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Abstract: The fractional derivative (FD) has recently captured the minds of scientists. The most common are Riemann-Liouville (RL)
and Caputo (C). These fractional derivatives have been used to successfully model many real-world problems due to their physical
properties. In 2014, Khalil et al introduced a new definition of an FD called the conformable FD (CFD). In this work, we introduce
new properties and theorems related to this new derivative, such as the CFD of the reciprocal function, power of function, exponential
of function, and the w-Leibniz integral rule used to solve fractional differential equations as in the applications section.
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1 Introduction

While the concept of FD dates back to L'Hospital in the 17th century, extensive investigations into FD’s have been
conducted in recent centuries. Many researchers have proposed integral-based definitions for FDs, with the RL and C
definitions being the most widely adopted. For comprehensive discussions on these definitions and their characteristics,
interested readers are directed to [1,2,3,4]. The RL fractional derivative is defined as follows:

oo L d 560
DO = iy ) / e o

where n — 1 < @ < n. The C fractional derivative is defined by:

o 1 K 1 d .,
DK@(K): F(l’l—a))/() (K'—l)erlin(d_K') @(t)dtv

wheren—1<w<neN.

In 2014, Khalil et al. introduced a novel definition of FD’s and partial integrals [5], offering a specific form akin to
conventional derivatives. Subsequently, in 2015, Abdeljawad derived a new theorem encompassing Taylor Power series
representation and Laplace transformation for certain functions, alongside providing formulas for partial integration by
parts, the chain rule, and Gronwall inequality [6]. In the same year, Atangana et al. presented novel properties of the CFD
[7].

In 2018, Hashemi developed invariant subspace methods to obtain exact solutions for various conformable differential
equations, extending this theory to coupled systems of conformable differential equations [8]. Touchent et al., in 2019,
investigated new solutions to conformable Boiti-Leon Pempinelli equations, employing an expansion technique based
on the Sinh-Gordon equation, resulting in solutions expressed in trigonometric, complex, and hyperbolic functions [9].
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Additionally, Abdeljawad et al. studied different types of conformable fractional logistic models [10], while Birgani et al.
discussed, improved, and supplemented recent results concerning the CFD [11].

In 2019, Balci et al. delved into the dynamical behavior of a conformable fractional tumor model [12]. Touchent et al.
in 2020, employed three efficient integration algorithms to extract solutions for the optical soliton space-time fractional
nonlinear equation, crucial for understanding microtubule dynamics in cellular processes biology [13]. Similarly, Xie et al.
in 2020 examined a continuous grey model utilizing CFD [14]. Chaudhary et al., also in 2020, investigated the Fractional
convection-dispersion equation using the CFD [15]. In 2021, Ulutas et al. explored traveling wave and optical soliton
solutions of the Wick-type stochastic NLSE employing CFD [16]. Al-Zhour, in 2022, scrutinized the controllability and
observability behaviors of a non-homogeneous conformable fractional dynamical system [17]. Meanwhile, Sadek et al.,
in 2022, delved into the controllability, observability, and fractional linear-quadratic problem for fractional linear systems
utilizing CFD, alongside showcasing applications [18]. Additionally, Teodoro et al., in 2019, revisited the definitions of
fractional derivatives and related factors [19]. Numerous works employ such derivations; for a comprehensive overview,
refer to [20,21,22,23,24] and the references therein.

Definition 1./5] Let 0 < @ < 1 and © : [0,00) x [0,00) — R. The CFD of a function © of order ® of k we denote (T,0
defined by:
e =0 1) —0(k,t
To® (k1) = lim 2EHE 2D Z Ok ()
£—0 €

Jorall k > 0. If lim «Tw®(K,1) exists, then define Tp®(0,1) = lim kTwO(K,t). Every real function that satisfies the
K—0 K—0

equation (1) and the limit exists, is called the w-differentiable function.
If O is differentiable in K, then
d
To0O(x,t) = k' "*——0(x,1).
KLo ( 9 ) 81( ( 9 )

If o =1, we have
d

oKk’
Theorem 1./5] Let @ € (0,1] and ©, g be w-differentiable at a point x > 0. We have

1.4T(a® + bg) = axTyw® + b Tpg, forall a,b € R.
2.4To(KxP) = pkP~©.
3.,<Tw((~)( )) Oforall@( ) A.
(
(

K Tl

5-1<Tw @/g) = Kng@gzeKng'
CFD of certain functions
Lemma 1./5]

1.Tpe™ = ck!=%e% ¢ e R.
2.«Tpsin(bk) = bk'~®coshk,b € R.
3.«Tpcos(bk) = —bx'~®sinbk,b € R.

