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Abstract: This paper defines the discrete Kumaraswamy Erlang-truncated exponential distribution (DKw ETE) using the general

approach of discretizing a continuous distribution while retaining its survival function. The statistical properties of the DKw ETE

distribution, such as the quantile function, moments, moment generating function, Rényi entropy, and order statistics, are studied. The

maximum likelihood (ML) method is utilized to estimate the model’s parameters. In contrast, the stress-strength parameter is derived

and estimated using the ML method. Finally, the proposed distribution’s importance is explained by application to a real data set.
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1 Introduction

In many cases, the researcher is faced with data obtained from real-world phenomena that are discrete in nature, even for
continuous variables. For example, in computer databases, the actual sample spaces are discrete; therefore, the
corresponding random variables should be considered discrete distributions. In life testing trials for lifetime data sets, the
life length of devices sometimes are impossible to be measured on a continuous scale, e.g. the lifetime of a switch is a
discrete random variable in the case of an on/off switching mechanism. On the other hand, the reliability data is often
expressed on a discrete scale, e.g. the number of runs, cycles, or shocks that a device can hold out before failing and the
number of days of survival for lung cancer patients since starting therapy. In this context, some common discrete
distributions are used as alternatives for continuous ones, e.g. geometric and negative binomial are considered
alternatives for the exponential and gamma distributions, respectively. Unfortunately, these distributions are unsuitable in
some cases because they have monotonic hazard functions. On the other hand, some discrete distributions used to model
the count data, like Poisson, had suited only the integer and zero values. As a result, there is an urgent need to develop
new discrete lifetime distributions that are more suitable for modelling different types of lifetime data sets.

In literature, diverse techniques have been developed to derive a discrete distribution based on the corresponding
continuous one. One of these methods is to use the properties of a continuous distribution to infer similar properties of the
discrete one. The other method is to study discrete lifetime as the integer part of a continuous lifetime [1,2].

Roy [3] deduced a relationship between different reliability measures and gained a unique determination of a
bivariate geometric distribution based on a bivariate extension of a univariate characterizing property. This author
concluded that a survival function could be used to explain the univariate geometric distribution as a discrete
concentration of a corresponding exponential distribution. On the flip side, if the discretization of a continuous life
distribution keeps the same functional form of the survival function, then most reliability measures and statistical
properties of the distribution will remain unchanged. Consequently, Roy [4] introduced the discrete concentration
concept and considered it a simple approach to generating a discrete life distribution model based on a continuous
model. Many discrete distributions have been introduced using this idea, e.g. the discrete normal distribution [4], the
discrete Burr and Pareto distributions [5], the discrete gamma distribution [6], the discrete generalized exponential
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distribution of the second type [7], the exponentiated discrete Weibull distribution [8], the discrete Logistic distribution
[9], the discrete Lindley distribution [10], the discrete generalized Rayleigh distribution [11], the discrete weighted
exponential distribution [12], and the discrete additive Weibull geometric distribution [13].

The Erlang-truncated exponential (ETE) distribution proposed by El-Alosey [14] extends the standard one-parameter
Exponential distribution. Many distributions have been proposed based on ETE, e.g. the Kumaraswamy Erlang-truncated
exponential (Kw ETE) [15], the Poisson exponentiated Erlang truncated exponential [16], Marshall–Olkin generalized
Erlang-truncated exponential [17], the transmuted Erlang-truncated exponential (TETE) [18], the Extended
Erlang-truncated exponential (EETE) [19], the gamma Log-logistic Erlang Truncated Exponential [20], and the beta
Erlang-truncated exponential [21]. Recently, two discrete distributions have been introduced using the general approach
of discretizing ETE distribution while retaining its survival function, including the discrete Erlang-truncated
Exponential(DETE) [22] and the discrete extended Erlang-truncated Exponential (DEETE) [23].

This paper introduces a new discrete version of Kumaraswamy Erlang-truncated exponential distribution called
discrete Kumaraswamy Erlang-truncated exponential distribution (DKw ETE) using the general approach of discretizing
a continuous distribution. We investigate some statistical properties of DKw ETE and estimate its parameters using the
maximum likelihood method. Moreover, We apply the proposed distribution to two real count data sets. The DKw ETE
distribution is also used to model some data sets concerning the death cases of COVID-19 collected from some Gulf
Cooperation Council countries, involving Qatar, UAE and Bahrain.

The rest of this paper is structured as follows: The new proposed distribution is discussed in section 2, and some
statistical properties such as quantile function, moment generating function, Entropy and order statistics are presented in
section 3. Section refsec4 pertains to the maximum likelihood method to estimate DKw ETE parameters. An application
of the DKw ETE to two right-skewed real count data sets and data sets regarding the death cases of COVID-19 for
illustration is demonstrated in section 5. Finally, section 6 gives some concluding remarks.

The proposed distribution is motivated because it exhibits the four parameters that can be adapted to meet most over-
dispersed or undispersed right-skewed count data sets.

1.1 Discretizing a continuous distribution

The idea of discretization of a given continuous random variable first proposed by [4]. This concept is illustrated as
follows.

