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Abstract: Ailamujia distribution is a useful lifetime model for several engineering applications. The Ailamujia distribution is a

versatile distribution to model the repair time and guarantee the distribution delay time. This study considers the estimation problem for

Ailamujia distribution based on progressive Type-II censoring with Binomial removals. The maximum likelihood estimators (MLE’s)

for the model parameters were derived along with the asymptotic confidence intervals. A simulation study was performed using different

values of sample sizes, parameters, and different number of removed observations to investigate the behavior of the estimators. A real

life time data set was analyzed using progressive Type-II Ailamujia distribution and showed appropriate results.
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1 Introduction

In reliability theory and survival analysis, it is difficult to
collect lifetime data for all subjects under consideration
because of time and cost constraints. Various types of
censoring schemes are used by the practitioners based on
the model and available information using both
parametric and nonparametric methods. Recently,
progressive censoring is of special importance in
reliability and survival analysis. Progressive censoring
was first introduced by Cohen [1]. An extensive studies
are available in literature related to progressive censoring;
among these studies of Mann et al. [2], Balakrisnan and
Aggarwala [3], and Laweless [4]. Different failure time
models in literature have been used on progressive
censoring under Binomial removals; including
exponential distribution [5], Type-II generalized logistic
distribution [6], generalized exponential distribution [7],
Pareto distribution [8,9,10], exponentiated gamma [11].
Rayleigh distribution [12]. Burr Type−XII Distribution
[13] and the Gompertz Distribution [14].

Type-II Progressively censored life test is conducted
as follows. Consider n identical units in a test, at the time
of the first failure, R1 units from the remaining n − 1
survival items are removed. At the time of the second
failure, R2 units from the remaining n−R1 − 1 items are
removed, and so forth. Finally, at the time of m-th failure,

the reaming survival units, say RM are removed. Note that
censoring takes place here progressively in m stages.
Clearly, this scheme includes, as special cases, the
complete sample situation (when m = n and
R1 = · · · = Rm = 0) and the conventional Type-II right
censoring situation (when
R1 = · · · = Rm−1 = 0 and Rm = n − m). The
corresponding scheme (r1,r2, . . . ,rm) is known as
progressive Type-II right censoring scheme.

Different lifetime data can be represented by several
well-known continuous probability distributions as well
as their generalizations. Ailamujia distribution is a useful
lifetime model that has many engineering applications
[15]. In some practical applications such as the repair
time, guarantee the distribution delay time, it is found that
the Ailamujia model is a convenient one compared to
other models. Lv et al. [16] studied the different
properties including mean, variance, and median and
maximum likelihood estimators. This distribution has also
been investigated for the interval estimation and the
hypothesis testing [17]. The minimax estimation of the
Ailamujia model parameter has been discussed under a
non-informative prior using the three loss functions [18].

This paper considers progressive Type-II censoring
for Ailamujia distribution with Binomial removals. The
maximum likelihood estimators (MLE’s) of the model
parameters along with the asymptotic confidence intervals
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are obtained. A simulation study was performed using
different combinations of sample sizes, parameters and
different number of removed observations to observe the
behavior of the MLE’s via bias and root mean square
error (RMSE). Analysis of real life time data is presented
as an illustration of the developed progressive censoring
scheme in this work.

2 Estimation of the Parameters

If X is the lifetime of a product and follows Ailamujia
distribution, its probability density function is given by:

f (x,θ ) = 4θ 2xe−2θx;x ≥ 0,θ > 0 (1)

while the corresponding cumulative distribution function
is given as:

F(x,θ ) = 1− (1+ 2θx)e−2θx;x ≥ 0,θ > 0 (2)

where, θ is the unknown parameter. It can be easily
concluded that

E(X) =
1

θ
and σ2 =

1

2θ

The maximum likelihood estimator for θ is given by

θ̂ =
n

∑
n
i=1 xi

The survival function and the hazard function are,
respectively, given by:

r(x) = (1+ 2θx)e−2θx

h(x) =
4θ 2x

1+ 2θx

Let (X1,R1), (X2,R3),. . . ,(Xm,Rm), be progressively
censored sample, where X1 < X2 < · · · < Xm . With
predetermined number of removals, such as
R1 = r1,R2 = r2, . . . ,Rm = rm , the conditional likelihood
function can be written as (Cohen [1]):

L(θ ;x|R = r) = A
m

∏
i=1

f (xi)(1−F(xi))
ri (3)

where

A = n(n− r− 1) . . .

