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Abstract: In the present research paper, deterministic and the corresponding stochastic mathematical models describing the dynamics

of cholera epidemic are presented by incorporating vaccination. The total population size of the model is divided into five compartments

namely Susceptible, Vaccinated, Infected, Quarantined for treatment and Recovered class. Initially, the cholera model is developed,

and is determined by a deterministic approach. Since this deterministic approach is not considering either environmental factors or

the randomness process of the dynamics, a corresponding stochastic approach has been introduced. The model equations of both

deterministic and stochastic cases have been proved to be positive and also bounded. Furthermore, for both the models, mathematical

formulations of the basic reproduction numbers are developed by employing the next generation matrix method. The analysis shows

that the basic reproduction number for the deterministic approach is much greater than that for the stochastic one. Finally, numerical

simulations are also performed. The simulation study has revealed that a combination of a decrease in contact between infected and

susceptible individuals, increasing vaccination coverage, creating awareness to reduce contact rate, increasing recovery rate with proper

treatment, and environmental sanitation are the most basic control strategies so as to eliminate cholera disease from the community.

Keywords: Cholera model, stochastic modeling, vaccination, Numerical simulation.

1 Introduction

Cholera is a severe water and food borne infectious
disease. Cholera is caused by Vibrio cholera bacterium,
which lives in an aquatic environment. The bacterium
transmits cholera directly from human to human and also
indirectly from environment to human [1]. It is true that
an individual infected with the disease may show or may
not show symptoms. Some of its symptoms are watery
diarrhea, vomiting and leg cramps. If an infected
individual is not treated timely then he will suffer with
acidosis, dehydrated and circulatory collapse. This
situation may lead to a death within a time period of 12 to
24 hours [2] . Some studies and experiments proved that a
recovered individual is immune to the disease for a period
of 3 to 10 years. Recent researches recommend that
immunity can be lost after a period of weeks to months
[3].

Thus, dynamics of cholera is caused due to multiple
interactions among human hosts, pathogens, and
environment [4]. Between 2007 and 2019, several cholera
outbreaks occurred in various countries including Angola,
Haiti, Somalia, Congo, Zimbabwe and Yemen [[5], [6]].

According to [7], though the outbreaks are going on in
various countries there has been a significant down trend
in case of cholera. During 25 April and 6 June 2019, as
many as 424 cholera cases and at least 15 deaths have
been reported in Ethiopia. The most affected region in
Ethiopia is Amhara with 198 cases, followed by Oromia
with168 cases, Somali with 33 cases, Addis Ababa with
15 cases and Tigray with 10 cases. Of these, 13 cases
were caused due to cultural activities: 5 in Oromia, 4 in
Addis Ababa, 2 in Amhara and 2 in Tigray [7].

The disease cholera has a huge impact on public
health, economy and also social development. Cholera
has been an important subject of research studies in
experimental, clinical and theoretical areas. Generally, it
is believed that some strategies like quality water,
sanitation, and hygiene will control cholera. But, there
have been numerous examples of its existence and
transmission in spite of application of the afore
mentioned control strategies. Therefore, vaccination has
been recommended as an additional strategy to control
cholera. However, oral cholera vaccine (OCV) is more
effective than early-generation parenteral vaccines to
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control cholera [8]. The natural immunity that resists
cholera infection to effect individuals depends on
vaccination and some other factors [9]

So far, a good number of mathematical models have
been developed to understand the dynamics of cholera.
The models are mathematically analyzed too over the
time [[10], [11], [12], [13], [14]]. Considering all the
afore mentioned models and their features here a new five
? compartmental model SVIQRS is proposed. This model
is an extension of that given in [14]. Here the considered
extensions are (i) vaccination and (ii) recovered
individuals become susceptible again due to loss of
immunity. Deterministic and the corresponding stochastic
versions were considered and were compared. The details
of the models such as assumptions, mathematical
analysis, simulation studies etc. have been incorporated in
the subsequent sections.

2 Description and formulation of modified

model

2.1 Model Assumption

The total human population of the model at any time is
divided into five groups based on their disease status:
Susceptible S(t) , Vaccinated V (t) , Infected I(t) ,
Quarantined for treatment Q(t) and Recovered R(t). The
susceptible class S(t), consists of individuals of all age
groups of the population who have not come into effective
contact with the Vibrio cholera. The vaccinated class
V (t), consists of individuals who had been vaccinated and
still possess partially immunity against cholera. The
infected class I(t), consists of individuals who are
infected with cholera and are capable of propagating the
disease to susceptible humans. The quarantine class Q(t),
consists of infected individuals. These infected
individuals are subjected to stay in quarantine for a
specified period of time. In quarantine the infected
individuals are isolated and are provided medication. The
recovered class R(t), consists of individuals who are
successfully treated. These individuals are sufficiently
immune against the disease. Population of S(t) class
increases with a constant birth rate or recruitment rate Π .
Humans progress into S(t) from R(t) with a rate η as they
lose the immunity that was acquired from the treatment.
However, the population of S(t) decreases due to
vaccination and also infection. The class V (t) is increased
with the rate of vaccination ϕ i.e., with this rate humans
progress into V (t) from S(t). However, some population
of V (t) are imperfectly vaccinated and they will go back
to S(t) a rate θ . Here 0 ≤ κ ≤ 1 is the protection
efficiency of the vaccination and 1 − κ is the risk of
infection due to vaccination inefficiency. Thus, the
vaccination protection efficacy is considered as 100
percent if κ = 0 and 0 percent if κ = 1. Humans are
recruited in to infected compartment from susceptible