Suppose X be a continuous random variable with survival function SX(x), a discrete random variable Y can be defined
as equal to [X ] that is floor of X that is largest integer less or equal to X . The probability mass function (pmf ) of Y is then
defined as

P(Y = y) = SX(y)− SX(y+ 1)

The pmf of the random variable Y thus defined may be viewed as a discrete concentration of the pd f of X , see [3,4].

1.2 The Kumaraswamy Erlang-Truncated Exponential distribution

The Kumaraswamy Erlang-truncated exponential distribution, which is a generalized Erlang-truncated exponential
distribution (Kw ETE), was researched by [15]. A non-negative random variable X has a Kw ETE distribution with
parameters α > 0,β > 0,λ > 0 and θ > 0 , if the cd f is provided by

FKw ET E (x;α, β , λ , θ ) = 1−
[

1−
(

1− e−β (1−e−λ )x
)α]θ

, x > 0 (1)

The parameters α,β and θ are shape parameters while λ is a scale parameter.
If θ = 1, the EETE distribution is then obtained, and if, α = 1 and θ = 1 then the ETE distribution is obtained.
The corresponding pdf is as follows

fKw ET E (x;α, β , λ , θ ) =αθβ (1− e
−λ )e−β (1−e−λ )x

×
[

1− e−β (1−e−λ )x
]α−1

×
[

1−
(

1− e−β (1−e−λ )x
)α]θ−1

, x > 0

(2)
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The hazard rate functions of the Kw ETE is

hEET E (x;α, β , λ ) =

αθβ (1− e
−λ )e−β (1−e−λ )x

(

1− e−β (1−e−λ )x
)α−1

1−
(

1− e−β (1−e−λ )x
)α

x > 0

(3)

The survival of the Kw ETE is:

SKw ET E (x;α, β , λ , θ ) =

[

1−
(

1− e−β (1−e−λ )x
)α

]θ

x > 0

(4)

By using a series expansion

(1− z)a =
∞

∑
i=0

(−1)i

(

a

i

)

zi

The survival of the Kw ETE can be written on the form:

SKw ET E (x;α, β , λ , θ ) = 1−
∞

∑
i=0

∞

∑
j=0

(−1)i+ j

(

θ
i

)(

iα
j

)

e−(1−e−λ )β jx, x > 0 (5)

2 Discrete Kumaraswamy Erlang-Truncated Exponential distribution

This section pertains to deriving the proposed distribution discrete Kumaraswamy Erlang-truncated exponential
(DKw ETE) and exploring its probability mass and cumulative distribution functions. Moreover, some especial cases of
the proposed DKw ETE are derived.

2.1 Probability mass and cumulative distribution functions for DKw ETE distribution

The proposed DKw ETE distribution is produced by discretizing the re-parameterized version of the Kw ETE
distribution with parameters α > 0,β > 0,λ > 0 and θ > 0 using the concept of discretization given in subsection 1.1.

Re-parameterization of Kw ETE in Eq.(2) by setting p = e−(1−e−λ ) , we get the pmf of DKw ETE distribution, as
follows:

fDKw ET E (y;α, β , p, θ )

=











[

1−
(

1− pβ y
)α

]θ
−
[

1−
(

1− pβ (y+1)
)α

]θ

∑∞
i=0 ∑iα

j=0 (−1)i+ j

(

θ
i

)(

iα
j

)

pβ jy
(

1− pβ j
)

y = 0, 1, 2, . . . , α > 0, β > 0, 0 < p < 1,θ > 0

(6)

When θ > 0 is an integer value, the above outside infinite sums stop at θ .
The cd f of DKW ETE is given as:

FDKw ET E (y;α, β , p, θ ) = P(Y ≤ y)

=

{

1−
[

1−
(

1− pβ (y+1)
)α

]θ
, y ≥ 0

0, y < 0

(7)

Figure 1 and Figure 2 respectively show the pmfs and cdfs of DKw ETE distribution for different values of parameters
α, β , p and θ .
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Fig. 1: pmfs of DKw ETE distribution for combination values of parameters

Fig. 2: cdfs of DKw ETE distribution for combination values of parameters
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From Figure 1, it can be seen that the proposed DKw ETE distribution is a unimodal right-skewed. Moreover, with an
increase in the parameter α , the coefficient of the skewness decreases (see Figure 1(a)); this is also observed from Figure
2(a); that is, the cdf approaches 1 faster for small values of α than large ones. The coefficient of skewness increases with
β and θ (see Figures 1(b) and 1(c)). This is also noted from Figures 2(b) and 2(c); that is, the cdf approaches 1 faster for
small values for both β and θ than large ones.

2.2 Some special cases of DKw ETE

The DEETE can be concluded from Eq.(6) by taking θ = 1 as follows [23]

fDEET E (y;α, β , p) =
[

1− pβ (y+1)
]α

−
[

1− pβ y
]α

, y = 0,1,2, . . .

The discrete generalized exponential distribution of the second type can be concluded from Eq.(6) by taking θ = 1 and
β = 1 as follows [7]

fDGE2
(y;α,β ) =

[

1− py+1
]α

− [1− py]α , y = 0,1,2, . . .

The pmf of the DETE distribution with parameters β > 0, 0 < p < 1 is explored, when α = θ = 1 in Eq.(6), as [22]

fDET E (y; β , p) = pβ y
(

1− pβ
)

, y = 0,1,2, . . . .