(

n−
m−1

∑
i=1

ri + 1

)

Substituting (1) and (2) into equation (3), the
likelihood function becomes

L(θ ;x|R = r) = A
m

∏
i=1

4θ 2xie
−2θxi

(

(1+ 2θxi)e
−2θxi

)ri

(4)

Suppose that an individual unit being removed from the
test at the ith failure, i = 1,2, . . . ,m− 1, is independent of
the others but with the same probability p. Therefore,
Ri, i = 1,2, . . . ,m− 1, follows a binomial distribution with
parameters

n−m−
i−1

∑
k=1

rk and P

Thus,

P(R1 = r1) =

(

n−m

r1

)

pr1(1− p)n−m−r1

P(Ri = ri|Ri−1 = ri−1, ...,R1 = r1)

=

(

n−m−∑
i−1
k=1 rk

ri

)

pri(1− p)n−m−∑
i−1
k=1

rk ,

∀i = 1,2, ...,m− 1

where

0 ≤ ri ≤ n−m−
i−1

∑
j=1

r j(i = 1, ...,m− 1)

The full likelihood function takes the following form

L(θ , p;x,r) = L(θ ;x|R = r)P(R = r) (5)

where P(R= r) is the joint distribution and is given by:

P(R = r) = P(R1 = r1)P(R2 = r2|R1 = r1) . . .

P(Rm−1 = rm−1|Rm−2 = rm−2, . . . ,R1 = r1)

and

P(R= r) =
(n−m)!p∑

m−1
i=1 ri(1− p)(m−1)(n−m)−∑

m−1
i=1 (m−i)ri

(n−m−∑
m−1
i=1 ri)!∏

m−1
i=1 ri!

(6)
Using equations (4), (5) and (6), it is possible to write the
full likelihood function as shown in the following form

L(θ , p;x,r) = AL1(θ )L2(p)

where

A =
c(n−m)!

(

n−m−∑
m−1
i=1 ri

)

!∏
m−1
i=1 ri!

L1(θ ) =
m

∏
i=1

4θ 2xie
−2θxi

(

(1+ 2θxi)e
−2θxi

)ri

L2(p) = p∑
m−1
i=1 ri(1− p)(m−1)(n−m)−∑

m−1
i=1 (m−i)ri

The MLE of θ can be obtained by maximizing

L1(θ ) =
m

∏
i=1

4θ 2xie
−2θxi

(

(1+ 2θxi)e
−2θxi

)ri
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L1(θ ) = 4mθ 2m

(

m

∏
i=1

xi

)

e−2θ ∑
m
i=1 xi

×

(

m

∏
i=1

(1+ 2θxi)
ri

)

e−2θ ∑
m
i=1 rixi

L1(θ ) = 4mθ 2m

(

m

∏
i=1

xi

)(

m

∏
i=1

(1+ 2θxi)
ri

)

×e−2θ(∑
m
i=1 xi+∑

m
i=1 rixi)

The ln likelihood function

lnL1(θ ) = m ln4+ 2m lnθ +
m

∑
i=1

lnxi +
m

∑
i=1

ri ln(1+ 2θxi)

−2θ

(

m

∑
i=1

xi +
m

∑
i=1

rixi

)

The MLE of θ can be obtained by solving the
following equation:

nL1(θ )

dθ
= g(θ ) = 0

m

θ
+θ

m

∑
i=1

ri

1+ 2θxi

−

(

m

∑
i=1

xi +
m

∑
i=1

rixi

)

= 0

Therefore, the MLE of θ , can be obtained by solving
g(θ ) = 0 using fixed point iterative numerical method.