40T = 1.
541w sin(%K“’) = cos(%K“’
6.,<Twcos(%1<“’) = n(%K“’)

7.,<Ta,el%"w = lel%
Theorem 2./5] Let @ € (0,1] and the function © : [0,00) — R @-differentiable at ky > 0, so © is continuous at K.

Notation. . .
10O (K) = / O(s)do(s) = / 5910 (s)ds.
0 0
The operator I, is called conformable left fractional integrals of order 0 < @ < 1.

Lemma 2./5] Let © : [0,00) — R is continuous and 0 < @ < 1. Then, for all k¥ > 0 we have

Tolo® (k) = 0O(k).
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2 The CFD for reciprocal function

Theorem 3./6] Let 0 < ® < 1, ©,g : [0,0) — R be o-differentiable functions, and h(k) = @(g(x)). So h(k) is ®-
differentiable and for all ¥ with ¥ # 0 and g(x) # 0, we have

Toh(k) = ToO(g(K)) - «Tog(K) - g(K)*". 2

If k = 0 we have
xToh(a) = KIEBL Tw®(g(K)) - kTwg(K) - g(k)*".

Corollary 1.Let g : [0,00) — R be w-differentiable functions, where 0 < ® < 1. So (%) is w-differentiable and for all k
with ¥ # 0, we have
KTweg('f) — o8(K) . «Twg(K).

If kK =0 we have
Towet™ = lim e8(). kTwg(K).

Kk—0t

Proof.From (2) we have
Twet™ = (Twe®)(8(K)) - Twg(k) - g(K)° ",

From 1 in Lemma 1, we have

Toet™ = (k') (g(k)) - xTwg (k) - g(K) "
= g(k)! s Tyg(k) - g(i)"
— o8(K), «Twg(x).

Corollary 2.Let 0 < 0 < 1 and g : [0,00) — R be o-differentiable functions. Then g(k)" is w-differentiable and for all k
with xk # 0 we have

Twg(K)" = n.g(K)"il.Kng(K).
If k = 0 we have
Tog(K)" = lim g(K)”fI.n.Kng(K).

K—0+
Proof.From (2) we have
«Toes™) = (xTwe) (8(k)) - xTwg(x) - g(x) ",

From 1 in Lemma 1, we have
oot = (k' %e%)(g(k)) - xTwg (k) - g(x) "

= g(k)" e Tyg (k) - g (i)

= 8% . Tpg(k).
Theorem d.Let O : [a,b] — [d',b'] o-differentiable and bijective from which we denote by @~ : [a',b'] — [a,b] the
reciprocal bijection with a,a’ > 0. If («T4O(y) # 0, Vy € [a,b], then @~ is w-differentiable and we have for all k € [d', V']
K.lfw(@fl (K))lfw

xT0® (0@ 1(x))

KTw@il (K) =

Proof.-We have
To(@(0 (k) = «Tuk,

from Theorem 3

«T0@(0 ' (K)) «Tw® (k) (O (k) =k'"°,
SO
K.lfw(@fl (K))lfw

KTw@q(K) = NPCICRITS)

And (T,®1(0) = 0.
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Example 1.Let © : [0,+o0) — [1,+o0) be the function defined by @ (k) = e*. Let’s study © in detail. First of all:

1.0 is w-differentiable. In particular, ® is continuous.
2.0 is strictly increasing.

3.0 is a bijective.

4.,Tp0(K) = K-k #0,k e R—{0}.

By the above Theorem 4, O ! is w-differentiable and
1 w(@ I(K))lfco
(6~ 1( ))lfco 0-1(x)
_ k' ?n(x))'"
)

N In(k))!-@eln(x

KTw(»Tl(K)

| -

K
1

/—\ S

and we have @' (x) = In(k), so

To(07' (k) = «To(In(k))
In(x + ex'~®) —In(k)

= lim
-0 €
In( K+£K]’“’)
= lim K
=0 €

In(1 -0

lim m,{*w
e—0 EKO

=Kk .

