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Abstract: The stability self- gravitating magneto-hydrodynamic of the cylinder flowing fluid was examined. Relation of 
eigenvalue is derivative. Analytical, the findings were explained, and numerically, they were confirmed. The magnetic 
and capillary are very strong stabilise, while the streaming is destabilise.  The (un)-stable domains are specified. Checked 
the capillary effect and magnetic fields have an effect just on model's self-gravitating instabilities. 
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1 Introduction 

In several published publications, the stability magnetohydrodynamic of the cylindrical fluid conferred of surface tension 
and exposed to capillary and other influences was documented in several reported works (see [1-5]). The electromagnetic 
force's effect on capillary instability was investigated by Chandraskhar [6]. For axisymmetric perturbation this was only 
done when the fluid is confined into a constant magnetic field. Samia S. Elazab [7] examined the stability 
magnetohydrodynamic of gas jet under the impact of capillary, electromagnetic and inertial forces and surrounded by a 
flowing radially limited cylinder liquid. The stability magnetohydrodynamic of liquid jets penetrated by dilute medium 
for (non-) axisymmetric perturbations variations was examined by Radwan [8-14]. He also investigated this work upon 
considering the effects of other variables. As a result of impact of the forces:  self-gravitating, electric, capillary, hasan 
[15-16] explored the stability of the complete cylindrical fluid enclosed with a languid medium self-gravity permeated 
with a transversely changing electric field.  Hasan [17] examined the cylindrical fluid instability embedded by a 
transversely shifting electric field for all modes (non)-axisymmetric influenced by an electric, capillary plus self-
gravitation forces. Hasan and Abdelkhalek [18] showed the stability magneto-hydrodynamic of a flowing cylindrical 
fluid. As well as the stability of several cylindrical models was explored as a result of the impact of extra forces for all 
(non)-axisymmetric perturbations. [22] studied the stability of resistance of magnetohydrodynamic equilibria with 
alternate areas of constant and non-uniform pressure. [23] discussed the optimal magnetohydrodynamic characteristics of 
axisymmetric balance magnetoplasma formations of three rings current-carrying in the Galatea trapping depending on the 
plasma pressure. [24] studied the electrically conductive fluid instability under the effect of a transversal magnetic field 
created by two parallel plates. The aim of this paper is  investigate a cylindrical flowing fluid magneto-hydrodynamic 
stability, demonstrating the impact of capillary force and a flowing fluid on the magnetic stabilization, as well as magnetic 
fields and capillary upon extant models' self-gravitational destabilization. For all (non)-axisymmetric modes of 
perturbations, the conclusion would be confirmed numerically and theoretically. 

2 The problem's description 

Assume the homogenous cylindrical non-viscid incompressible fluid with radius 𝑅!	encircled by the negligible slow-
moving medium. The model assumed to stream uniformly with velocity  
 𝑢! = (0,0, 𝑈)                                                                                                                                                (1)                                                                                         

As well as permeated by the magnetic fields inwardly and outwardly 

			𝐻! = (0,0, 𝐻!)	,			𝐻!#$ = (0,0, 𝛼𝐻!).																																																				                                                                                 (2)                             

Where U is the fluid's (constant) velocity,		𝐻! is the magnetic field's intensity of the fluid and 𝛼 serveral parameter, the 
variables of	𝑢!  ,	𝐻!,	 𝐻!#$ are analysed along the coordinates (r,𝜑,z) with the z-axis coincident with cylinder's axis as 
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shown in a figure (1.1). The fluid impacted by the group effects of a self-gravitating, inertial, magnetic, and capillary 
forces. 

 
Fig. 1.1: self-gravitation MHD cylindrical Fluid sketch 

                                         
The study's basic equations are listed below. 