The distribution of the random variable Y in Eq.(6), takes the form of geometric distribution, when α = β = θ = 1, as
follows:

fGeom (y; p) = py [1− p] , y = 0,1,2, . . .

2.3 Survival and Hazard function

The survival function of Y is given by:

SDKw ET E(y;α,β , p,θ ) =
[

1−
(

1− pβ y
)α]θ

(8)

and the hazard function is:

hDKw ET E(y;α,β , p,θ ) =
fDKw ET E(y;α,β , p,θ )

SDKw ET E(y;α,β , p,θ )

=1−







1−
(

1− pβ (y+1)
)α

1−
(

1− pβ y
)α







θ

Figure 3 illustrates the hazard function of DKw ETE for different values of parameters α, β , p and θ . Based on Figure
3, it is observed that the hazard function of the proposed distribution is an increasing function and the rate of increase
affected by the value each parameter takes.
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Fig. 3: Hazard function of DKw ETE distribution for combination values of parameters

3 Distributional properties

In this section, the statistical properties of the DKw ETE distribution are derived.

3.1 Quantile function

The quantile of order 0 < γ < 1 , can be obtained by inverting the cdf in Eq.(7) as

FKw ET E (y;α, β , p, θ ) = 1−
[

1−
(

1− pβ (y+1)
)α

]θ

then

F−1
Kw ET E (γ) =miny ∈ R : FKw ET E (y)≥ γ

= 1−
[

1−
(

1− pβ (y+1)
)α

]θ
= γ

Thus, The γth quantile is

Q(γ;α,β , p,θ ) = logp

{

1−
[

1− (1− γ)
1
θ

]
1
α

}
1
β

− 1 (9)

Further the median of DKw ETE obtained by substituting γ = 1/2 in Eq.(9) as follows:

Q 0.5 = Q(γ;α,β , p,θ ) = logp

{

1−

[

1−

(

1

2

) 1
θ

]

1
α
} 1

β

− 1
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3.2 The moment generating function

In this subsection, the moment generating function of a random variable Y having a the DKw ETE with parameters
(α,β , p,θ ) is obtained.

MY (t) = E(ety) =
∞

∑
i=0

∞

∑
j=0

(−1)i+ j

(

θ

i

)(

iα

j

)

1− pβ j

1− pβ jet

Therefore,

MY (t) =
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

(−1)i+ j

(

θ

i

)(

iα

j

)

(1− pβ j)pβ jketk

where ∑∞
k=0 pβ jketk = (1− pβ jet)−1 Thus we can calculate the first moment (the mean) of the DKw ETE distribution as

E(Y ) =
dMY (t)

dt

∣

∣

∣

∣

t=0

=
α

∑
i=0

iθ

∑
j=0

(−1)i+1

(

θ

i

)(

iα

j

)

pβ j

1− pβ j

Also the rth moment is

µr = E(Y r) =
drMY (t )

dtr

∣

∣

∣

∣

t=0

=
dr

dtr

α

∑
i=0

iθ

∑
j=0

∞

∑
k=0

(−1)i+ j

(

θ

i

)(

iα

j

)

(1− pβ j)pβ jketk

=
α

∑
i=0

iθ

∑
j=0

∞

∑
k=0

(−1)i+ j

(

θ

i

)(

iα

j

)

(1− pβ j)kr pβ jk

Setting r = 1 we get the mean as follows

µ1 = E (Y ) =
α

∑
i=0

iθ

∑
j=0

(−1)i+ j

(

θ

i

)(

iα

j

)

(1− pβ j)
∞

∑
k=0

kpβ jk

=
α

∑
i=0

iθ

∑
j=0

(−1)i+ j

(

θ

i

)(

iα

j

)

pβ j

(1− pβ j)

(10)

where, ∑∞
k=0 kpβ jk = pβ j(1− pβ j)−2

Setting r = 2 we obtain the second moment about the origin as

µ2 = E
(

Y 2
)

=
α

∑
i=0

iθ

∑
j=0

∞

∑
k=1

(−1)i+ j

(

θ

i

)(

iα

j

)

(1− pβ j)k2 pβ jk

=
α

∑
i=0

iθ

∑
j=0

(−1)i+ j

(

θ

i

)(

iα

j

)

pβ j(1+ pβ j)

(1− pβ j)2

The third moment about the origin is given by

µ3 = E
(

Y 3
)

=
α

∑
i=0

iθ

∑
j=0

∞

∑
k=1

(−1)i+ j

(

θ

i

)(

iα

j

)

(1− pβ j)k3 pβ jk

=
α

∑
i=0

iθ

∑
j=0

(−1)i+ j

(

θ

i

)(

iα

j

)

pβ j(1+ 4pβ j+ p2β j)

(1− pβ j)3

Thus, the variance of the DKw ETE is given by

V (Y ) =µ2 − µ2
1

=
α

∑
i=0

iθ

∑
j=0

(−1)i+ j

(

θ

i

)(

iα

j

)

pβ j(1+ pβ j)

(1− pβ j)2

−

[

α

∑
i=0

iθ

∑
j=0

(−1)i+ j

(

θ

i

)(

iα

j

)

pβ j

(1− pβ j)

