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Abstract: The least-square estimator has several drawbacks when dealing with heteroscedasticity; this estimate will not be
a Best Linear Unbiased Estimator (BLUE). Quantile Regression is a dependable option; however, it has some substantial
computational problems. We compare five resampling approaches to estimate the standard error of the coefficients, in the
situation of heterogeneity, for inference. According to simulation study, quantile regression beats linear regression and is
also better when predicting errors in the presence of heterogeneity.
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1 Introduction

An estimator approach must be employed to estimate the parameter model when modelling the relationship between
covariates and responses. When estimating parameter values, the Ordinary Least Squares (OLS) method is used to reduce
the sum of squares of the error to the smallest possible value. In this case, the OLS is known as BLUE (Best Linear
Unbiased Estimator), when all model assumptions are fulfilled. However, if one or more of the assumptions are not
satisfied, it may be deceptive. While the great majority of regression models focus on assessing the conditional mean of the
dependent variable, there is growing interest in approaches for modelling other features of the conditional distribution.
Quantile Regression (QR) is a common method for modelling the quantiles of a dependent variable given a collection of
covariate variables (Huang et al., 2017)[1].

While it is well known that Simple Linear Regression (SLR) may be used to predict the anticipated value of a continuous
outcome given the variables in the model, Quantile Regression (QR) is a statistical approach used to estimate and infer
conditional quantile functions. Quantile regression can be used to compare across groups the full distribution of a
continuous response or a single quantile of the answer (Cade & Noon, 2003)[2]. The quantile regression approach has the
benefit of allowing for the analysis of connections between factors other than the conditional mean of the response. The
most appealing aspect of QR is that it does not implicitly impose limiting assumptions of changing location on the way
variables impact the response by allowing covariate effects to be investigated at different quantiles. This similar property
makes QR estimates more robust to outliers than LSR estimates. Furthermore, in the presence of a patterned dataset, a
skewed distributed data set, or outliers, it would be conceivable to assess the influence of a set of independent factors on a
particular conditional quantile of a certain outcome using variant estimates (John & Nduka, 2009)[3].

Quantile regression differs from Ordinary Least Squares (OLS) in various ways:

I.  Given a collection of explanatory variables, quantile regression may be used to define the full conditional
distribution of a dependent variable.

II. QR provides a more complete view of the independent factors' influence on the dependent variable.

III. QR has a linear programming model that allows for straightforward estimate; it provides a robust measure of
location.

IV. When the error term is non-normal, the quantile regression estimator outperforms the least squares estimator.
V. Modeling flexibility for data with diverse conditional distributions.

VI. The median regression is less sensitive to outliers than the OLS regression.
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(Ibrahim & Yahaya, 2015)[4] and (Rodriguez & Yao, 2017)[5]

Koenker and Basset (1978)[6] created quantile regression to model the quantile of a response variable, such as the median,
based on the values of a set of predictors. The conditional quantile gets its name from the fact that it is calculated
depending on a set of predictors. Because researchers are often more interested in the more extreme values of the
conditional distribution than the mean. Therefore, quantile regression is an acceptable approach of study in the field of
public health.

In this study, we compare modelling generated data with non-constant error variance using the quantile regression
technique with straightforward linear regression. The theoretical underpinning of quantile regression is described in Section
2 of the study. Section 3 discusses two approaches for estimating the simplex and the interior point quantile models. We
provide five different techniques for conducting standard error using the "bootstrap approach" for the inference quantile
model. In section 4, we demonstrated how to compare quantile regression and simple regression using a simulated case
study with and without Leave-One-Out-cross validation (LOOCYV) and some error measures such as, Mean Absolute Error
(MAE), Mean Absolute Percent Error (MAPE), and Root Mean Square Error (RMSE).

The simulation study was conducted for various conditional quantiles of the response variable (10th, 25th, 50th, 75th, and
90th) and with different sample sizes (15, 25, 30, 50, 200,500, and 700), and two methods for estimating coefficients of the
quantile model; simplex, and interior point methods. In Section 4, we wrap off with a brief discussion.