 		𝜌 /%&
%'
+ (𝑢	. ∇)𝑢2 = −∇𝑃 + 𝜌∇𝑉 + (

)*
6∇	ʌ𝐻8ʌ𝐻	                                                                                    (3)              

 	∇. 𝑢 = 0																					                                                                                                                     (4) 
 	∇. 𝐻! = 0																																															                                                                                             (5) 

 
%+,
%'
= ∇ʌ6𝑢ʌ𝐻8												                                                                                                                  (6) 

 ∇-𝑉 = −4𝜋𝐺𝜌                                                                                                                                          (7) 

𝑃. = 𝑇(∇.𝑁.)𝑖𝑠	𝑡ℎ𝑒	𝑐𝑢𝑟𝑣𝑒𝑠	𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒	𝑜𝑤𝑖𝑛𝑔	𝑡𝑜	𝑡ℎ𝑒	𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦	𝑓𝑜𝑟𝑐𝑒.   (8)  
N/ = ∇𝐹(r, 𝜑	, z	; t)/⃓∇𝐹⃓                                                                                   (9)                                                                                                                                                                                                                 
Then	𝐹(r, 𝜑	, z	; t) = 0    (10) 
Is equation of the boundaries surface at time t, 𝑁. is an external vector unit normal to the surface ,T is hydrostatic pressure 
, and  𝑝.  is pressure due bending. For the languid medium surround it.  

∇.𝐻#$ = 0																																															                                                                     (11) 
 ∇ʌ𝐻#$ = 0                                                                                                                  (12)   
 ∇-𝑉#$ = 0                                                                                                                                                  (13)  

Where P, 𝑢, 𝜌 denote the static pressure, speed vector, mass density for fluid, respectively,𝐻	, 𝜇		denote the strength 
coefficient and magnetic  permeability ,  𝑉#$, 𝑉denote the self-gravitational potentials outside and inside the cylinderical 
fluid , respectively.  

3 Undisturbed State 

The essential quantities of such a condition are determined by studying the basic equations. By combining equations (1) 
and (3), you get	
∇ X𝜌𝑉! − 𝑃! −

(
0*
𝐻!-Y = 0                                                                                                                         (14)  

By integration we get 
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𝑃! = 	𝜌𝑉! − (
0*
𝐻!-	 +C                                                                                                                            (15) 

Where C can be defined as a constant of integration.   
The surface pressure owing to capillary force is calculated as follows: 
𝑃!. = 𝑇

𝑅!Z                                                                                                                           (16)  
The gravitational potential satisfies𝑉!, 𝑉!#$			 for the unperturbed state  

∇-𝑉! = −4𝜋𝐺𝜌                                                                                                                                                (17) 

∇-𝑉!#$ = 0                                                                                                                                                 (18) 

In cylindrical symmetries ( %
%∅
= 0	, %

%2
= 0), the non-singular solution of relations (17), (18) are given by 

𝑉! = −𝜋𝐺𝜌𝑟- + 𝐶3                                                                                                                                (19) 

𝑉!#$ = 𝐶- 	 ln 𝑟	 + 𝐶4                                                                                                                            (20) 

Where  𝐶3 ,	𝐶-  and 𝐶4 are integral constants can calculate by application  the following conditions. 

(𝑖) At r=R0 and C1=0, the self-gravitational potential v and its derivatives must continuously pass through the 
undisturbed surface. 

From above conditions we get 

𝐶- = −2𝜋𝐺𝜌𝑅!-		                                                                                                                                       (21) 

𝐶4 = −𝜋𝐺𝜌𝑅!- + 2𝜋𝐺𝜌𝑅!- ln 𝑅!                                                                                                              (22) 

Therefore 

𝑉! = −𝜋𝐺𝜌𝑟-                                                                                                                                        (23)    

 𝑉!#$ = −𝜋𝐺𝜌𝑅!- /1 + 2 ln 𝑟 𝑅!Z 2                                                                                                          (24) 

		(𝑖𝑖) At r =𝑅!, the total pressure across the boundary surface must be balanced, and the fluid   pressure   distribution in 
the non-turbulent condition is given by 

𝑃! = 𝑇
𝑅!Z + 𝜋𝐺𝜌-(𝑅!- − 𝑟-) +

(
0*
(𝛼- − 1)𝐻!-                                                                                          (25)           

4 Perturbation state 

Every physical quantity Q(r,	𝜑,z;t) because the initial flow state is turbulent, can be expressed as 