]2

(11)
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The skewness for the DKw ETE can be calculated using the below formula

Sk =
E (Y − µ1)

3

σ3
=

µ3 − 3µ1σ2 − µ3
1

σ3

The mean, variance and coefficient of skewness for DKw ETE distribution for different combinations of α,β ,θ and p

are computed in Table 1. From Table 1, it is observed that both mean and variance increase with α and p , while they
decrease when β , and θ increase. The positive skewness decreases when α increases, while it increases with β and θ .
Moreover, with the increase in the parameter p, the rate of increase in the mean and variance growing exponentially.
As β and θ increase and α and p decrease, the P(Y = 0) approaches 1 and therefore, the mean and variance of the
distribution approach zero, consequently, the distribution skews more extreme to the right. Therefore, we conclude that
the four parameters of the proposed distribution can be adapted to meet most of the right-skewed count data sets.

Table 1: Mean and variance and skewness of DKw ETE for combination values of parameters.

p 0.1 0.5 0.9

α β θ Mean Variance Skewness Mean Variance Skewness Mean Variance Skewness

1 0.81384 0.98235 1.58958 3.82843 10.4853 1.59292 27.97367 450.4996 1.60952

0.5 3 0.15806 0.14781 2.2844 1.52091 1.83951 1.21436 12.78771 76.5538 1.26969

5 0.04305 0.04169 4.59123 0.96314 0.91064 1.07916 9.11175 36.61563 1.13971

1 0.21212 0.2163 2.27554 1.66667 2.66667 1.56495 13.73684 112.687 1.6082

2 1 3 0.00687 0.00684 11.9849 0.52053 0.48143 1.3263 6.14388 19.2001 1.26373

5 0.00025 0.00025 63.5285 0.25407 0.22457 1.65757 4.30592 9.21508 1.1289

1 0.002 0.002 22.3552 0.26984 0.27816 2.06793 4.24587 12.59081 1.59548

3 3 0 0 11188.7 0.0129 0.0128 8.69385 1.71547 2.1987 1.21973

5 0 0 5597164 0.00071 0.00071 37.5669 1.10352 1.08438 1.07666

1 1.48049 1.20089 1.15938 6.08832 12.2685 1.32564 42.84325 527.4709 1.3389

0.5 3 0.68734 0.36607 0.37545 3.4857 2.8207 0.7858 25.72091 118.5701 0.82089

5 0.45668 0.27145 0.42392 2.77941 1.6382 0.59183 21.07419 67.39508 0.63853

1 0.46407 0.37014 1.12885 2.79416 3.13039 1.28434 21.17162 131.9302 1.33795

5 1 3 0.06879 0.0643 3.42915 1.49302 0.76982 0.66878 12.61045 29.70503 0.8183

5 0.01152 0.01138 9.15717 1.14038 0.4759 0.40526 10.2871 16.91126 0.63499

1 0.005 0.00498 14.08579 0.57393 0.44365 1.03409 6.72388 14.73288 1.3279

3 3 0 0 2836.925 0.116 0.10342 2.43773 3.87018 3.37446 0.79165

5 0 0 568520.9 0.02742 0.02667 5.78929 3.09574 1.95288 0.59948

1 1.86238 1.23093 1.14613 7.34208 12.79986 1.2539 51.09157 550.4641 1.26596

0.5 3 1.06025 0.35509 0.35273 4.65718 3.1544 0.67889 33.42813 133.0006 0.70607

5 0.84337 0.25436 0.023096 3.90785 1.90378 0.47995 28.49843 78.87248 0.51252

1 0.65565 0.4177 0.71773 3.42108 3.26197 1.21885 25.29578 137.6785 1.26509

8 1 3 0.1852 0.15182 1.64423 2.07865 0.85011 0.61316 16.46406 33.31265 0.70408

5 0.05993 0.05634 3.70886 1.70385 0.53717 0.42141 13.99921 19.78062 0.51009

3 1 0.00798 0.00793 11.09394 0.79251 0.47728 0.72121 8.09859 15.3717 1.25596

3 3 0 0 1404.896 0.28447 0.20688 1.00872 5.15469 3.77549 0.68345

5 0 0 176227.7 0.12186 0.10706 2.31376 4.33307 2.27194 0.48532

3.3 Entropy

The most fundamental concept of information theory is entropy. Entropy is defined as an average amount of information
per message. In Statistics, entropy is defined as a measure of uncertainty in a random variable. There are some types of
entropy the most popular of them is the Rényi entropy, which has been computed as

IR(γ) =
1

1− γ
log

[

∞

∑
y=0

f γ (y)

]
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where γ > 0 and γ 6= 0
the Renyi entropy for the a random variable Y having a pmf of the DKw ETE distribution in Eq.(6) is given as

IR(γ) =
1

1− γ
log

[

∞

∑
y=0

f γ (y)

]

=
1

1− γ
log

[

∞

∑
y=0

{

θ

∑
i=0

iα

∑
j=0

(−1)i+ j

(

θ

i

)(

iα

j

)

pβ jy
(

1− pβ j
)

}γ]

By using the complete multinomial expansions theorem [24], we get
{

θ

∑
i=0

iα

∑
j=0

(−1)i+ j

(

θ

i

)(

iα

j

)

pβ jy
(

1− pβ j
)