Fig. 1: Compartmental structure and flow diagram of the model

class on getting infection and from vaccinated class on
losing immunity of the vaccination. Thus, humans enter
into I(t) from S(t) at a rate β τ and from V (t) at a rate
β τκ . Here, τ is the contact rate of susceptible individual
with infected, β is the probability that a contact results in
the infection and thus β τ is the infection rate or rate of
propagation of infection. However, individuals of I(t)
progress to Quarantine Q(t) at a rate δ for isolation,
treatment and medication. Humans are recruited in to
Quarantine compartment Q(t) from infected class I(t) at a
rate δ . However from Q(t) , after getting successful
treatment and losing the infection, individuals will move
to the recovered class R(t) with a rate φ . Also, the
recovered individuals will lose the immunity after some
time and they become susceptible. In all the classes the
populations are expected to decrease due to natural death
with a rate µ . Additionally, population sizes of I(t) and
Q(t) will decrease at the disease-induced death rates of ξ
and ψ respectively.
Here, the new mathematical model of Cholera disease is
developed considering the following assumptions:

i.The total population size is considered to be variable.
ii.Indirect transmission of cholera, i.e., through

environment, to humans is negligible. So cholera is
here considered to transmit directly from person to
person.

iii.All the parameters used in the system of model
equations are considered as non-negative quantities.

iv.Efficacy of the vaccine is not 100 percent and thus some
of vaccinated individuals are subjected to be infected
by cholera.

Considering the definitions, assumptions, and
inter-relationships among variables and parameters, the
basic dynamics of cholera is illustrated in the form of a
flow diagram as shown in Figure 1.

Based on the model assumption and the Schematic
diagram the model equation is formulated with initial
condition: S(0) = S0 > 0,V(0) = V0 > 0, I(0) = I0 >
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0,Q(0) = Q0 > 0,R(0) = R0 > 0 and given as follows:



























dS(t)
dt

= Π +θV(t)+ηR(t)− (µ +ϕ)S(t)−β τI(t)S(t),
dV (t)

dt
= ϕS(t)−β κτI(t)V(t)− (θ + µ)V(t),

dI(t)
dt

= β τI(t)S(t)+β κτI(t)V(t)− (δ + µ + ξ )I(t),
dQ(t)

dt
= δ I(t)− (φ +ψ + µ)Q(t),

dR(t)
dt

= φQ(t)− (η + µ)R(t).
(1)

The deterministic model of equations 1 does not consider
the effect of randomly fluctuating environment or
environmental factors, including contamination of food
and water, improper sanitation, malnutrition, occupational
risk. To include these environmental factors, it is
appropriate to incorporate white noise in each of the
model equations 1. Now, let some stochastic
environmental factor acts simultaneously on each
individual in the population. Let Wi(t) be the mutually
independent standard Brownian motion with Wi(0) = 0
and let βi where i = (1,2,3,4,5), are the intensities of
white noise. By introducing these stochastic
perturbations, the stochastic version corresponding to the
deterministic model given in 1 takes the following form:
[15,16]:


















































dS = [Π +θV(t)+ηR(t)− (µ +ϕ)S(t)−β τI(t)S(t)]dt

+β1SdW1,

dV = [ϕS(t)−β κτI(t)V(t)− (θ + µ)V (t)]dt+
β2SdW2,

dI = [β τI(t)S(t)+β κτI(t)V(t)− (δ + µ + ξ )I(t)]dt+
β3SdW3,

dQ = [δ I(t)− (φ + µ +ψ)dQ(t)]dt+
β4SdW4,

dR = [φQ(t)− (η + µ)R(t)]dt +β5SdW5.

(2)

3 Qualitative Analysis of the Model equations

3.1 Invariant region

Here in this section, the invariant region in which the
solutions of the system of equations given in 1 are
bounded will be obtained. Now, on differentiating the
total population N(t) = S(t) +V (t) + I(t) + Q(t) + R(t)
with respect to time t and substituting into Eq. 1, the
simplified equation can be obtained as :

dN(t)

dt
= Π − µN− ξ N. (3)

Initially there is either no infection or that is negligible
I ≥ 0 and also the disease induced death rate satisfies
ξ ≥ 0. Thus, without loss of generality Eq. 3 can be

re-expressed as
dN(t)

dt
≤ Π − µN which on solving using

variables separable method gives:

N ≤
Π

µ
− [

Π − µN

µ
]e−µt

. (4)

Further, it can be observed that N(t)→ Π
µ as t → ∞. That

is, the total population N(t) takes off from the initial
value N(0) at the beginning and ends up with the bounded

value (Π
µ ) as time grows to finitely large. Thus, it can be

concluded that N(t) is bounded i.e., 0 ≤ N(t) ≤ (Π
µ ).

