
T TE+2) "

1
6+1 0+1 ) ¢
By—¢cf =" "7 _
(5-<(55m - 3em) o)
where By and By are defined as in the proof of Theorem 6.

Moreover, for x| = “;b we get

S0 1, 1 0) < (43

<im0 i (e o) “"“’2)%
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where Cy and C; are defined as in the proof of Corollary
10.

Corollary 12.For o = 1 in Theorem 6, we get

/a ’ o1 () () — ( / "o (u)du> ¢ ()

- (b—xl)‘s“
- 2

<(me(ry ) )

@ ey

(@i wim) o)

where By and B; are defined as in the proof of Theorem 6.

| o1 [|x,.0).00

<

Moreover, if we we choose x1 = “Ter, we obtain
b b a+b
/ o1 (u) & (1) dut — (/ o (u)du> ¢ ( - > ‘
a a
(b—a)aﬂ
< 52 | 1 |[,5],00

A(e-i(siyw9) “’”2);

He-iey5) (”“)zﬂ’

where C1 and C, are defined as in the proof of Corollary
10.

Remark.For ¢ = 0 in Theorem 6, then we obtain Theorem
10 of [34].

4 Applications

Let us recall the following special means for arbitrary
positive real numbers a and b, where a < b. we take

(1) Arithmetic mean:

_a+b

A(a,b) = ——, a,beR.

(2) Logarithmic mean:
~a—b
~ In|a| —In|b|’

(3) n-Logarithmic mean:

L(a,b) lal # |bl, a,b #0, a,b € R.

anrl _an+l
L) = |-

Now, using section 2, we will write some applications to
special means.

r,neZ{O,l}.

Proposition 1.Let a,b € R, 0 < a < b and p > 1, then
]A*l(a,b) ! (a,b)’
< & %

_2[,;_.(

p+1)7

{ l:max (’(“;b) B b%) Afg(ba)z} B
o (|57

Proof.Choosing {(x;) = xl—], x1 > 0 in corollary 1, we get
the desired result.

J’_

Proposition 2.Let a,b €¢ R, 0 <a < b, g > 1, n € N and

n>2, then
n
<
1
atb|" M | 5e 2\
-l—(max{‘T ,|a| —@(b—a)> .

|A"(a,b) — Ly(a,b)]
(b-a) _
- 8
1
(n—1)q 5¢ 4
b (n=)g \ _ 2¢ o 2
[ (max { ,|b] 96n( a)
Proof.Taking {(x;) = x|, x; € R in corollary 2, we obtain
the desired result.

a+b

Proposition 3.Let a,b c R, 0 <a<b,neNandn > 2,
then

in: (a,b) — A" (a,b)‘

nb(b—a) . . ¢ 5
< — Z[A(A" b).b" _ - '
-4 ( (4" @ b),6") 96,0~
Proof.Choosing {(x1) = 2. 11 > 0 for x; = % and

o (x1) = x1 in corollary 5, we obtain the desired result.

Proposition 4.Let a,b c R, 0 <a<b,neNandn > 2,
then

_ Ly (a,b)
Lf’l 1 b _~n )
e -2
b'(b—a) 1 1 c 2
<—2 Al 5| —=(b— .
=73 < (aZ,AZ(a,w) 9"~
Proof.Considering {(x;) = % x1 > 0 for x; = # and

o) (x1) = x| in corollary 5, we obtain the desired result.

Proposition S5.Let a,b c R, 0<a<b, p>1,neNand
n>2, then

n+1

Ln+1(a,b) ArH»l(a’b)‘
- nb(b—a)

< 1) (A (A" (a,b),b"") — L(b—af).

24n
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ProofPutting {(x;) = x%, x; > 0 for x; = <52 and
o (x1) = x; in corollary 8, we get the desired result.

Proposition 6.Let a,b c R, 0 <a<b, p>1,ne N and
n>2, then

ini(avb) -

M‘
A(a,b)

2ot C@mem) 50-)

Proof.Taking { (x) = %,xl >0 forx; = “F2 and o (x1) =
x| in corollary 8, we get the desired result.

5 Conclusions

In this study, we discussed some Ostrowski-type
inequalities for the strongly quasi-convex function and
then we derive fractional weighted Ostrowski-type
inequalities using differentiable strongly quasi-convex
function. Further, several results with a bounded first
derivative are provided. Also, some applications to
special means are presented. In the future, from our
results, the concerned reviewers can find many novel
inequalities from several areas of applied and pure
sciences. Furthermore, they can establish applications to
special means for various quasi-convex functions using
our technique.
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