}γ

=γ!
M

∑
p=1

m−(k−1)

∑
m1=1

m−(k−2)

∑
m2=m1+1

. . .
m

∑
mp=mp−1+1

×

n−(k−1)

∑
n1=1

n−n1−(k−2)

∑
n2=1

. . .

n−n1−n2−...−nk−2−1

∑
nk−1=1

n−n1−n2−...−nk−1

∑
np=n−n1−n2−...−nk−1

×
k

∏
i=1

[

∑ j = 0iα(−1)i+ j

(

α
i

)

pβ iy
(

1− pβ i
)

]ni

ni!

where M =

{

n, n < m

m, n ≥ m

Therefore, the Renyi entropy measure can be written as

IR (γ)

=
1

1− γ
log

{

∞

∑
y=0

γ!
M

∑
p=1

m−(k−1)

∑
m1=1

m−(k−2)

∑
m2=m1+1

. . .
m

∑
mp=mp−1+1

×

n−(k−1)

∑
n1=1

n−n1−(k−2)

∑
n2=1

. . .
n−n1−n2−...−nk−2−1

∑
nk−1=1

n−n1−n2−...−nk−1

∑
np=n−n1−n2−...−nk−1

×
k

∏
i=1

[

∑iα
j=0(−1)i+ j

(

θ
i

)(

iα
j

)

pβ jy
(

1− pβ j
)]ni

ni!







When α = θ = β = 1 the same result as the geometric distribution achieved, when α = θ = 1 we get the Rényi entropy
of DETE [22] and when α = 1 we obtain the Rényi entropy of DEETE [23].

3.4 Order statistics

The most popular techniques used in nonparametric statistics are order statistics, defined as sample values placed in
ascending order. Therefore, the present subsection pertains to deriving some order statistics for the DKw ETE distribution.
Let Fi(y;α,β , p,θ ) and fi(y;α,β , p,θ ) be the cdf and pmf of the i− th order statistic of a random sample of size n from
DKw ETE (α,β , p,θ ).

We know that

Fi(y;α,β , p,θ ) =
n

∑
k=i

(

n

k

)

[F (y;α,β , p,θ )]k

× [1−F (y;α,β , p,θ )]n−k

(12)
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using the binomial expansion for [1−F(y;α,β , p,θ )]n−k , we get the following result:

Fi (y;α,β , p,θ )

=
n

∑
k=i

n−k

∑
j=0

(

n

k

)(

n− k

j

)

(−1) j [F (y;α,β , p,θ )]
k+ j

=
n

∑
k=i

n−k

∑
j=0

(

n

k

)(

n− k

j

)

(−1) j

[

1−
[

1−
(

1− pβ (y+1)
)α

]θ
](k+ j)

=
n

∑
k=i

n−k

∑
j=0

(k+ j)

∑
l=0

(θ l)

∑
h=0

(αh)

∑
g=0

(

n

k

)(

n− k

j

)(

k+ j

l

)(

θ l

h

)(

αh

g

)

(−1) j+l+h+gpβ g(y+1)

The corresponding pmf of the ith order statistic

fi(y;α,β , p,θ ) = Fi(y;α,β , p,θ )−Fi(y− 1;α,β , p,θ )

for an integer value of y, fi(y;α,β , p,θ ) can written as

fi(y;α,β , p,θ )

=
n

∑
k=i

n−k

∑
j=0

(k+ j)

∑
l=0

(θ l)

∑
h=0

(αh)

∑
g=0

(

n

k

)(

n− k

j

)(

k+ j

l

)(

θ l

h

)(

αh

g

)

(−1) j+l+h+g+1pβ gy(1− pβ g)

=
n

∑
k=i

n−k

∑
j=0

(k+ j)

∑
l=0

(θ l)

∑
h=0

(αh)

∑
g=0

(

n

k

)(

n− k

j

)(

k+ j

l

)(

θ l

h

)(

αh

g

)

(−1) j+l+h+g+1 fDKw ET E(y;β g, p)

where, fDKw ET E(y;β g, p) is the pmf of the DKw ETE distribution with parameters β g and p. Since fi(y;α, β , p, θ ) is a
linear combination of a finite number of DKw ETE (α,β g, p), some properties of order statistics can be computed from
the corresponding DKw ETE distribution, such as moments. For example, the mean of the ith order statistic is obtained
by

µi:n ==
n

∑
k=i

n−k

∑
j=0

(k+ j)

∑
l=0

(θ l)

∑
h=0

(αh)

∑
g=0

(

n

k

)(

n− k

j

)(

k+ j

l

)(

θ l

h

)(

αh

g

)

(−1) j+l+h+g+1 pβ g

(1− pβ g)

4 Maximum likelihood estimation

In this section we use the maximum likelihood estimation (MLE) to estimate parameters of the proposed distribution
DKw ETE.
Suppose Y1,Y2, . . . ,Yn be a random sample of size n having the DKw ETE distribution. The log-likelihood of the
DKw ETE distribution is

ℓ=
n

∑
j=1

log
{

[1− (1−Ψ)α ]
θ
− [1− (1−Λ)α]