Thus, the solution set of the system of model equations 1
enters and remains in the feasible region:

Ω = {(S,V, I,Q,R) ∈ R5
+ : 0 ≤ N ≤

Π

N
}

Therefore, the system of model equations 1 is biologically
well posed and mathematically meaningful. Hence, it is
appropriate and sufficient to study the dynamics of the
model variables in the invariant region Ω .

3.2 Positivity of the solution:

It is assumed that the initial conditions or values of the
model variables are nonnegative. Also, it has been shown
that solutions of the model equations are positive.
Theorem 1: The solution (S, V, I, Q, R) of the model is
non-negative for all t > 0 if the intial data of the
population (S0,V0, I0,Q0,R0) is non-negative.
Proof: Positivity of S(t): Consider the first differential
equation of 1 as dS

dt
= Π +θV +ηR−µS−β τSI and that

without loss of generality can be expressed as
dS
dt

≥ −(µ + β τI)S. Now, following the method of
separation of variables it solved to obtain its solution as

S(t) ≥ Ae−(β τ+µ)t where A = S(0) > 0 is an integral
constant. It can be observed that S(t) > 0 as t goes to ∞.
Thus, it can be concluded that S(t) is a positive quantity.
Positivity of V(t): Consider the second equation of 1 as
dV
dt

= ϕS − (µ + θ )V − β τκVI and that without loss of

generality can be expressed as dV
dt

≥ −(µ + θ +β τκI)V .
Now, following the method of separation of variables it

solved to obtain its solution as S(t) ≥ Ae−(β τκ+θ+µ)t

where A =V (0)> 0 is an integral constant. It can be seen
that V (t) > 0 as t goes to ∞. Thus, it can be concluded
that V (t) is a positive quantity.
Similarly, by applying the same technique for remaining
equations we obtained:

I(t)≥ I0e−(δ+ξ+µ)t ≥ 0,

Q(t)≥ Q0e−(φ+ψ+µ)t ≥ 0,

R(t)≥ R0e−(η+µ)t ≥ 0.

Thus, the system of model equations 1 are positive for all
t ≥ 0. Therefore, the model is meaning full and well posed
in Ω .

3.3 Disease Free equilibrium (DFE)

In order to find the disease free equilibrium DFE point of
the model, the right hand sides of the system of equations
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1 are equated to zero. Then the resultant equations are
evaluated at I = Q = 0 and they are solved for
non-infected and non-carrier state variables. Thus,
coordinates of disease free equilibrium point are obtained
as:

E0 =
{

S0,V 0, I0,Q0,R0
}

=
{

(θ+µ)Π
µ(θ+ϕ+µ) ,

ϕΠ
µ(θ+ϕ+µ) ,0,0,0

}

.

3.4 The Basic Reproduction Number (R0)

I.Basic reproduction number for deterministic
model

Here, the threshold parameter that governs the spread
of disease known as the basic reproduction number is
obtained. It is nothing but the spectral radius of the
next-generation matrix [17]. For the purpose the
system of model equations 1 are rearranged starting
with those representing newly infective classes.

dI(t)
dt

= β τI(t)S(t)+β κτI(t)V(t)− (δ + µ + ξ )I(t).
(5)

Now, using the principle of next-generation matrix
method fi and vi are obtained as:

fi =
[

β τSI+β κτVI
]

and vi =
[

(δ + µ + ξ )I
]

.

Now partially differentiating the variables fi and vi

with respect to I and evaluating at the disease free
equilibrium point and then the substitution of

S = (θ+µ)Π
µ(θ+ϕ+µ)

, and V = ϕΠ
µ(θ+ϕ+µ)

reduces the

Jacobian matrices to:

F =
(θ + µ)β τΠ +β κτϕΠ

µ(θ +ϕ + µ)
and V = (δ + µ + ξ )

Now, the product of the matrices F and V−1 can be
computed as:

FV−1 =
[

(θ+µ)β τΠ+β κτϕΠ
µ(θ+ϕ+µ)

][

1
(δ+µ+ξ )

]

= (θ+µ)β Π+β κτϕΠ
µ(θ+ϕ+µ)(δ+µ+ξ )

.