2 The Essentials of the Quantile Regression Model (QRM)

Quantile Regression introduced by "Koenker and Basset (1978)" [6] is a good alternative to ordinary least squares
regression. While simple least squares regression minimizes the sum of squared errors, the median regression estimator
minimized the total of absolute errors. By minimizing an asymmetrically weighted sum of absolute errors, the remaining
conditional quantile functions are estimated.

Quantile Regression model specifies changes in the conditional quantiles. Quantiles defined to be a particular location for a
given random variable (y); therefore, T — th quantile denotes the value of (y) such that prob (Y < y) = 7 by using the
definition of cdf, F(y) = prob (Y < y) the quantile function can be denoted as its inverse as following:

Qy (1) =F;' (1) =inf{y:F(y) = 7} €y

A linear regression model for the T -the conditional quantile of y; can be expressed as

Q. (ylx) = x'B; (2)

Where y is a scalar dependent variable, x' is the k x 1 vector of explanatory variables, B is the coefficient vector, 7 is the
conditional quantile of interest for T € (0,1)

An estimate for the T — th quantile of (Y) can be obtained by minimizing the next objective function

Be = min pr(yi —x/B) i=1..n 3)

Where the loss function:
p:(w) = u(r — I(u < 0))
Or
Br=min ¥"ies (1- D(y; —x/BD+ Zni=} @y: —x/BD 4)

B yi<x;'B yizx,'B

Since, minimizing a sum of asymmetrically weighted absolute residuals (giving different weights to positive and negative
residuals) produces the quantiles, the symmetry of absolute value yields the median (by setting T =0.5).

Since, the symmetry of absolute value yields the median (by setting T = 0.5) (I; problem), then minimizing a sum of
asymmetrically weighted absolute residuals (giving different weights to positive and negative residuals) yields the
quantiles. So, we can use (loss function p;) that is an asymmetric weight to the error depending on the quantile and the
overall sign of the error (Koenker & Hallock, 2001)[7] and (John & Nduka, 2009)[3].
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3 Aspects of Quantile Regression Computation

Since, the objective function (3) is not differentiable; the traditional method of differentiating the objective function is no
longer applicable. A feasible method for estimating the parameters B of quantile regression is the linear programming
method (Zhao & Yu, 2020)[8].

n=[y—Xpl;
v = [XB-Y],
0= [B]+
Let ¢ =[-B]+ 5)
y = [y1 - Yul
X =[x, - Xp]

[z], is the non — negative part of z

Let D4z (B) = Xiz1ly: — xiBl and D, (B) = Xi=; p:(y; — x{ ). The [, problem, rrbin D, 4r(0) , can be reformulated as:
min{e’ p+evly = XB + - v,(wv) € R} (6)

Where e denotes a n vector of ones.
B=[X,-X1-I]
Let 0 = [¢l’(p/’ul’vl]/
d — [OI Ol el el]l
Where 0’ =[00.... ],
The reformulation presents a standard LP problem
mgin {d' 6}

Subjcted to (Primal Problem)(P) (7

BO=y

6=0

The primal problem has the dual formulation
max  {y'z}

Subjcted to (Dual Problem)(D) €))

B'z<d

This can be simplified as:
max {y'z|X'z=0,z€[-1,1]"}
z
. 1 1 1,
By setting y = (§Z+E e), b= (EX e)

The problem becomes
max yvIX'y=b,ye[0,1]"} 9)

For quantile regression, the minimization problem is rr}iin 2. p-(y; — x{B), and a similar set of steps leads to the dual
formulation:

max{y’ z|X'z = (1 —1)X’e, z € [0,1]"}, (10)
z

(Davino et al., 2013)[9] and (Chen &Wei, 2005)[10].

© 2023 NSP
Natural Sciences Publishing Cor.