θ
}

(13)

where Λ = pβ y j and ψ = pβ (y j+1)

differentiating the log-likelihood in Eq.(13) partially with respect to the shape parameters α,β ,θ and p to obtain the
likelihood equations as

∂ℓ

∂α
= θ

n

∑
j=1

{

(1−Ψ)α [1− (1−Ψ)α ]θ−1 log(1−Ψ)

[1− (1−Ψ)α ]θ − [1− (1−Λ)α]θ

−
(1−Λ)α [1− (1−Λ)α]θ−1 log(1−Λ)

[1− (1−Ψ)α ]θ − [1− (1−Λ)α]θ

}

∂ℓ

∂β
= αθ

n

∑
j=1

{

y j(1−Ψ)α−1[1− (1−Ψ)α ]θ−1 log p

[1− (1−Ψ)α ]θ − [1− (1−Λ)α]θ

−
(y j + 1)(1−Λ)α−1[1− (1−Λ)α]θ−1Λ log p

[1− (1−Ψ)α ]θ − [1− (1−Λ)α]θ

}
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∂ℓ

∂θ
=

n

∑
j=1

{

[1− (1−Ψ)α ]θ log[1− (1−Ψ)θ ]

[1− (1−Ψ)α ]θ − [1− (1−Λ)α]θ

−
[1− (1−Λ)α]θ log[1− (1−Λ)α]

[1− (1−Ψ)α ]θ − [1− (1−Λ)α]θ

}

∂ℓ

∂ p
=

αβ θ

p

n

∑
j=1

{

y jΛ(1−Λ)α−1[1− (1−Λ)α]θ−1

[1− (1−Ψ)α ]θ − [1− (1−Λ)α]θ

−
(y j + 1)Ψ(1−Ψ)α−1[1− (1−Ψ)α ]θ−1

[1− (1−Ψ)α ]θ − [1− (1−Λ)α]θ

}

Now let
∂ℓ

∂α
= 0,

∂ℓ

∂β
= 0,

∂ℓ

∂θ
= 0 and

∂ℓ

∂ p
= 0

and solve the resulting nonlinear system of equations, to get MLEs

τ̂ = ( α̂, β̂ , θ̂ , p̂)
T

of τ = ( α, β ,θ , p)T

Since the MLE of the vector of unknown parameters τ = (α,β ,λ ,θ )T cannot be derived in closed forms, it is therefore
hard to derive the exact distribution of the MLEs. Moreover, the second partial derivatives can also be obtained.

∂ 2ℓ

∂α2
,

∂ 2ℓ

∂β 2
,

∂ 2ℓ

∂θ 2
and

∂ 2ℓ

∂ p2

It is known that the asymptotic distribution of the MLEs τ̂ are given by [25].

(τ̂ − τ)→ N
(

0, I−1 (τ)
)

where I−1(τ) is the inverse of the Fisher’s information matrix of the unknown parameters τ and written as

IY(α ,β ,θ ,p)(τ) =























−E
(

∂ 2ℓ
∂α2

)

−E
(

∂ 2ℓ
∂α∂β

)

−E
(

∂ 2ℓ
∂α∂θ

)

−E
(

∂ 2ℓ
∂α∂ p

)

−E
(

∂ 2ℓ
∂β ∂α

)

−E
(

∂ 2ℓ
∂β 2

)

−E
(

∂ 2ℓ
∂β ∂θ

)

−E
(

∂ 2ℓ
∂β ∂ p

)

−E

(

∂ 2ℓ
∂θ∂α

)

−E

(

∂ 2ℓ
∂θ∂β

)

−E

(

∂ 2ℓ
∂θ 2

)

−E

(

∂ 2ℓ
∂θ∂ p

)

−E
(

∂ 2ℓ
∂ p∂α

)

−E
(

∂ 2ℓ
∂ p∂β

)

−E
(

∂ 2ℓ
∂ p∂θ

)

−E
(

∂ 2ℓ
∂ p2

)























Further, the Fisher’s information matrix can be computed by using the approximation

IY (τ̂) =























−E
(

∂ 2ℓ
∂α2

)∣

∣

∣(α̂,β̂ ,θ̂ , p̂)
−E

(

∂ 2ℓ
∂α∂β

)∣

∣

∣(α̂,β̂ ,θ̂ , p̂)
−E

(

∂ 2ℓ
∂α∂θ

)∣

∣

∣(α̂ ,β̂ ,θ̂ , p̂)
−E

(

∂ 2ℓ
∂α∂ p

)∣

∣

∣(α̂ ,β̂ ,θ̂ , p̂)

−E
(

∂ 2ℓ
∂β ∂α

)
∣

∣

∣(α̂,β̂ ,θ̂ , p̂) −E
(

∂ 2ℓ
∂β 2

)
∣

∣

∣(α̂ ,β̂ ,θ̂ , p̂) −E
(

∂ 2ℓ
∂β ∂θ

)
∣

∣

∣(α̂ ,β̂ ,θ̂ , p̂) −E
(

∂ 2ℓ
∂β ∂ p

)
∣

∣

∣(α̂,β̂ ,θ̂ , p̂)