Now it is easy to identify eigenvalues so as to
determine the required basic reproduction number R0.
It is nothing but the spectral radius or largest
eigenvalue of the matrix FV−1. Thus, the eigenvalues
are computed by evaluating det(FV−1 − λ I) or
equivalently solving the following matrix equation:

∣

∣

∣

∣

(θ + µ)β τΠ +β κτϕΠ

µ(θ +ϕ + µ)(δ + µ + ξ )
−λ

∣

∣

∣

∣

= 0. (6)

However, it is straight forward to identify the largest

eigenvalue here as λ = (θ+µ)β τΠ+β κτϕΠ
µ(θ+ϕ+µ)(δ+µ+ξ )

. It is the

spectral radius or the threshold value or the basic
reproductive number. Thus, it can be conclude that

the basic (effective) reproduction number of
the deterministic model is given by:

RD
0 =

(θ + µ)β τΠ +β κτϕΠ

µ(θ +ϕ + µ)(δ + µ + ξ )
. (7)

II.Basic reproduction number for stochastic model
By taking the infected class of the system
of model equations 2 as:

dI = β τI(t)S(t)+β κτI(t)V(t)− (δ + µ + ξ )I(t)
+β3IdW3

Using Ito’s formula for twice differentiable function
f (t, I(t)) = ln(t, I(t)), its expansion in Taylor series
is:

d(t, I(t)) =
∂ f

∂ t
dt +

∂ f

∂ I(t)
dI +

1

2

∂ 2 f

∂ I2(t)
I2(t)+

∂ 2 f

∂ t∂ I
dtdI+

∂ 2 f

∂ t∂ I
(dt)2

, (8)

where
∂ f
∂ t

= 0,
∂ f

∂ I(t)
= 1

I(t)
,

∂ 2 f

∂ I2(t)
= −1

I2(t)
,

∂ 2 f
∂ t∂ I

=

0,
∂ 2 f
∂ t∂ I

(dt)2 = 0
Then equation 8 becomes:

d(t, I(t)) =
1

I(t)
dI(t)−

1

2I2(t)
dI2(t) =

1

I(t)
[[β τI(t)S(t)+β κτI(t)V(t)− (δ + µ + ξ )I(t)]dt

+β3IdW3(t)]−
1

2I2(t)
[[β τI(t)S(t)+β κτI(t)V(t)

− (δ + µ + ξ )I(t)]dt +β3IdW3(t)]
2

Let h1 = β τI(t)S(t)+β κτI(t)V(t)− (δ + µ + ξ )I(t)
and h2 = β3I

d(t, I(t)) = [[β τS(t)+β κτV(t)− (δ + µ + ξ )]dt

+ β3dW3(t)−
1

2I2(t)
h1dt + h2dW3(t)

]2

= [β τS(t)+β κτV(t)− (δ + µ + ξ )]dt +β3dW3(t)

−
1

2I2(t)

[

h2
1d2t + 2h1h2dtdβ3(t)+ h2

2d2W3(t)
]

= [β τS(t)+β κτV(t)− (δ + µ + ξ )]dt +β3dW3(t)

−
1

2I2(t)

[

h2
2d2W3(t)

]

.

Now, by using chain rule, it is obtained as:
dtdt = 0,dtdB(t) = o and dB(t)dB(t) = d2B(t) = dt.
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Then

d(t, I(t)) = [β τS(t)+β κτV(t)− (δ + µ + ξ )]dt

+β3dW3(t)−
1

2I2(t)

[

h2
2d2W3(t)

]

,

= [β τS(t)+β κτV(t)− (δ + µ + ξ )]dt+β3dW3(t)

−
1

2

[

β 2
3 dt

]

,

= [β τS(t)+β κτV(t)−
1

2
β 2

3 − (δ + µ + ξ )]dt

+β3dW3(t).

Thus Jacobean matrix is obtained as:

F = β τS(t)+β κτV(t)−
1

2
β 2

3 . (9)

Then, disease free equilibrium of the model system 2

at S = (θ+µ)Π
µ(θ+ϕ+µ)

and V = ϕΠ
µ(θ+ϕ+µ)

are simplified to:

F =

[

(θ + µ)β τΠ +β κτϕΠ

µ(θ +ϕ + µ)
−

1

2
β 2

3

]

,

V = (δ + µ + ξ ) and V−1 =

[

1

δ + µ + ξ

]

.

The product of the matrices F and V−1 can be
computed as:

FV−1 =
[

(θ+µ)β τΠ+β κτϕΠ
µ(θ+ϕ+µ)

− 1
2
β 2

3

][

1
δ+µ+ξ

]

= (θ+µ)β τΠ+β κτϕΠ
µ(θ+ϕ+µ)(δ+µ+ξ )

−
β 2

3

2(δ+µ+ξ )

The Eigen value of FV−1 can be obtain from:

∣

∣

∣

∣

(θ + µ)β τΠ +β κτϕΠ

µ(θ +ϕ + µ)(δ + µ + ξ )
−

β 2
3

2(δ + µ + ξ )
−λ

∣

∣

∣

∣

= 0,

⇒ λ =
(θ + µ)β τΠ +β κτϕΠ

µ(θ +ϕ + µ)(δ + µ + ξ )
−

β 2
3

2(δ + µ + ξ )
.

By the principle of next generation matrix, the
dominant Eigen value is named as the basic
reproduction number. Hence, the basic reproduction
number for the stochastic case is given by:

RS
0 =

(θ + µ)β τΠ +β κτϕΠ

µ(θ +ϕ + µ)(δ + µ + ξ )
−

β 2
3

2(δ + µ + ξ )
.