638 I — = M. Saad et al: The Performance of Quantile Regression...

3.1 Simplex Algorithm

Median regression (l; regression) has been defined as linear programming problems that can be addressed fast using a
simplex approach since the 1950s. Barrodale and Roberts (1974)[11] devised an efficient variant of the simplex method
that uses the special structure of the coefficient matrix (B) to solve the fundamental LP problem (P) in two steps. In the first
step, only the columns ending in (X) or (-X) are chosen as crucial columns. In the second step, only the columns in (I) or (-
I) as a basis or non-basic columns are exchanged. The algorithm obtains an optimal solution by executing these two stages
interactively (Chen, 2004)[12]. The approach of Barrodale and Roberts was the first to use the bounded variables dual form
of the median regression issue. Koenker & d'Orey (1993)[13] utilized a specific version of the simplex method for median
regression to conduct quantile regression with any given quantile, encompassing the complete quantile process. The worst
case for this simplex technique is computationally demanding for large datasets. The algorithm's careful and exact coding,
on the other hand, makes it suitable for datasets with fewer than 5,000 observations and 50 variables (Chen & Wei,
2005)[10] and (Chen, 2004)[12].

3.2 Interior Point Algorithm

Alternative methods have been developed for addressing huge LP problems. Karmarkar's (1984)[14] inner point technique
solves a series of quadratic issues by using an ellipsoid to approximate the relative interior of the constraint set, rather than
proceeding from vertex to vertex around the constraint set's outer surface as the simplex requires (Chen &Wei, 2005)[10].
Karmarkar's method was a new polynomial-time algorithm with polynomial computational complexity in linear
programming. Despite, the fact that a single iteration of the Karmarkar algorithm is expensive, optimality is achieved after
just a few iterations, making the technique computationally appealing (Zhao & Yu, 2020)[8]. The interior point method is
shown to perform better than the Simplex algorithm in the worst-case scenario (Chen, 2004)[12]. Interior point algorithms
come in a variety of shapes and sizes. The Primal-Dual with Predictor-Corrector method is the most often used [,
regression or quantile regression technique (Chen & Wei, 2005)[10].

Letc=y,b=(1—1)X'eand A = X' . The dual problem, eq. (10), with a general upper bound (u) is

max {c'z}
Subjcted to
Az =D
0<z<u

To solve this LP problem, 0 < z < wis split in to z >0 and z < u. Let (v) be the primal slack that z + v = u, and
associated dual variable (w) with these constraints. The interior point solves the system of equations to satisfy the "Karush-
Kuhn-Tuker (KKT) conditions for optimality:

Az=Db
z+v=u
At+s—w=c
ZSe =0 an
VWe =0
z,s,v,w =0,

(KKT)

where Z = diag (z), thatis Z;; = z;; ifi=j, Z;; =0 otherwise, S = diag(s), W = dig(w),V = diag (v) these are
the conditions for feasibility with the complementarity conditions ZSe =0 ,VWe =0added c¢'z=>b"t —u'w must
occur at the optimum. Complementarity conditions force the optimal objectives of the primal and dual to be equal, ¢'z,,, =
b'topr — u'Wyp, (Chen & Wei,2005)[10].

opt

The interior point algorithm works by iteratively using Newton's method to locate a decent direction
(AzK, At*, As*, Av¥, Aw¥) to move from the current solution (z*,t¥,s¥ v*, w*) towards a better solution (Chen,
2004)[12].

This is accomplished in two steps. The first step is known as an affine step, and it involves solving a linear problem using
Newton's method in order to determine a direction (Azi‘ff,Atgff, Asgff, Avgff,AW(’;ff) for reducing complementarity
toward zero. The second step is known as the centermg step, and it 1nvolves solving another llnear system to find a
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significantly reduce complementarity, but it does strengthen the central path and makes significant progress toward the
optimal in the next iteration. After you've completed these two steps, then

(AzF, Atk Ak, AvF, AwX) = (Azfep, Ath p, Askep, AV e Awge ) + (AzE, AtK, AsE, Avk, Aw) (12)

(Zk+1, tk+1, Sk+1, ’Uk+1, Wk+1) — (Zk, tk, Sk, Uk, Wk) +a (AZk, Atk,ASk, A'Uk, AWk), (13)

where, a is the step length assigned a value as large as possible but not so large that a z¥*?, sk, vf*1 or wr*? is "too

close" to zero. The Predictor-Corrector variant usually takes less iteration to reach the optimum, although requires solving
two linear equations instead of one. In both the affine step and the centering step, factorization of the (X’[@*]~1X) matrix,
where @% is a diagonal matrix computed in k" iteration, takes the majority computing time when solving the linear
systems. However, the additional overhead of calculating the second linear system is small, as the factorization of the
(X'[@%]~1X) matrix has already been performed to solve the first linear system (Chen & Wei, 2005)[10].