𝑄(𝑟, 𝜑, 𝑧; 𝑡) = 𝑄!(𝑟)+∈ (𝑡)𝑄3(𝑟, ∅, 𝑧; 𝑡)                                                      (26)                       
Where Q stand for 𝑃, 𝑢, 𝑉, 𝑉#$ , 𝐻, 𝐻#$	𝑎𝑛𝑑	𝑁. while 𝑄!refer to the unaffected amount and 𝑄3is a minor increase in 𝑄 
owing to perturbations. Believe a minor deviation from an incompressible fluids undisturbed. So, we suppose the curved 
surface can be expressed as 

𝑟 = 𝑅! + 𝑅3 +⋯                                                                                                                                      (27) 

With𝑅3 =∈ (𝑡)𝑒𝑥𝑝6𝑖(𝑘𝑧 +𝑚∅)8	And	∈ (𝑡) =∈! 𝑒𝑥𝑝(𝜎𝑡) (28) 
Where 𝑅3 is the height of the surface wave determined from the undisturbed position, k(real number) is the number of 
waves propagating ,m(integer)is the  transient elastic number, ∈(t) is the perturbation's magnitude  ,and σ is the temporal 
.  Using expansion (26), the basic equations (3)-(13) become 

𝜌 j%&5
%'
+ 6𝑢! ∙ ∇𝑢38l = −∇𝑃 + 𝜌∇𝑉3 +

(
)*
6𝐻! 	 ∙ 	∇8𝐻3 −

(
)*
∇(𝐻! ∙ 	𝐻3)                                            (29) 

∇ ∙ 𝑢3 = 0                                                                                                                                               (30)     

    ∇ ∙ 𝐻3 = 0                                                                                                                                               (31) 
%+5
%'
= X𝐻! 	 ∙ ∇Y 𝑢3 − (𝑢! 	 ∙ 	∇)𝐻3                                                                                                             (32) 

∇-𝑉3 = 0                                                                                                                                                 (33) 
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𝑃3. = (67
8,9
)(𝑅3 +

%985
%∅9

+ 𝑅!-(
%985
%29

))                                                                                                            (34) 

∇ ∙ 𝐻3#$ = 0                                                                                                                                                 (35)  

∇ʌ𝐻3#$ = 0                                                                                                                                                   (36) 

∇-𝑉3#$ = 0                                                                                                                   (37)  
The linearized variable 𝑄3(𝑟, 𝜑, 𝑧; 𝑡) by using the linear perturbation approach may be represented  

𝑄3 = 𝑞3(𝑟)𝑒𝑥𝑝(𝜎𝑡 + 𝑖(𝑘𝑧 +𝑚𝜑))                                                                    (38) 
By using expansion (38), formulas (33) and (37) give the ordinary differential equation of second-order  

X3
:
Y ;
;:
X𝑟 ;<5

;:
Y − X=

9

:9
+ 𝑘-Y 𝑞3(𝑟) = 0                                                                                                      (39)  

Where 𝑞3 stands for 	𝑉3(𝑟)	𝑎𝑛𝑑	𝑉3#$(𝑟) . Apart from the unique solutions, the solution of equation (39) is defined in terms 
of the ordinary Bessel functions of imaginary arguments for the situation under study. The resolutions of eqs. (33) and 
(37) are provided by 

𝑉3 = 𝐴𝐼=(𝑘𝑟)𝑒𝑥𝑝(𝜎𝑡 + 𝑖(𝑘𝑧 +𝑚∅)                                                                                                        (40) 

𝑉3#$ = 𝐵𝐾=(𝑘𝑟)𝑒𝑥𝑝(𝜎𝑡 + 𝑖(𝑘𝑧 +𝑚∅))                                                                                                  (41) 

Here A, B are integral constants that can be calculated and 𝐼=(𝑘𝑟)				𝑎𝑛𝑑	𝐾=(𝑘𝑟)  are  the Bessel correction function of 
the first and second kinds of order m, respectively. 