Similarly, the relation between RS
0 and RD

0 is found as

RS
0 = RD

0 −
β 2

3

2(δ + µ + ξ )
.

Therefore, RS
0 < RD

0 . It is because the stochastic
version is much closer to reality than the
deterministic one.

3.5 Local Stability of Disease Free Equilibrium

Theorem 3.: Disease free equilibrium E0 of system of
deterministic model equations 1 is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1.
Proof: Now, the Jacobian matrix of the deterministic
model equations 1 at the disease free equilibrium E0

reduces to the form as :

J(E0)=

















−k1 θ −β τk2Π
(ϕ+k2)

0 η

ϕ −k2 − κβ τϕΠ
(ϕ+k2)

0 0

0 0
[

(θ+µ)β τΠ+β κτϕΠ
µ(ϕ+k2)

− k3

]

0 0

0 0 δ −k4 0
0 0 0 φ −k5

















.

(10)

Here k1 = ϕ + µ ,
k2 = θ + µ ,

k3 = δ + µ + ξ ,
k4 = π +ψ + µ ,

and k5 = η + µ .

Now, from equation 10 the characteristics polynomial
det(J(E0) − ψI) = 0 of the Jacobian matrix can be
simplified as :

(−k4 −λ )(k5 −λ )(h4 −λ ) = 0 or

h1λ 3 + h2λ 2 + h3λ +(k1k2k3 − k3ϕθ ) [1−R0] = 0.
(11)

Where

a =
(θ + µ)β τΠ +β κτϕΠ

µ(ϕ + k2)
− k3,

h2 = k1 + k2 − a,

h3 = k1k2 − a(k1 + k2).h1 = 1,

(12)

As required by the principle of Routh-Hurwitz criteria,
equation 11 will have negative real roots if and only if the
following conditions hold true:

h1 > 0,h2 > 0,h3 > 0,h1h2−h3 > 0,h1h2h3 −h2
3 > 0

(13)

Thus, DFE E0 of the deterministic system of the
differential equations 1 is locally asymptotically stable if
RD

0 < 1 and unstable if RD
0 > 1.

Theorem 4. Disease free equilibrium E0 of system of
stochastic model equations 2 is locally asymptotically
stable if limsup

t→∞
(ln(I(t)) ≤ (δ + µ + ξ )(1−RS

0) < 0 and

unstable if RS
0 > 1.

Proof: Using Ito’s formula on F(t, I(t)) = ln(I(t))
gives

d f (t, I(t)) =

[

β τS+β κτV −
1

2
β 2

3 − k3

]

dt +β3dW3(t)

Now, substitution on k3 = (δ + µ + ξ ) reduces d f (t, I(t))
to

d f (t, I(t)) =

[

β τS+β κτV −
1

2
β 2

3 − k3

]

dt +β3dW3(t)
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d(ln(I(t))) =

[

β τS+β κτV −
1

2
β 2

3 − k3

]

dt +β3dW3(t)

(14)
Now, on integrating both sides of equation 14 gives:

ln(I(t)) = ln(I(0))+

t
∫

0

[

β τS+β κτV −
1

2
β 2

3 − k3

]

dt

+

t
∫

0

β3dW3(t).

Equivalently, it can be expressed in terms of inequality as:

⇒ ln(I(t))≤ ln(I(0))+

[

(θ + µ)β τΠ +β κτϕΠ

µ(ϕ + k2)
−

1

2
β 2

3 − k3

]

t +G(t) (15)

Here in 15 the martingale is given by G(t) =
t
∫

0

β3dW3(t).

By applying the strong law of martingale, almost surely it

is obtained as limsup
t→∞

G(t)
t

= 0 .

Then, dividing both sides of equation 15 by t and
evaluating the limit as t → ∞, it is obtained as:

ln(I(t))

t
≤

ln(I(0))

t
+

[

(θ + µ)β τΠ +β κτϕΠ

µ(ϕ + k2)

−
1

2
β 2

3 − k3

]

t +
G(t)

t
(16)

Now, application of limsup
t→∞

on both sides of equation 15

gives :

limsup
t→∞

ln(I(t))

t
≤ limsup

t→∞

ln(I(0))

t
+

limsup
t→∞

[

(θ + µ)β τΠ +β κτϕΠ

µ(ϕ + k2)
−

1

2
β 2

3 − k3

]

t

+ limsup
t→∞

G(t)

t
.

⇒ limsup
t→∞

ln(I(t))
t

≤
[

(θ+µ)β τΠ+β κτϕΠ
µ(ϕ+k2)

− 1
2
β 2

3 − k3

]

t < 0,

= k3

[

(θ+µ)β τΠ+β κτϕΠ
µk3(ϕ+k2)

− 1

2k3β 2
3

− 1
]

,

= k3

[

RS
0 − 1

]

.

Obviously k3 > 0, hence RS
0 − 1 less than zero. That is,

RS
0 − 1 < 0 or RS

0 < 1. Therefore, disease-free equilibrium

point is locally asymptotically stable if and only if RS
0 < 1.