3 CFD of functions defined as integrals

There are two main types of functions defined as integral. These functions are often found in analysis and in mathematical

physics.
Type I:The functions of the form
v(K)
K) = / o(1)do(r)
u(K)

where K is in the terminals.
Type II:The functions of the form

3.1 CFD for type I

A slightly different category of integrals is when the bounds are the parameters of the function:
v(K)
- / o(1)do()
u(K)

Theorem 5.Let ® be a continuous function over an interval [a,b] of values in R and v : I — |a,b] of class functions €,
with a > 0. Then the function H defined on the interval I by

where u,v are functions of x.

H(k) = /O "™ o@)dal), 3)

is of class €' and
wToH (k) =  Tov(K)v(K)? 1O (v(k)).
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Proof.This function H is composed of two functions:
H(x) = F(v(x)) = (Fov)(K),

where F' is

Fx) = /()K@(t)da)(t),

As F and v are of class ¢! then H is of class %' and by the derivative formula of a composition :

kToH (k) = Tov(K)v(K) 2 ToF (v(K)).

But since T F (k) = O (k) then
«TwH (K) = «Tov(K)v(K) 1O (v(x)).

Theorem 6.Let © be a continuous function over an interval [a,b] of values in R. Let I be an interval of R et u,v: I — [a, D]

of class functions €. Then the function G defined on the interval I by

G(ic) = / "™ o@)da),

is of class €' and

Proof.-We have
G(x) = / "™ ondo()

:/0 @(t)dw(t)—F/V(K)@(f)dw(t)
u(x) 0
u(x) v(K)
- @(r)dm(r)+/0 O(t)do(r)
)s

0
= K(x)—L(x
where
K(x) = [y 0 (1)do(r),
L(x) = i 0 1)do(),
from (3), so
TG (K) = «TwK (k) — «ToL(k),
then

ToG(K) = Tov(K)v(K) " f(1(K)) = cTou(K)u(x) 'O (u(x)).

Example 2.Let us calculate the CFD of
k2
G(x) = / L do(),
K

Int

for k > 1. To apply Theorem 6, we restrict ourselves to an interval [a,b] such that, for k fixed, k € [a,b] C]1, +eo[. With

0(t) = &, u(x) = x,v(k) = k2, we have:

"

ToG(K) = Tov(k)-O (k) — (Tou(k) - O(u(x))
1 o]

In(x2) L

K.wa_K.lfw

2—m

Ink

© 2024 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

340 NS B L. Sadek, A. Akgiil: New properties for conformable fractional...

3.2 CFD for type Il

Definition 2.The @-Leibniz integral rule is:

v(t)
H(t) = / O(t,5)dw(s). )

)
It is sometimes known as differentiation under the integral sign.

Theorem 7.Let ® be a continuous function over an interval [0,b] x [0,b] of values in R. Then the function M defined by
b

M) = [ e(k.da(r). )
JO

is of class €' and

b
ToM(x) = /0 TwB(k,1)do(t).

Proof:-We have

K+ex! =@ b
/ / IO (K,1)do(r)
K JO

b rk+ex!TO
/0 To®(k,1)do(K)do()

/.
/b <@ Kt ex! = 1) @(K,t)>dw(t)
o(

0

b 4
/ (k45 Ndo () — / O(k,1)do(r),
0 JO

As a result
b - b -0 .5
® tdw(t)— [y O(k,t)do(t 1 [rtex
fO (K+8K ) ) CO() .fO (Kv ) (D() _ _/ / KTw@(K',t)dCO(l)d(D(K)
S € Jx JO
_ F(k+ex!"®)—F(k)

)

€
where we defined

) :/Ou/obKTw@(K,t)da)(t)dw(K),

since F is w-differentiable, so we can take the limit where € approaches zero. For the left side, this limit is:

TwF (K) = / " Ta0(k.0dol).

For the left side member, we get:
b
To [ O d0),
Jo
o) Y
ToM(K) = / TwO (i, 1)do(t).
0

Example 3.Let’s study

F(x) = /01 e,

K2+ 12
for k €]0, +eo[. Let’s pose

Then:

-0 is continuous on |0, +oo[x [0, 1],

© 2024 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 10, No. 3, 335-344 (2024) / www.naturalspublishing.com/Journals.asp NS e 341

—Tof(x,t)= ’2'(2702 is continuous on |0, +eo[x [0, 1].