By using expansion (38) with equation (29), obtain  

(𝜎 + 𝑖𝑘𝑈)𝑢3 −
>(?
)*@

𝐻!𝐻3 	= −∇𝛱3                                                                                                             (42) 

Where	  𝛱3 =
A5
@
− 𝑉3 +

(
)*@

(	𝐻! ∙ 𝐻3)                                                                                                       (43) 

Also, equation (32) yields 

𝐻3 =
>?+,

(CD>?E)
  𝑢3                                                                                                                                            (44) 

By combining equations (42) and (44) we get 

𝑢3 =
6(CD>?E)

((CD>?E)DGH
9)

 ∇𝛱3                                                                                                                                   (45)  

Where  𝛺I = ((
9?9+,9

)*@
)
5
9		                                                                                                                        (46)    

The deviation of both equations (45) is the following equation (38): 

∇- 𝛱3 = 0                                                                                                                                                      (47) 

Therefor equation (31) implies that the magnetic field density 𝐻3#$ in the case of perturbation may be estimated using a 
scalar function,  say 𝛹3#$, which including 

 𝐻3#$ =∇ 𝛹3#$                                                                                                     (48)           
Also, evaluating the difference on both sides of the equation (48) we get  
∇- 𝛹3#$ = 0                                                                                                    (49)          
The spatial dependence of the equation (38) for (47) and (49) is similar to the procedure for solving differential equations 
(33) and (37), and its solving equations (47) and (49) can be found.so the non-singular solutions of  𝛱3(𝑟, 𝜑, 𝑧; 𝑡) and 𝛹3#$ 
is  

𝛱3 = 𝐶)𝐼=(𝑘𝑟)𝑒𝑥𝑝(𝜎𝑡 + 𝑖(𝑘𝑧 +𝑚𝜑))                                                                                                      (50) 

𝛹3#$ = 𝐶J𝐾=(𝑘𝑟)𝑒𝑥𝑝(𝜎𝑡 + 𝑖(𝑘𝑧 +𝑚𝜑))                                                                                                   (51)   

Where C 4 and C 5 are integral constant that must be found when governing equations are applied. 

Relation (34) and (28) are using to determine the surface pressure 𝑃3. in the perturbation state owing the capillary force 
by the way 

   𝑃3. = X67
8,9
Y [1 −𝑚- − 𝑥-]𝑅3                                                                                                                (52) 
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(Dimensionless number of longitudinal waves is	𝑥 = 𝑘𝑅!). 

5 Boundary condition 

Resolution of the fundamental equation (3)-(13) in an undisturbed region defined by (15) and (19) and in a disturbed 
region defined by (40), (41), (50), and, (51) meet the appropriate  it is a critical boundary layer. We want to apply these 
boundary conditions to the perturbation	𝑟 = 𝑅!+∈ (𝑡)𝑅3 +⋯ of the boundary surface of the orbit	𝑟 = 𝑅!  must satisfy 
appropriate boundary layers. These conditions could be given in terms:  

(𝑖) Conditions self-gravitating   

Across the altered fluid interface	𝑟 = 𝑅!+∈ (𝑡)𝑅3 +⋯ at unperturbed boundary 𝑟 = 𝑅! ,  the gravitation potential and 
its derivatives must be continuous. 

𝑉3 + 𝑅3
%K,	
%:

= 𝑉3#$ + 𝑅3
%K,

LM

%:
                                                                                                                    (53)     

%K5
%:
+ 𝑅3

%9N,	

%:9
= %K5

LM

%:
+ 𝑅3

%9N,
LM

%:9
                                                                                                           (54)     

By substituting from equations (23), (24), (26), (40), and, (41) into equations (53) and (54) we obtain 

𝐴𝐼=(𝑥) − 𝐵𝐾=(𝑥) = 0                                                                                      (55) 
𝐴𝐼=O (𝑥) − 𝐵𝐾=O (𝑥) = 4𝜋𝐺𝜌(𝑅! 𝑥Z )                                                             (56)     
 From  which we get 

𝐴 = 4𝜋𝐺𝜌𝑅!𝐾=(𝑥)                                                                                                                                   (57) 

𝐵 = 4𝜋𝐺𝜌𝑅!𝐼=(𝑥)                                                                                                   (58)   
(𝑖𝑖) Condition kinematics 

This condition states that the normal component of the velocity vector u corresponds to the required velocity of the particle 
at the interface (27) of the orbital plane r = 𝑅!. It's become 

𝑢3: =
%85
%'
+𝑈 %85

%2
                                                                                                                                      (59) 