3.6 Global Stability of the DFE point

Theorem 5. If RD
0 < 1, then the DFE is globally

asymptotically stable in the feasible region Ω .
Proof: Now let the Lyapunov function be constructed

technically as L(t) =
[

Π +β δ + ϕ
µ

]

I(t). The

differentiation of L(t) with respect to time and

substitution of dI
dt

= [β τS+β τκV − k3] I give rise to:

dL
dt

=
[

Π +β δ + ϕ
µ

]

[β τS+β τκV − k3] I.

This equation with our loss of generality, by replacing S

and V with the corresponding initial values, can be
expressed as an inequality as:
dL
dt

≤ k3

[

Π +β δ + ϕ
µ

]

[

β τS0 +β κτV 0 − h2

]

I.

Now, substituting expressions for S0,V 0 and

RD
0 = (θ+µ)β τΠ+β κτϕΠ

µ(θ+ϕ+µ)(δ+µ+ξ )
then after some algebraic

simplifications it takes a simple form as:
dL
dt

≤ k3

[

Π +β δ + ϕ
µ

]

[

RD
0 − 1

]

I.

Clearly dL
dt

≤ 0 whenever RD
0 < 1 because

h2

[

(1− p)+ ( θ
µ )+κ p

]

a positive quantity.

Therefore, by LaSalles invariance principle the DFE is
globally asymptotically stable in the feasible region Ω if
RD

0 < 1.

3.7 Endemic Equilibrium

The endemic equilibrium points E∗ = S∗,V ∗, I∗,Q∗,R∗

are defined as the steady state solutions whenever the
disease persists in the population. Mathematically, the
endemic equilibrium points can be obtained by setting
rates of changes of variables with respect to time, given in
model equations 1, to zero. That is, first set
dS
dt

= dV
dt

= dI
dt

= dQ
dt

= dR
dt

= 0 , then solve the resultant
model equations for state variables in terms of the
parameters, and after performing some algebraic
operations finally obtain the equilibrium as follows:

S∗ = (k4k5Π+ηφδ I∗)(β τκI∗+k2)
k4k5[(β τκI∗+k2)(β τI∗+k1)−θϕ] ,

V ∗ = φ(k4k5Π+ηφδ I∗)
k4k5[(β τκI∗+k2)(β τI∗+k1)−θϕ] ,

I∗ = k4k5R∗

φδ ,

Q∗ = δ I∗

k4
,

R∗ = φδ I∗

k4k5
.

4 Sensitivity Analysis

Here, the sensitivity analysis is performed by using the
method given by [18]. This analysis helps to identify
those parameters which show high impact on the disease
propagation in the community. Sensitivity indices of the
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parameters are obtained by using the normalized formula

ϒ
R0

mi = ∂R0

∂mi
∗ mi

R0
, where mi is any parameter in R0 and are

tabulated in Table 1.
For m = Π ,

ϒ R0
Π = ∂R0

∂Π ∗ Π
R0

=
(

(θ+µ)β τ+β τκϕ
µ(θ+ϕ+µ)(δ+µ+ξ )

)(

Π(µ(θ+ϕ+µ)(δ+µ+ξ ))
(θ+µ)β τΠ+β τκϕΠ

)

= 1 > 0.

For m = β ,

ϒ R0

β
= ∂R0

∂β ∗ β
R0

=
(

(θ+µ)τΠ+τκϕΠ
µ(θ+ϕ+µ)(δ+µ+ξ )

)(

β (µ(θ+ϕ+µ)(δ+µ+ξ ))
(θ+µ)β τΠ+β τκϕΠ

)

= 1 > 0.

For m = τ ,

ϒ R0
τ = ∂R0

∂τ ∗ τ
R0

=
(

(θ+µ)β Π+β κϕΠ
µ(θ+ϕ+µ)(δ+µ+ξ )

)(

β (µ(θ+ϕ+µ)(δ+µ+ξ ))
(θ+µ)β τΠ+β τκϕΠ

)

= 1 > 0.

For m = κ ,

ϒ
R0

κ =
∂R0

∂κ
∗

κ

R0

=
κϕ

θ + µ +κψ
= 0.000073> 0.

For m = ϕ ,

ϒ R0
ϕ =

∂R0

∂ϕ
∗

ϕ

R0

=
ϕ [κ (θ +ϕ + µ)−θ − µ −κϕ ]

(θ +ϕ + µ)(θ + µ +κϕ)
=−0.067 < 0.

For m = θ ,

ϒ
R0

θ =
∂R0

∂θ
∗

θ

R0

=
θ (ϕ −κϕ)

(θ + µ +κϕ)(θ +ϕ + µ)
= 0.932> 0

For m = δ ,

ϒ
R0

δ =
∂R0

∂δ
∗

δ

R0

=
−ξ

(δ + µ + ξ )
=−0.88444 < 0.