1

3.3 Resampling Methods

Resampling procedures can be utilized as a viable alternative to asymptotic inference since they allow parameter standard
errors to be calculated without any assumptions about the error distribution (Yanuar et al., 2019)[15].

In QR analysis, several contributions in the literature imply that bootstrap is the best resampling approach. This simulation
compares empirically the bootstrap approaches in two quantile regression models for predicting standard error of
coefficients at various conditional quantiles for each sample size:

e "XY" pair method or design matrix bootstrap (Kocherginsky et al.,2005)[16].
e "WXY" uses the generalized bootstrap with unit exponential weights (Bose & Chatterjee, 2003)[17].
e "WILD" uses the wild bootstrap method (Feng et al, 2011)[18].
e "PWY" method based on pivotal estimating functions (Parzen et al., 1994)[19].
e "MCMB" Markov chain marginal bootstrap (He & Hu, 2002)[20].
4 Simulation Study

In practice, we want to compare many statistical prediction scenarios and select the most effective one. To assess a model's
performance on a dataset, we must assess how well the model's predictions match the observed data. Leave-One-Out Cross-
Validation (LOOCYV) is a popular approach for accomplishing this. Cross-validation is a superior approach for evaluating
models than residuals. The difficulty with residual assessments is that they do not show how well the learner will do when
asked to generate new predictions for data it has not seen before (Wong, 2015)[21].

One way to overcome this problem is to not use the entire data set when training a learner. Some of the data is removed
before training begins. After training, the data that was deleted can be used to assess the learned model's performance with
"fresh" data. This is the fundamental concept behind a broad family of model assessment techniques known as cross-
validation. The purpose of our simulation is to know the ability of both quantile regression and simple linear regression
models can generate new predictions with cases it has not already seen (using situations they haven't encountered before).
To measure the difference between the predictions made by the model and the actual observations, some measures are used
in the comparison such as Mean Absolute Error "MAE", Mean Absolute Percentage Error "MAPE", and Root Mean Square
Error "RMSE" with and without the use of Leave One - Out of Cross-Validation Method (LOOCYV) in the heterogeneous
case. Simulation study compares simple linear regression to quantile regression with "the simplex algorithm and the interior
point algorithm™ at each sample sizes for n=15, 25, 30, 50, 200,500 and 700 in order to observe the performance of SLR
and QR as sample size increased.

The generated response variable was defined as y; = 14 + 0.4x; + ¢;. With x; is generated from a Uniform distribution
ranging from 1 to 6, &; is generated from a Normal distribution with mean (0) and variance is 0.5 + 0.03 * x?. Generating
the random error term with a function depending on x; yields a response variable that is heteroscedastic for the range of x;.
Therefore, the problem of heterogeneity of variance is summarized in the error distribution, which
is &~ N(0,4/0.5 + 0.03 = x? ). The number of replication was set to be S=1000 times, which is the average number of
iterations that were used in previous researches; the results of this part presented in Table 1(a) and Table 1(b).
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The second purpose of the simulation estimate parameter and its standard errors for the quantile regression analyses with
simplex method (br) and interior point algorithm frich newton or (fn) using different methods of the bootstrap approach
such as (XY- WXY- PWY- Wild- MCMB). With y; = 14 + 0.4x; + ¢;
and 700 at different conditional quantiles (10th, 25th, 50th, 75th, and 90th) were conducted, these results are presented in
Table 2(a), Table 2(b), Table 2(c) and Table 2(d).