Maximizing L2(p), the MLE of p can be obtained as:

p̂ =
∑

m−1
i=1 ri

∑
m−1
i=1 ri +(m− 1)(n−m)−∑

m−1
i=1 (m− i)ri

The elements of the Fisher information matrix can be
obtained using the following likelihood function

L(θ , p) ∝
m

∏
i=1

[

4θ 2xie
−2θxi

(

(1+ 2θxi)e
−2θxi

)ri
]

[

p∑
m−1
i=1 ri(1− p)(m−1)(n−m)−∑

m−1
i=1 (m−i)ri

]

logL(θ , p) ∝ 2m lnθ +
m

∑
i=1

lnxi +
m

∑
i=1

ri ln(1+2θxi)

−2θ

(

m

∑
i=1

xi +
m

∑
i=1

rixi

)

+
m−1

∑
i=1

ri log p

+

(

(m−1)(n−m)−
m−1

∑
i=1

(m− i)ri

)

log(1− p)

Thus, the variance covariance matrix is now
approximated as





− ∂ 2 logL(θ ,p)
∂θ 2 0

0 − ∂ 2 logL(θ ,p)

∂ p2





−1

where

∂ 2 logL(θ , p)

∂θ 2
=

m

∑
i=1

ri

1+ 2θxi

− 2θ
m

∑
i−1

rixi

(1+ 2θxi)2
−

m

θ 2

∂ 2 logL(θ , p)

∂ p2
=

∑
m−1
i=1 ri

p2
+
(m− 1)(n−m)−∑

m−1
i=1 (m− i)ri

(1− p)2

The asymptotic distribution of the maximum
likelihood estimators is a biverate normal (BVN) given as

(

θ̂

p̂

)

≈ BVN

((

θ

p

)

,V

)

An estimate of V is obtained by using the observed
Fisher information matrix where the parameters θ and p

are replaced by the corresponding maximum likelihood
estimates.

The 100(1−α)% asymptotic confidence intervals for
θ and p are

θ̂ ± z α
2

√

var(θ̂ ), p̂± z α
2

√

var(p̂)

3 Simulation Results

A simulation study is performed to assess the final sample
behavior of the maximum likelihood estimator. Different
sample sizes; namely n = 25,50, and 100 are used.
Different combinations of the parameter values of θ were
considered. The values of the parameter p used in the
simulation study are 0.25 and 0.5. The simulation results
are based on 1000 replicates. The means and root mean
square errors (RMSE) of the maximum likelihood
estimators for the two parameters p and θ are shown in
Table 1.

The following remarks can be drawn based on the
results shown in Table 1:

1. For fixed m as n increase, the bias and RMSE always
show a decreasing trend.

2. For fixed n as m increase, the bias and RMSE
decrease.

3. As the scale parameter θ increase, the bias and RMSE
increase.

4. As the value of the parameter p increase, the bias and
RMSE increase.
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Table 1: Mean and RMSE of the MLEs for p and θ for different values of n,m, θ and p