−E
(

∂ 2ℓ
∂θ∂α

)∣

∣

∣(α̂,β̂ ,θ̂ , p̂)
−E

(

∂ 2ℓ
∂θ∂β

)∣

∣

∣(α̂ ,β̂ ,θ̂ , p̂)
−E

(

∂ 2ℓ
∂θ 2

)∣

∣

∣(α̂ ,β̂ ,θ̂ , p̂)
−E

(

∂ 2ℓ
∂θ∂ p

)∣

∣

∣(α̂,β̂ ,θ̂ , p̂)

−E
(

∂ 2ℓ
∂ p∂α

)
∣

∣

∣(α̂,β̂ ,θ̂ , p̂) −E
(

∂ 2ℓ
∂ p∂β

)
∣

∣

∣(α̂ ,β̂ ,θ̂ , p̂) −E
(

∂ 2ℓ
∂ p∂θ

)
∣

∣

∣(α̂ ,β̂ ,θ̂ , p̂) −E
(

∂ 2ℓ
∂ p2

)
∣

∣

∣(α̂,β̂ ,θ̂ , p̂)























5 Application

This section provides an application of the proposed distribution DKw ETE. Therefore, to examine the goodness of
fit for DKw ETE and to assess its performance compared with some related distributions, DKw ETE is fitted to two
right-skewed (slightly and extremely) real lifetime count data sets. The first data includes the accidents that occurred to
some women working on Shells for some weeks (AWS), this data set is reported by [26]. The second data is adduced
by [27] represents the number of outbreaks of strikes in the UK coal mining industries in four successive week periods
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during 1948-59 (OSU). Table 2 demonstrates the summary statistics of the two data sets. Further, DKw ETE is utilized
to model the number of death cases of COVID-19 on some certain successive days during a given period of time. MLE is
used to obtain the parameters estimate of DKw ETE. The Statistical programming language R was used to do all of the
calculations.

Table 2: Summary Statistics for AWS and OSU data sets.

Data set n Min Max Mean Variance Skewness

AWS data set 647 0 5 0.46522 0.69190 2.1212

OUS data set 156 0 4 0.99359 0.74189 0.80231

5.1 The first data set (AWS)

The AWS data set explains the accidents to 647 women working on Shells for 5 weeks. This data is extremely
right-skewed (2.1212) and over-dispersed since the sample variance (0.69190) is greater than the respective sample mean
(0.46522). The AWS data set was recently used by [7,23,28] in the application of generalization of the geometric
distribution, discrete Extended Erlang-Truncated Exponential, and a discrete generalized exponential distribution of a
second type, respectively. To compare the proposed DKw ETE distribution with its related distributions involving
discrete Extended Erlang-Truncated Exponential DEETE, Generalized Rayleigh distribution DGR, discrete Burr DBD,
and discrete generalized exponentiated distribution of a second type DGE2, we used -log-likelihood (-log(L)), and the χ2

(chi square) statistic as criterions for comparison. Table 3 demonstrates the AWS observed values and the corresponding
expected values computed using each distribution, while Table 4 explains the MLE estimators, -LogL, and the χ2

statistics with the corresponding p-values.

Table 3: The observed and expected values of AWS data set.

Count Observed DDKw ETE DEETE DGR DBD DGE2

0 447 447.53 446.87 448.12 447.44 446.92

1 132 133.20 133.64 122.60 142.01 133.63

2 42 44.53 44.44 53.00 35.97 44.43

3 21 14.99 15.03 18.15 12.65 15.02

4 3 5.05 5.17 4.41 5.77 5.16

>5 2 1.70 1.85 0.72 3.16 1.84

Total 647 647 647 647 647 647

Table 4: Parameters estimates, -Log L, χ2 statistic and p-value for the selected distributions of the AWS data set.

Model MLEs -Log L χ2 stat p-value

DKw ETE α̂=0.845, β̂=1.6, p̂=0.289, θ=0.547 592.160 3.393 0.6397

DEETE α̂=0.898, β̂=2.082, p̂=0.594 592.183 3.445 0.6317

DGR α̂=0.2196, p̂=0.8123 592.544 6.172 0.2899

DBD α̂=1.642, θ̂=0.1841 597.955 8.979 0.1099

DGE2 α̂=0.898, θ̂=0.3379 592.183 3.448 0.6312

From the results in Table 4, it can be seen that the values of -logL for the proposed DKw ETE is (592.16), which is
the most minimum among the other related distributions (the smaller the better). On the other hand, this value together
with the values of χ2 statistic and their corresponding p-values demonstrate that the proposed DKw ETE is the most
appropriate model to fit the AWS data set. Moreover, all the studied distributions are appropriate for fitting the AWS data
set.

5.2 The second data set (OSU)

The second data set OSU shows 156 outbreaks of strikes in the UK coal mining industries distributed among 4
successive week periods during 1948-59. This data is slightly right-skewed (0.80231), and it was utilized by [6,11,23] in
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the application of the discrete Gamma distribution, discrete generalized Rayleigh distribution, and discrete Extended
Erlang-Truncated Exponential distribution, respectively. Table 5 shows the OSU data set observed values, and the
corresponding expected values computed using the proposed DKw ETE and the other related distributions, whilst Table
6 demonstrates the MLE estimators, -LogL, the χ2 statistics, and its corresponding p-values.

Table 5: The observed and expected values of OSU data set.