Using equations (27), (45), and,(50) for the condition (59)we get 

𝐶) = ((𝜎 + 𝑖𝑘𝑈)- + 𝛺I-)(𝑅! 𝑥𝐼=O (⁄ 𝑥))                                                                                                   (60) 

(𝑖𝑖𝑖) Condition of magnetodynamics  

There is no normal component of the magnetic field of the different entire fluid perturbation interface r=𝑅!. That is to 
say, 

𝑁P ∙ 𝐻 − 𝑁P ∙ 𝐻#$ = 0  at 𝑟 = 𝑅!                                                                                                            (61)  

Form which, we get 

𝐶J =
>Q+,
RST ($)

                                                                                                                                               (62) 

6 Eigenvalue Relation 

The suitable dynamic conditions are used here as a compliance conditions. The velocity of the particles at the interface 
(24) of the orbital plane r =𝑅! must be consistent with the normal component of the velocity vector u. Given this condition   

𝑃3 + 𝑅3
%A,
%:
+ (

)*
6𝐻! ∙ 𝐻38 −

(
)*
6	𝐻!. 𝐻38

#$ = 𝑃3.                                                                                   (63) 

From equation (43) the condition (63) become                                                             
𝜌(𝛱3 + 𝑉3) = 𝑃3. − 𝑅3

%A,
%:
+ (

)*
6𝐻!	. 𝐻38

#$
                                                                                               (64) 

Using equations (25), (28), (40), (50), and, (52) we get                                          
 (𝜎 + 𝑖𝑘𝑈)- = (+,9

)*U@
/𝛼-𝑥- RS($)VS

T ($)
VS($)RST ($)

− 𝑥-2 + 4𝜋𝐺𝜌 $VST ($)
VS($)

/𝐾=(𝑥)𝐼=(𝑥) −
3
-
2 

+ 7
@8,W

($VS
T ($)

VS($)
)(1 −𝑚- − 𝑥-)                                                                                                                        (65) 
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7 Limiting cases 

The dispersing equation of a fluid cylinder acting on magnetic, capillary, inertia, and self-gravitational forces is desired 
(65), it  contain the natural quantity( 7

@8,W
)
5
9 and also,	( (+,9

)*@8,9
)
5
9 together with(4𝜋𝐺𝜌)

X5
9  , each as time units. The last amount 

highly fascinating and serve an importance purpose since we want to rewrite relation (65) in a dimensionless version 
because	𝜎 has a unit (𝑡𝑖𝑚𝑒)63. The above situation is similar to Chandrasekhar's [5] axisymmetric (m=0) perturbation of 
a cylinder non-streaming fluid.  It relates the growth rate 𝜎 with  the first and second kinds Bessel-modified functions 
𝐼=(𝑥)	𝑎𝑛𝑑	𝐾=(𝑥) of order(m) and their variants, the wave longitudinal numeral x,  and also, 𝑅!	, 𝛼	, 𝐺, 𝜇, 𝐻!	, 𝜌	 are radius 
of a cylinder, the magnetic field parameter, self-gravity constant, the coefficient of the magnetic permeability, the 
fundamental magnetic field intensities, the fluid density, respectively. Since the eigenvalue relation (65) is general relation 
can be obtained as limiting cases from it.                                                                                                                            
 In case (𝑈 = 0, 𝛼 = 0,𝐻! = 0, 𝐺 = 0, 𝑎𝑛𝑑,𝑚 = 0). Equation (65) reduce to 

𝜎- = 7
@8,W

X$V5($)
V,($)

Y	(1 − 𝑥-)                                                                                      (66)            
This relation is the same  relation as which Rayleiyh [1] found for the capillary instability of a complete liquid jet in a 
space.   

 Putting (𝛼 = 0, 𝑇 = 0,𝐻! = 0,𝑈 = 0, 𝑎𝑛𝑑	𝑚 = 0). Equation (65) degenerates to 

𝜎- = 4𝜋𝐺𝜌 X$V5($)
V,($)

Y	[𝐾!(𝑥)𝐼!(𝑥) −
3
-
]                                                                                                        (67) 

This relationship is consistent, and derive the Chandrasekhar and Fermi [2] 
If we let (𝛼 = 1,𝑈 = 0, 𝑇 = 0, 𝑎𝑛𝑑	𝑚 = 0) the relation (65) yields 

𝜎- = 4𝜋𝐺𝜌 X$V5($)
V,($)

Y	/𝐾!(𝑥)𝐼!(𝑥) −
3
-
2 − (+,9

)*U@8,9
( $
V,($)R5($)

)                                                                        (68) 

Chandrasekhar [6] proved this relationship to investigate the influence of a fluid jet's self-gravitation instability. 