For m = ξ ,

ϒ
R0

ξ
=

∂R0

∂ξ
∗

ξ

R0

=
−ξ

(δ + µ + ξ )
=−0.1153 < 0.

For m = µ ,

ϒ
R0

µ = ∂R0

∂ µ ∗ µ
R0

=−0.0734 < 0

TThe physical interpretations of sensitivity indices given
in 1 can be made as follows:
Those parameters (Π ,β ,τ,θ ,κ) with positive sensitivity
indices have a big contribution to the expansion of

Table 1: Sensitivity index table

Parameters Sensitivityindices

Π +1

β +1

τ +1

θ + 0.932

κ +0.000073

ϕ -0.067

µ -0.0734

ξ -0.01153

δ -0.88444

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Sensitivity indices of 
0

M
o
d
e
l 
P

a
ra

m
e
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rs

Fig. 2: Schematic diagrams of Sensitivity indexes.

cholera disease in the human population if their values are
increased by keeping rest of the parameters constant.
Similarly, those parameters (ϕ ,µ ,ξ ,δ ) with negative
sensitivity indices show a great effect in bringing down
the disease from the population if their values are
decreased by keeping rest of the parameters constant. Due
to the reason that in Figure 2 the basic reproductive
number R0 increases as its parameter value increases, the
average number of secondary infections increase in the
population. In the similar lines, R0 decreases as its
parameter value decreases, which means that the average
number of secondary infection decreases in the human
population.

5 Numerical Simulations

The numerical simulations were carried out using the
parametric values given in Table 2 and simulated using
MAT LAB software by taking
S(0) = 25,V(0) = 12, I(0) = 16,Q(0) = 8 and R(0) = 6
as initial values.
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Table 2: Parameter Values for Cholera Model

Parametr Value Source

Π 0.0013 [14]

β 0.2 Assumed

τ 0.011 [14]

θ 00684 Assumed

κ 0.01 Assumed

ϕ 0.005 Assumed

µ 0.000025 [14]

ξ 0.015 [14]

δ 0.115 [14]

ψ 0.04 [14]

η 0.003 [14]

φ 0.2 [14]

6 Discussion

In this section, we explore the comparison between
deterministic and stochastic approach for cholera model
in terms of the effect of probability of contact rate,
treatment rate and vaccination rate on the infected human
population. Similarly, the effect of treatment on the
quarantine population and the effect of recovery on the
recovered human population are presented.

In Figure 3 , the comparative results of both
deterministic and stochastic trends of the disease in the
community are displayed, while all parameters are kept
constant or unchanged. Population sizes of all the
compartments of the deterministic model are shown in
Figure 3(a). By adding white noise to the deterministic
model equations, the corresponding stochastic model is
obtained and its population sizes are illustrated in Figure
3(b). From Figures 3(a) and 3(b), it can be seen that the
simulated populations for the stochastic model run slower
than that for the deterministic model, which is because of
the environmental factors. Further it can be observed from
these simulated figures that after certain point of time the
infectious population decreases while the treatment
population increases, since the treatment is introduced
with a rate δ both in the stochastic and deterministic
cases. Moreover, the simulated curves show that the
stochastic approach is much closer to the real life
behavior when compared with the deterministic one. It
can be concluded from these figures that the stochastic
solution is closer to the real solution for the cholera
model than the deterministic approach. So, it can be
suggested that the usage of stochastic model is better than
that of the deterministic one because the former considers
a white noise or stochastic environmental factors.

Here, the impact that the probability of the contact
rate parameter β on the number of infected individuals
variable I(t) is investigated. In Figures 4(a) and 4(b), the
numerical results obtained by varying the value of β
while keeping other parameters fixed are presented. In
case of deterministic model given in Figure 4(a),
whenever the value of β is increased from 0.1 to 0.2,
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Fig. 3: Schematic diagram of deterministic 3(a) and stochastic

3(b) model.

there is a significant and regular increase in the number of
infected individuals. Moreover, when β attains the value
0.3, the size of infected population quickly increases and
manages to stay higher than in the foregoing two cases.
On the other hand, as depicted in Figure 4(b), these
results of the stochastic model are also increasing and are
also maintaining their zigzagging property due to the
randomness behavior. However, the overall outcome is
that the number of infected people is still increasing
significantly with increase of the value β . Therefore, it
can be concluded that even if other parameters are kept
constant, the disease expands in the community whenever
there is an increase in the probability of contact rate.
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Fig. 4: Effect of probability of contact rate β on I(t) for

deterministic 4(a) and stochastic 4(b) model.

In Figure 5, the numerical results obtained, by varying
the value of contact rate τ , are plotted. The parameter τ
is varied and the other parameters are fixed so as to
investigate impact of τ on the number of infected
population I(t). It is easy to observe that, in both
deterministic 5(a) and stochastic 5(b) cases, the curve
runs higher for larger values of τ implying that the disease
expands in the community. That is, the number of infected
people increases together with increasing rate of contact.