(2+2)

So we will have
1 *21(‘27(0
TwF (K) = / 0]
0 (k2+12)

Theorem 8.Let @ be a continuous function over an interval [0,b] of values in R and v : I — [0,b)] of class functions €.
Then the function H defined on the interval I by

(k)
H(x) = /0 O(k,1)do(t), (©6)

is of class €' and

v(K)
kToH(K) = @(K’,V(K))KT(DV(K)V(K)QFI +/0 T f(K,s)do(s).

Proof.Let
H(x) = M(x,v(x)),
where ’
M(my) = [ fmn)da(o).

ToH (k) = fim HETEKT) — H(K)

£—=0 €
i B0+ e )dw() — 5™ O (k.1)dw(1)
£—=0 €
. _[VV((:)“KH’) O(k+ex'"2 n)do(t)  p(x)
= lim +/ Tw®(K,t)do(t),
£—=0 € 0

we butu=Kk+ex!~?so0

l-o
LT 0+ ex! -0 ) do(r) o p
lim 2 — lim X / O(u,t)dw(t)
£—0 ) u—K u— K Jy(k)
) K.lfao
= lim —— (M (u,v(u)) = M(u, ()
i My () = M(u,v(x) () —v(K) g
U—K v u) — V(K‘) u—K u—K
— pim M) 2 M@)o )
v(u)—v(K) v(u

Theorem 9.Let © be a continuous function over an interval [a,b] of values in R and u,v : I — [a,b] of class functions €.
Then the function H defined on the interval I by

v(K)
H(x) = [ 6(k.5)dols). ™
u(K)
is of class €' and

v(K)
«ToH (k) = O (k,v(K)) Tov(K).v(K) ™" — O (t,u(Kk))  Tpu(x).u(t) +/M(K) kTw®(K,s)d(s).
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Proof.-We have

H(x) = / O(k,s)do(s)

Ju(x)
0
:./u() (x,s)do(s +/ O(x,s)dw(s)
u(K)
= —/ O(x,s)do(s +/ (k,8)do(s)
Jo
— K() — L(x),
where
K(x) = o™ @ (k,5)d(s),
L(x) = [y O(x,5)dw(s),
from (6), so
ToH (k) = «ToK(x) — «TpL(K),
then

v(K)
ToH(K) = @ (ic, v(i0)) e Tov () (i)~ + / Tw®(i,5)do(s)
0
L
—0(k,u(k))  Tou(K)u(x) —/ To®(K,5)d0(s).
0
Corollary 3.The function H defined on the interval I by

1= /Ol@(t,s)da)(s)

is of class €' and

TwH(t) = O(1,1) + /(:,Tw@(t,s)da)(s).

4 Applications

Theorem 10.Let fractional differential equation

{KTwy(K) = f(x),
¥(0) = yo,

then problem (9) has one and only one solution x namely,
K
=30+ [ f(5)d0s).
Proof-We have
KTw)’( ) =«To )’0+/ dw( )

= «To(yo) + KTw(/O f(s)da(s)),

we have

ol [ 7(5)da(s) = 1)

®)

©)
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Theorem 11.Let fractional differential equation

kTwy(x) = Ay(x) + Bu(k),
{y(O)y Y0, ’ (10)

where A and B matrices, then problem (10) has one and only one solution y namely,

K

y() =T+ | els T Bu(s)do(s).
Proof.Let y be a solution of (10), we have then
K@ K @ 0]
Tov(6) = <To (eTAyoJr [ e syt

= KTw(e ® yo ++«Tw e (55 ABu( )da)(s))

= KTw( )’0 + T

(£
(e

from Corollary 3, we have

A i k? k@ " K2 ¢
T </ e~ @A Bu(s) ) =T T MBu(K) + | «Tw(e'@ 1 Bu(s))do(s)
0 JO

<Toy(K) = Ae’® Ay + Bu(i) + A / U5 5 Bu(s)da(s)
= Ay(K) + Bu(x).

5 Conclusion

In this work, we introduced new properties and theorems related to a new fractional derivative, such as the CFD of the
reciprocal function, power of function, and exponential-decay function. Two main types of functions were defined. These
functions are often found in the analysis, mathematical physics, and ®-Leibniz integral rule. Finally, applications on
solving the linear systems fractional differential equations were presented.
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