In case (𝛼 = 0,𝐻! = 0,𝑈 = 0, 𝑎𝑛𝑑	𝑚 = 0) Equation (65) becomes 

 𝜎- = 4𝜋𝐺𝜌 X$V5($)
V,($)

Y	/𝐾!(𝑥)𝐼!(𝑥) −
3
-
2 + 7

@8,W
X$V5($)
V,($)

Y	(1 − 𝑥-)                                                                (69)  

Abromowiz and Stegun [8] discovered this relationship when investigating the capillary gravitodynamic stability of two 
fluids interfaces when the density of the outer fluid is vanished. 

8 Numerical discussions 

Within the trendy case of the flowing cylinder fluid is acted upon by the consequences of the group of forces are magnetic, 
self-gravitation, capillary.  It not easy to find in the analysis of (un-)stable areas, although we can define them through 
numeric arguments since the eigenvalue relation (66) is stated in standard form. Moreover, we identify the impacts of a 
magnetic  field  among  a fixed capillary upon a  self-gravitating  force through  this  discussion, which may be done by 
computing the dimensionless governing equation  
(𝜎 + 𝑖𝑘𝑈)-

4𝜋𝐺𝜌 =
𝑥𝐼x=(𝑥)
𝐼=(𝑥)

j𝐾=(𝑥)𝐼=(𝑥) −
1
2l −𝑀z

𝑥𝐼x=(𝑥)
𝐼=(𝑥)

(1 −𝑚- − 𝑥-){ + 𝛾(𝛼-𝑥-
𝐾=(𝑥)𝐼x=(𝑥)
𝐼=(𝑥)𝐾x=(𝑥)

− 𝑥-) 

In case m=0 

𝜎∗ = }z~𝑥 V5($)
V,($)

X𝐾!(𝑥)𝐼!(𝑥) −
3
-
Y� +𝑀~𝑥 V5($)

V,($)
(1 − 𝑥-)� − 𝑁𝑥- ~X𝛼- R,($)V5($)

R5($)V,($)
+ 1Y�{			 					+ 𝑈∗                                                                                                                                                                                     

through the computer for various parameters of 𝑀 = 7
)*U@98,9

	 , 𝑈∗ = 6>?E

()*U@)
5
9
	 , 𝑁 = (

3Z*9U
( +,
@8,
)- 

And range 0 ≤x≤3, the numeric values of 𝜎∗ = C

()*U@)
5
9
 referring to the unstable regions and  

 𝜔∗ = [

()*U@)
5
9
   referring to the stable regions, the numerical results are represented graphically. 

For 𝑁 = 0,0.1,0.2,0.4	, 𝑎𝑛𝑑	,0.8	 corresponding to 𝑈∗ = 0	,𝑀 = 0.1. The unstable domains have been discovered to be 
0 <x <1.8342, while the stable domains neighboring are 1.8342 ≤x < ∞ , 
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 0 ≤x < ∞, 0 ≤x< ∞,0 ≤x< ∞, and 0 ≤x<∞, show figure (2). Where  𝑥\ = 1.8342 is the transition from unstable to stable 
domain and the equivalences that correspond to the limit states stability. 

For 𝑁 = 0,0.1,0.2,0.4	, 𝑎𝑛𝑑	,0.8	  corresponding to   𝑈∗ = 0	,𝑀 = 0.4 . The unstable domains have been discovered to 
be   0 <x <1.4122 and 0 <x< 0.9034, while the stable domains neighboring are 1.4122 ≤x< ∞, 0 ≤x< ∞, 0 ≤x< ∞,	
0 ≤x<∞,  and  0.9034 ≤x< ∞, see figure (3)  where 𝑥\ = 1.4122	𝑎𝑛𝑑	0.9034 .  