Count Observed DKw ETE DEETE DGR DBD DGE2

0 46 46.34 46.08 47.50 47.89 46.08

1 76 74.73 75.75 69.32 80.87 75.75

2 24 27.19 26.11 31.82 18.28 26.11

3 9 6.42 6.50 6.67 6.07 6.50

>4 1 1.32 1.56 0.69 2.89 1.56

Total 156 156 156 156 156 156

Table 6: Parameters estimates, -Log L, χ2 statistic and p-value for the selected distributions of the OSU data set.

Model MLEs -Log L χ2 stat p-value

DKw ETE α̂=3.62, β̂=0.301, p̂=0.035, θ=1.66 187.498 1.489 0.8284

DEETE α̂=4.799, β̂=1.302, p̂=0.318 187.534 1.335 0.8554

DGR α̂=0.9415, p̂=0.7172 188.329 3.5623 0.4685

DBD α̂=4.6543, θ̂=0.5941 192.210 4.816 0.3067

DGE2 α̂=4.7994, θ̂=0.2247 187.534 1.3347 0.8555

Based on the outputs in Table 6, by looking at the values of χ2 statistic and their corresponding p-values (¿0.05) we
can conclude that all the studied distributions are appropriate to fit the OSU data set, while the minimum value of -logL
(187.498) for the proposed DKw ETE explains that DKw ETE is the most convenient model to fit this data sets.

5.3 Application of DKw ETE in COVID-19 number of death cases

The DKw ETE is utilized to model the number of death cases of COVID-19 in Qatar, UAE, and Bahrain that have occurred
in a successive days during a given period. This application was adopted by [23] in the study of DEETE distribution (see:
Table 8). Table 7 shows the summary statistics of the three data sets. Based on Table 7 we observe that the three data sets
are right-skewed and overdispersed.
The discrete random variable X which represents number of death cases of COVID-19 occurred in a successive days
having a DKw ETE distribution with the pmf written as

fDKw ET E(x;α,β , p,θ ) =
[

1−
(

1− pβ x
)α

]θ
−
[

1−
(

1− pβ (x+1)
)α

]θ
(14)

where x = 0,1,2, . . . , α, β , θ > 0 and 0 < p < 1.

Table 7: Summary Statistics for death cases of COVID-19 data sets.

Data set n Min Max Mean Variance Skewness

Qatar data set 277 0 6 0.85198 1.53236 1.5914

UAE data set 306 0 11 1.82026 4.19382 1.7736

Bahrain data

set

283 0 7 1.20495 2.14934 1.3944

Table 9 gives the MLE estimators, -LogL, and the χ2 statistics with the corresponding p-values for Qatar, UAE, and
Bahrain data sets. From the results in Table 9, by looking at -LogL values and p-values, it is clear that the proposed
DKw ETE distribution is more appropriate for fitting the death cases of COVID-19 data set than the DEETE distribution
in three countries.
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Table 8: Number of death cases of COVID-19 and the corresponding number of days in which they occurred until 30 Nov 2021 in

Qatar, UAE and Bahrain

Qatar data set UAE data set Bahrain data set

# deaths # days # deaths # days # deaths # days

0 156 0 93 0 124

1 58 1 70 1 67

2 31 2 67 2 41

3 18 3 31 3 31

4 9 4 17 4 7

5 4 5 8 5 9

6 0 6 7 6 2

7 1 7 4 >7 2

8 0 8 3

9 0 9 3

10 0 10 0

>11 1 >11 3

Total 278 306 283

Table 9: Parameters estimates, -Log L, χ2 statistic and p-value for DKw ETE and DEETE distributions of the COVID-19 death cases

data sets in the three countries.

Qatar COVID-19 death cases data set

MLEs

Model α̂ β̂ p̂ θ -Log L χ2 stat p-value

DKw ETE 0.5065 1.3723 0.0367 0.1588 353.29 1.7692 0.9396

DEETE 0.8659 2.0393 0.7042 - 353.50 2.1638 0.9040

UAE COVID-19 death cases data set

DKw ETE 1.3301 0.5939 0.4132 0.9861 0.552

DEETE 1.3283 2.5176 0.8141 - 557.90 9.6952 0.558

Bahrain COVID-19 death cases data set

DKw ETE 1.1210 0.1704 0.1843 2.3492 429.14 8.4242 0.297

DEETE 1.1456 1.4931 0.6456 - 429.30 8.5281 0.288

6 Conclusions

In this paper, the discrete Kumaraswamy Erlang-truncated exponential distribution (DKw ETE) is introduced by
discretizing the Kumaraswamy Erlang-truncated exponential distribution. Some statistical properties of DKw ETE are
derived, and the Maximum likelihood method is used to estimate the model’s parameters. The pmf of DKw ETE is
unimodal right-skewed, while the hazard function is increasing. The proposed DKw ETE is applied to two real count
data sets as well as used to model some data sets regarding the death cases of COVID-19. The main findings have been
concluded from the application results are; DKw ETE is the most convenient model to fit both data sets than other
related distributions; further, DKw ETE is more appropriate for fitting the death cases of COVID-19 than DEETE
distribution. We recommend the proposed distribution for modelling the right-skewed real-life count data sets adequacy
because the four parameters make DKw ETE more flexible to suit most types of count data sets.
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