Table 1(a): Comparison of simple linear regression and quantile regression with both the simplex and the interior-point
algorithms across "MAE, MAPE and RMSE" with and without "leave one out cross-validation" in case of

heteroscedasticity with sample sizes 15, 25, 30, and 50.

for the sample sizes, n=15, 25, 30, 50, 200, 500

Quantile Regression
o = 7=0.1 T=0.25 T=0.5 7=0.75 t=0.9
N
‘@ =
2 2§
=] 1) 2 = | br fn br fn br fn br fn br fn
5 Y
wn n
< [0.6176 | 1.115 | 1.115 | 0.989 | 0.989 | 0.542 | 0.5424 | 0.796 | 0.796 2'1922 2'1922
S @l 7722 0383 | 039 11847 | 11847 | 4120 | 120 0522 | 0522
20 21
g 0.2730 | 0.492 | 0.492 | 0.437 | 0.437 | 0.239 | 0.2397 | 0.351 | 0.351 3'1410 3'1410
o = | 7395 95663 | 95675 | 28743 | 28743 | 7994 | 994 9332 | 9332 060 | 062
QI 1.08 | 1.08
8 0.6748 | 1.271 | 1.271 | 0912 | 0.912 | 0.665 | 0.6654 | 0.878 | 0.878 904 | 904
= E@ 6695 01019 | 01020 | 95520 | 95520 | 4364 | 364 2305 | 2305 746 | 759
0.85 | 0.85
< | 05295 10974 | 0974 | 0.765 | 0.765 | 0.528 | 0.5289 | 0.691 | 0.691 120 | 120
% > m| 1206 22120 | 22121 | 71426 | 71426 | 9507 507 6220 6220 311 | 347
o
= g 0.0352 | 0.062 | 0.062 | 0.049 | 0.049 | 0.035 | 0.0352 | 0.047 | 0.047 3'9025 3'9025
= | S .l 4703 72881 | 72882 | 70719 | 70719 | 2291 | 291 2457 | 2457
= 767 | 769
(=}
vl £| £ 06653 | 1.165 | 1.165 | 0.917 | 0.917 | 0.665 | 0.6654 | 0.878 | 0.878 36048 36048
L= § =| 5925 95468 | 95469 | 22817 | 22817 | 4364 | 364 2305 | 2305 746 | 788
1.29 | 1.29
< | 08162 | 1.524 | 1524 | 1219 | 1219 |0.789 | 0.7896 | 0.876 | 0.876 465 | 465
S | 6190 4690 | 4692 | 27664 | 27664 | 6364 | 3646 90042 | 90042 91 92
N 0.33 | 0.33
< | 02127 | 0397 | 0397 | 0317 | 0.317 | 0.205 | 0.2058 | 0.228 | 0.228 750 | 750
o S | 8923 4096 | 4099 | 85011 | 85011 | 84831 | 4831 59693 | 59693 139 | 140
QI 1.56 | 1.56
8 0.9322 | 1.790 | 1.790 | 1.271 | 1.271 | 0.942 | 0.9426 | 1.116 | 1.116 485 | 485
= E@ 3218 5153 | 5154 | 01554 | 01554 | 68831 | 88313 | 44855 | 44855 051 | 055
< |0.7514 | 1488 | 1.488 | 1.063 | 1.063 | 0.738 | 0.7387 | 0.857 | 0.857 ;'2245 ;'2245
> = | 4802 7560 | 7561 | 1811 | 1811 | 75697 | 5697 39611 | 39611 111 | 119
g
= g 0.0496 | 0.093 | 0.093 | 0.067 | 0.067 | 0.049 | 0.0495 | 0.058 | 0.058 2'2088 2'2088
= | S @l 6508 5124 | 5125 | 21518 | 21518 | 50694 | 0694 47572 | 47572 260 | 962
E 1.56 | 1.56
G| | <L (09305 | 1.790 | 1.790 | 1.271 | 1.271 | 0.953 | 0.9530 | 1.124 | 1.124 4;;5 4;;5
L= § =| 4370 5151 | 5154 | 0155 | 0155 | 06472 | 64672 | 16136 | 16136 053 | 055
1.05 | 1.05
< [ 07255 | 1.190 | 1.190 | 1.069 | 1.069 | 0.692 | 0.6924 | 0.936 | 0.936 968 | 968
% > m| 2387 94505 | 94506 | 80964 | 80964 | 41344 | 1344 45192 | 45192 525 | 528
2 ©
T Sl 0.1589 | 0.076 | 0.076 | 0.069 | 0.069 | 0.151 | 0.1516 | 0.063 | 0.063 | 0.07 | 0.07
=] HF <A 2681 71633 | 71636 | 54358 | 54358 | 67393 | 7393 90930 | 90930 | 246 | 246
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300 | 302