For 𝑁 = 0,0.1,0.2,0.4	, 𝑎𝑛𝑑	,0.8	 corresponding to 𝑈∗ = 0	,𝑀 = 0.9. The unstable domains have been discovered to be  
0 <x <1.3318 and 0 <x <0.9275, while the stable domains neighboring are 1.3318 ≤x< ∞, 0.9275 ≤x< ∞,0 ≤x<∞, 0≤x<∞, 
and 0 ≤x< ∞,see figure (4), where 𝑥\ = 1.3318	𝑎𝑛𝑑	0.9275.   

For 𝑁 = 0,0.1,0.2,0.4	, 𝑎𝑛𝑑	,0.8	 corresponding to 𝑈∗ = 1.1	,𝑀 = 0.4	. Of this unstable region are   
0 <x <1.443,  and 0 <x< 0.9473 , while the stable domains neighboring are 1.443 ≤x< ∞, 
 0.9473 ≤x< ∞, 0≤x<∞,0 ≤x< ∞, and 0≤x<∞,see figure (5)  where  𝑥\ = 1.443		𝑎𝑛𝑑	0.9473. 

For 𝑁 = 0,0.1,0.2,0.4	, 𝑎𝑛𝑑	,0.8	 corresponding to 𝑈∗ = 1.2	,𝑀 = 0.4	of this unstable regions are  
0<x <1.4442, and 0<x< 0.9475,  while the stable domains neighboring are 1.4442≤x<∞,  
0.9475≤x< ∞, 0≤x<∞,0 ≤x< ∞, and  0≤x<∞,see figure (6), where 𝑥\ = 1.4442		𝑎𝑛𝑑	0.9475. 

                                    
Fig. 2: Stability MHD of a cylinder fluid permeated by a uniform field. 

                         For 𝜎∗ = C

()*U@)
5
9
  , M=0.1, 	𝑈∗ = 0, and	𝛼 = 1.4. 

 
Fig. 3: Stability MHD of a cylinder fluid permeated by a uniform field 

                    For 𝜎∗ = C

()*U@)
5
9
  , M=0.4 , 𝑈∗ = 0,and	𝛼 = 1.4. 
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Fig.4: Stability MHD of a cylinder fluid permeated by a uniform field 

                         For 𝜎∗ = C

()*U@)
5
9
  , M=0.9 , 𝑈∗ = 0, and	𝛼 = 1.4 

 
Fig. 5: Stability MHD of a cylinder fluid permeated by a uniform field 

                                        For 𝜎∗ = C

()*U@)
5
9
  , M=0.4, 	𝑈∗ = 1.1, and	𝛼 = 1.4 

 
Fig. 6: Stability MHD of a cylinder fluid permeated by a uniform field 

                                  For 𝜎∗ = C

()*U@)
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9
  , M=0.4, 𝑈∗ = 1.2, and	𝛼 = 1.4 
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9 Conclusion 

From numerical discussion, we conclude that 

(1) The unstable domains are decreased as N value increases for a same value of U*. This implies that the magnetic 
field's impact has a stabilizing effect. 

(2) Increasing N with constant capillary force (M) decrease the unstable domains and increase the stable domains, 
indicating that the magnetic force's influence on the model is stabilizing. 

(3)  On the model, the capillary force has a significant stabilizing effect.  

(4) It is discovered that as U* values increase, the unstable domains increase for the same values of N. This explains that 
the streaming effect destabilizes for all wave lengths, short and long. 

(5) The unstable domain grows with rising M values for the same value of N, indicating the capillary force has a large 
destabilizing effect upon model's self-gravitation destabilization. 

(6) The magnetic has a stabilizing impact on the model's self-gravitating instabilities. 

Conflict of interest  

The authors declare that there is no conflict regarding the publication of this paper. 

References  

[1] Rayleigh, JM.The Theory of Sound. Dover, New York, (1945). 

[2] Chandrasekhar S, Fermi E. Problems of gravitational stability in the presence of a magnetic field. Astrophs.J, 116-
118(1953).  

[3] Yuen MC. J. Non-linear capillary instability of a liquid jet. Fluid Mech, 33-151(1968).                                                                                                                       

[4] Nayfeh A, Hassan SD. J. The method of multiple scales and non-linear dispersive waves. Fluid Mech, 48, 
463(1971). 