Here, the effect of treatment rate on the number of
infectious population is investigated. In Figure 6, the
experimental results are obtained by assigning different
values for treatment rate δ while keeping the remaining
parameters at constant. The simulation results reveal that
an increase in the value of treatment rate leads to decrease
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Fig. 5: Impact of contact rate τ on I(t) for deterministic 5(a) and

stochastic 5(b) model.

in the population of infectious individuals. In other words,
in case of both deterministic and stochastic approaches,
the infectious populations are decreased as the treatment
rates in the population are increased. Therefore,
increasing the treatment rate δ plays a vital role in the
reduction of cholera disease dynamics from the
community. Here, impact of the recovery rate φ on the
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Fig. 6: Effect of treatment rate δ on I(t) for deterministic 6(a)

and stochastic 6(b) model.

population size of recovered individuals is analyzed. In
Figure 7, the sizes of recovered individuals are display by
varying the recovery rate φ from 0.1 to 0.4 and while
keeping the other parameters fixed. In the case of
deterministic approach displayed in Figure 7(a), it can be
observed that the graph goes up smoothly as the recovery
rate φ increases, which means that if the infectious
individuals get treatment and recover more with the
recovery rate φ the number of recovered individuals will
increase in the community. Also in the stochastic case, it
displays that the number of recovered individuals
increases as the value of recovery rate increases, with the
graph going up and down. These ups and downs reflect
the random behavior of the model. From this, it can be
concluded that the recovered population becomes bigger
by increasing the recovery rate φ . Also, the stochastic
approach is more advisable than the deterministic one
because the former approach considers environmental
white noise. In Figure 8, numerical results obtained by
varying the values of vaccination rate parameter ϕ and
fixing the other parameters are presented. In the

0 5 10 15
0

50

100

150

200

250

300

Time, t

n
u

m
b

e
r 

o
f 

re
c
o

v
e

re
d

 

 

φ=0.4

φ=0.2

φ=0.1

0 5 10 15
5

10

15

20

25

Time,t

n
u

m
b

e
r 

o
f 

re
c
o

v
e

re
d

 

 

φ = 0.4

φ = 0.2

φ = 0.1

(a) Deterministic case (b) Stochastic case

Fig. 7: Effect of recovery rate φ on I(t) for deterministic 7(a) and

stochastic 7(b) model.

deterministic case given in Figure 8(a), the numbers of
infected individuals decrease as the time progresses. The
curves of I(t) are slightly higher for smaller values of the
vaccination rate ϕ which is obviously expected.
Therefore, vaccination of the target population has a
significant contribution in eliminating the disease. On the
contrary, the stochastic case exhibits a very different
behavior and the same is displayed in Figure 8(b). For the
first few moments, the number of infected people I(t) is
seen to grow upwards for all values of vaccination rate.
However, the value of I(t) turns to go down as time goes
by. Here, it is worth noticing that the increment in the
value of the vaccination rate plays a vital role in
eliminating the disease in the stochastic case as well.
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Fig. 8: Effect of vaccination rate ϕ on I(t) for deterministic 8(a)

and stochastic 8(b) model.

7 Conclusion

In this paper, an SVIQR mathematical model has been
developed so as to describe the dynamics of cholera
diseases in two different approaches viz., stochastic and
deterministic. In section 3, Qualitative behaviors of both
these models are analyzed which include the invariant
region and positivity of the solution set. Further, it is
shown that the equilibrium points exist. Also, the basic
reproduction number is constructed in terms of
parameters. Local stability of disease-free equilibrium for
both these models is verified. Also, the global stability is
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verified using the Lyapunov function technique.
Sensitivity analysis of the models is conducted and useful
interpretations were drawn. Two reproduction numbers
were obtained by using the next generation matrix
method and by using twice differentiable Ito?s formula
for stochastic reproduction number. Of these two
reproduction numbers the stochastic one is much smaller
than the deterministic one. This implies that the stochastic
approach is more realistic or close to the accurate solution
than the deterministic approach, because the former
model considers stochastic environmental factors or takes
the randomness process. In section 4, the sensitivity
analysis on the basic parameters is conducted and the
physical interpretations of the analysis are presented. In
Section 5, numerical simulations are carried out using
MAT LAB software and the results of stochastic and
deterministic approaches are compared. The paper ends in
Section 6, with the inclusion of useful conclusions drawn
from the numerical simulations. These results show that
the number of infected people keeps decreasing if one
carefully combines vaccination with appropriate
treatment. It is also observed that the stochastic model
mimics and represents better the real-life phenomena
when compared to deterministic approach. Moreover, the
impact of the parameters β ,τ,φ and ϕ is also investigated
in case of both the deterministic and stochastic models. It
is observed that increasing the contact rate τ and
probability of contact rate β contributes to the spread of
the disease whereas decreasing contact rate τ , increasing
vaccination rate ϕ and increasing the value of the
recovery rate φ will play vital roles in eliminating the
disease from the community. Finally, it is clear that the
transmission of cholera depends on the probability of
contacts and hence consideration of random effects in
developing these models makes the transmission
dynamics of cholera disease more realistic.
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