2 0.8553 | 1365 | 1.365 | 1.152 | 1.152 | 0.861 | 0.8610 | 1.128 | 1.128 ;;;257 ;;;257

§ m| 3632 18750 | 18752 | 40069 | 40069 | 09917 | 9917 02262 | 02262 570 | 571

< 0.6725 | 1.158 | 1.158 | 0.938 | 0.938 | 0.662 | 0.6620 | 0.886 | 0.886 2'5093 2'5093

> > @| 7706 17740 | 17743 | 26636 | 26636 | 00104 | 0104 10632 | 10632 946 | 953
O

8 g 0.0447 | 0.074 | 0.074 | 0.060 | 0.060 | 0.044 | 0.0440 | 0.060 | 0.060 (1]6057 (1]6057

f = m@| 2044 26160 | 26163 | 20736 | 20736 | 01631 | 1631 76575 | 76575 363 | 366
=
=]

= 2 0.8550 | 1.365 | 1.365 | 1.152 | 1.152 | 0.864 | 0.8644 | 1.128 | 1.128 ;;;257 ;;;257

= § =| 6335 18753 | 18756 | 40069 | 40069 | 40330 | 0330 02262 | 02262 570 | 577

< 0.7066 | 1.188 | 1.188 | 0.814 | 0.814 | 0.701 | 0.7011 | 0.902 | 0.902 :1."5276 ;'5276

= m| 6761 51227 | 51227 | 23564 | 23564 | 10940 | 0940 15870 | 15870 166 | 198

A~ 0.0907 | 0.152 | 0.152 | 0.104 | 0.104 | 0.090 | 0.0900 | 0.115 | 0.115 0.16 | 0.16

< . . . . . . . . . 227 227

N > @| 5675 63967 | 63967 | 57162 | 57162 | 04291 | 4291 86351 | 86351 048 | 953
Q

8 2 0.8355 | 1.469 | 1.469 | 0.982 | 0.982 | 0.835 | 0.8351 | 1.043 | 1.043 ;;‘46 ;;‘46

=3 § m| 9279 85672 | 85672 | 54600 | 54600 | 17793 | 7793 28798 | 28798 730 | 732

< 0.6747 | 1.174 | 1.174 | 0.778 | 0.778 | 0.674 | 0.6743 | 0.836 | 0.836 ;'6293 ;'6293

> = = 3311 23460 | 23460 | 31943 | 31943 | 31496 | 1496 37168 | 37168

2 990 | 991
Q

=) g 0.0433 | 0.072 | 0.072 | 0.048 | 0.048 | 0.043 | 0.0433 | 0.055 | 0.055 (1]9038 (1]9038

f > m| 8722 58479 | 58479 | 52791 | 52791 | 32856 | 28556 | 17642 | 17642 149 | 150
=
=]

o = 2 0.8351 | 1.412 | 1412 | 0982 | 0.982 | 0.835 | 0.8351 | 1.043 | 1.043 ;;‘46 ;;‘46

L= § m| 0629 01004 | 01004 | 42085 | 42085 | 17793 | 7793 28798 | 28798 730 | 732

Table 1(b): Comparison of simple linear regression and quantile regression with both the simplex and the interior-point
algorithms across "MAE, MAPE and RMSE" with and without "leave one out cross-validation" in case of
heteroscedasticity with sample sizes 200, 500, and 700.