[5] Kakutani, T, Inoue, I, Kan, T. J. Nonlinear capillary waves on the surface of liquid column. Phys. Soc. Jpn.  , 37: 
529(1974) 

[6] Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. Dover, New York (1981).  

[7] Samia S. Elazab. Magnetohydrodynamic stability of a streaming gas jet. Journal of plasma physics,  49.1: 3-15 
(1993). 

[8] A.E. Radwan.   Capillary gravitodynamic instability of two fluids interface. Phys. Scripta, 51 , p. 484(1995). 

[9] Radwan AE, Aly FA. Selfgravitating instability of two semi-infinite streaming superposed fluids endowed with 
surface tension. Nuovo Cimento,  113- 601(1998). 

[10] Radwan AE, Ali RM. Magnetohydrodynamic instability of a dissipative compressible rotating selfgravitating fluid 
medium. Nuovo Cimento, 114B: 1361(1999). 

[11] Radwan AE.  Periodic time dependent electrogravitational instability of a fluid cylinder. Phys. Scr.  67- 510(2007).   

[12] Radwan AE, Hasan AA.  Axisymmetric electrogravitational stability of fluid cylinder ambient with transverse 
varying oscillating field. Int. J. Appl. Math. 38(3):13(2008). 

[13] Radwan, Ahmed E.,  Samia S. Elazab, and Zeinab M. Ismail. Axisymmetric Gravitational Oscillation of a Fluid 
Cylinder Under Longitudinal Oscillating Electric Field. Australian Journal of Basic and Applied Sciences,  2.3 : 
500-509(2008). 

[14] Radwan AE, Hasan AA.. Magnetohydrodynamic stability of self-gravitational fluid cylinder. Appl. Math. 
Model,  33: 2121(2009). 

[15] Hasan AA. Electrogravitational stability of oscillating streaming fluid cylinder. Physica B . 406(2):234(2011). 

[16] Hasan AA, Mekheimer KS, Azwaz SL. Hydromagnetic stability of selfgravitational oscillating streaming fluid jet 
pervaded by azimuthal varying magnetic field. Int. J. Math. Arch.  2(4):488(2011). 



1258                                                                                                                     S. Elazab et al.: Magnetohydrodynamic Stability of… 

 
© 2023 NSP 
Natural Sciences Publishing Cor. 
 

[17] Hasan AA.  Hydromagnetic instability of streaming jet pervaded internally by varying transverse magnetic 
field. Math. Probl. Eng. 325423(2012). 

[18] A. Hasan and R. Abdelkhalek,  Magnetogravitodynamic Stability of Streaming Fluid Cylinder under the Effect of 
Capillary Force . Boundary Value Probl.  1–20 (2013) . 

[19] Samia S. Elazab, and Zeinab M. Ismail, STABILITY OF STREAMING COMPRESSIBLE FLUID CYLINDER 
PERVADED BY AXIAL MAGNETIC FIELD AND SUROUUNDED BY DIFFERENT MAGNETIC FIELD. 
Jokull  65 (1), 318-330(2015). 

[20] A. Hasan. Electrogravitational Stability of Streaming Compound Jets. Int. J. Biomath. 9 (2), 1650032(2016)  . 

[21] Hasan, Alfaisal A., Khaled S. Mekheimer, and Bassem E. Tantawy. Magnetogravitodynamic Stability of Three 
Dimensional Streaming Velocities of Fluid Cylinder under the Effect of Capillary Force. Research Journal of 
Applied Sciences, Engineering and Technology 15.5: 174-181(2018).   

[22] Wright, A. M., et al. Resistive stability of cylindrical MHD equilibria with radially localized pressure gradients. 
Physics of Plasmas,  26.6: 062117(2019). 

[23] Medvedev, S. Yu, et al. Galatea trap: magnetohydrodynamic stability of plasma surrounding current-carrying 
conductors. Controlled Fusion and Plasma Physics, 62.11: 115016(2020). 

[24] Hussain, Zakir, et al. An optimised stability model for themagnetohydrodynamicfluid. Pramana, 95.1:1-7(2021). 