p = 0.25 p = 0.5

n m θ P̂ θ̂ P̂ θ̂

Mean RMSE mean RMSE Mean RMSE mean RMSE

0.1 0.26404 0.07685 0.07809 0.0155 0.52325 0.11605 0.0872 0.01709

15 0.3 0.26404 0.07685 0.23905 0.04899 0.52325 0.11605 0.27329 0.05645

25 0.5 0.26404 0.07685 0.42122 0.10494 0.52325 0.11605 0.49265 0.13228

0.1 0.28675 0.1217 0.09289 0.01549 0.5407 0.16602 0.09711 0.01592

20 0.3 0.28675 0.1217 0.28249 0.04875 0.5407 0.16602 0.29681 0.05025

0.5 0.28675 0.1217 0.48277 0.08689 0.5407 0.16602 0.50868 0.09652

0.1 0.25695 0.04949 0.08634 0.01185 0.50982 0.08153 0.09099 0.01277

30 0.3 0.25695 0.04949 0.26526 0.0386 0.50982 0.08153 0.28311 0.04111

50 0.5 0.25695 0.04949 0.47325 0.08167 0.50982 0.08153 0.51738 0.09547

0.1 0.26506 0.07859 0.09563 0.01092 0.52325 0.11605 0.09711 0.01059

40 0.3 0.26506 0.07859 0.29089 0.03464 0.52325 0.11605 0.29791 0.0344

0.5 0.26506 0.07859 0.49787 0.06312 0.52325 0.11605 0.51391 0.06324

0.1 0.25693 0.0494 0.09679 0.0081 0.50982 0.08153 0.09787 0.00758

80 0.3 0.25693 0.0494 0.29368 0.02346 0.50982 0.08153 0.29992 0.02491

100 0.5 0.25693 0.0494 0.50834 0.04481 0.50982 0.08153 0.51799 0.0444

0.1 0.26506 0.07859 0.09922 0.00755 0.52325 0.11605 0.09883 0.00731

90 0.3 0.26506 0.07859 0.30063 0.02371 0.52325 0.11605 0.30065 0.02359

0.5 0.26506 0.07859 0.50687 0.03909 0.52325 0.11605 0.50833 0.03765

4 Data Analysis:

A real life data set is considered which represents the
number of million revolutions before failure for each of
the 23 ball bearing in life tests, the data arose in tests on
endurance of deep groove ball bearings (Lawless [[4]]).
The observations are shown as follows:
17.88, 28.92, 33, 41.52, 42.12, 45.6, 48.8, 51.84, 51.96,
54.12, 55.56, 67.8, 68.44, 68.64, 68.88, 84.12, 93.12,
98.64, 105.12, 105.84, 127.92, 128.04, 173.4

The Kolmogorov-Smirnov (K-S) test was used to
show that the Ailamujia distribution is appropriate for
analyzing this data. The P-value= 0.34 which is
statistically significant and suggests that the Ailamujia
distribution is appropriate for analyzing this data. The
maximum likelihood estimate of θ using complete data
with n = 23 is 0.01384.

Three progressively censored samples were generated
from the above data with m = 20,17 and 14.

Progressive censoring with m = 20:

(0, 17.88) (0, 28.92) (2, 33) (1, 41.52)
(0, 42.12) (0, 45.6) (0, 48.8) (0, 51.84)
(0, 51.96) (0, 54.12) (0, 55.56) (0, 68.64)
(0, 68.88) (0, 93.12) (0, 98.64) (0, 105.12)

(0, 105.84) (0, 127.92) (0, 128.04) (0, 173.4)

Progressive censoring with m = 17:

(1, 17.88) (1, 28.92) (0, 33) (0, 41.52)
(0, 42.12) (1, 45.6) (0, 48.8) (0, 51.96)
(0, 54.12) (0, 55.56) (0, 67.8) (0, 68.44)
(1, 68.64) (1, 68.88) (0, 93.12) (0, 98.64)

(1, 105.84)

Progressive censoring with m = 14:

(2, 17.88) (0, 28.92) (0, 41.52) (1, 42.12)
(0, 45.6) (0, 48.8) (1, 51.84) (1, 51.96)

(2, 54.12) (0, 55.56) (1, 68.64) (1, 68.88)
(0, 93.12) (0, 173.4)

The maximum likelihood estimates for the model
parameters for the three generated progressive censoring
schemes for different values of m are as follows:

Censoring scheme 1: (m = 20, the number of removed
observations is n−m = 3): The maximum likelihood
estimate for θ is 0.013491.

Censoring scheme 2: (m = 17, the number of removed
observations is n−m = 6): The maximum likelihood
estimate for θ is 0.012815.

Censoring scheme 3: (m = 14, the number of removed
observations is n−m = 9): The maximum likelihood
estimate for θ is 0.011026.

5 Conclusion

We develop some results on Ailamujia distribution when
progressive type II censoring with binomial removals is
performed. The maximum likelihood estimators for the
model parameters were derived along with asymptotic
confidence intervals. The simulation results showed that
as the sample size increases the performance of the
estimators improves in term of bias and RMSE. The
biases and RMSEs decrease as m increases. As the scale
parameter θ increases, the bias and RMSE increase. Also,
as the value of the parameter p increase, the bias and
RMSE increase. A real lifetime data set was analyzed
using progressive Type-II censoring of Ailamujia
distribution and showed appropriate results.
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