Sim | Quantile Regression
° = ple 7=0.1 7=0.25 7=0.5 tT=0.75 7=0.9
= Ei Reg
Eg ‘T ressi | br fn br fn br fn br fn br fn
»n A o
on
< 3'17279 1.300 | 1.300 | 0.925 | 0.925 | 0.7732 | 0.7732 | 0.928 | 0.928 | 1.270 | 1.270
> = 93 25520 | 25520 | 93823 | 93823 | 5244 5244 56418 | 56418 | 81959 | 81960
% 2:30528 0.042 | 0.042 | 0.030 | 0.030 | 0.0251 | 0.0251 | 0.030 | 0.030 | 0.041 | 0.041
5 > = 71 32001 | 32001 | 13694 | 13694 | 6741 6741 22241 | 22241 | 36192 | 36196
Q
8 2 (1):,’9586 1.531 | 1.531 | 1.157 | 1.157 | 0.9825 | 0.9825 | 1.175 | 1.175 | 1.528 | 1.528
= § = | 3y 83824 | 83824 | 67227 | 67227 | 6352 6352 94741 | 94741 | 29715 | 29718
< (1)'27070 1.294 | 1.294 | 0.924 | 0.924 | 0.7699 | 0.7699 | 0.926 | 0.926 | 1.267 | 1.267
- > = 87 85455 | 85455 | 39021 | 39021 | 1157 1157 71232 | 71232 | 45071 | 45074
=
o | o0
S| € 8 % 3'50453 0.081 | 0.081 | 0.058 | 0.058 | 0.0503 | 0.0503 | 0.062 | 0.062 | 0.085 | 0.085
Llz3 Sa 91 72777 | 72777 | 61890 | 61890 | 5119 5119 53366 | 53366 | 70370 | 70371
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2 0.98 1.531 | 1.531 | 1.161 1.161 | 0.9830 | 0.9830 | 1.175 | 1.175 | 1.528 | 1.528
1328
EH 2 83823 | 83823 | 38025 | 38025 | 0454 0454 94721 | 94721 | 29715 | 29718
0.73 1.275 | 1.275 | 0919 | 0919 | 0.7323 | 0.7323 | 0.863 | 0.863 | 1.228 | 1.228
g 4403
> = 893 80294 | 80294 | 64965 | 64965 | 4535 4535 35570 | 35571 | 14110 | 14111
~ 0.09 0.016 | 0.016 | 0.011 | 0.011 | 0.0952 | 0.0952 | 0.011 | 0.011 | 0.015 | 0.015
< 5508
> > = 91 59176 | 59176 | 96000 | 96000 | 412 412 22790 | 22791 | 97191 | 97192
O
S| g 349206 1492 | 1492 | 1.113 | 1.113 | 0.9085 | 0.9085 | 1.100 | 1.100 | 1.477 | 1.477
— EH 11 10468 | 10468 | 77176 | 77176 | 89356 | 89356 | 71040 | 71041 | 19477 | 19479
< 3217320 1.273 | 1.273 | 0908 | 0.908 | 0.7279 | 0.7279 | 0.861 | 0.861 | 1.220 | 1.220
> > = 01 71382 | 71382 | 49912 | 49912 | 74576 | 74576 | 38944 | 38948 | 04030 | 04032
O
=}
=} g 350740 0.080 | 0.080 | 0.057 | 0.057 | 0.0477 | 0.0479 | 0.058 | 0.058 | 0.082 | 0.082
= > = 24 30161 | 30161 | 64926 | 64926 | 03962 | 03962 | 22842 | 22848 | 49321 | 49328
e E 0.90
T § 2 7;126 1.492 |1.492 |1.107 | 1.107 | 0.9084 | 0.9084 | 1.100 | 1.100 | 1.477 | 1.477
!_': = EH 10 10468 | 10468 | 48103 | 48103 | 27428 | 27428 | 71040 | 71041 | 19472 | 19479
0.74 | 1.286 | 1.286 | 0.919 | 0.919 | 0.7409 | 0.7409 | 0.895 | 0.895 | 1.221 | 1.221
ém 1040 | 70576 | 70576 | 37315 | 37315 | 9904 9904 74630 | 74632 | 06976 | 06978
27
A, 0.04 | 0.080 | 0.080 | 0.058 | 0.058 | 0.0483 | 0.0483 | 0.060 | 0.060 | 0.082 | 0.082
< 8539 | 89447 | 89447 | 10915 | 10915 | 0981 0981 45874 | 45875 | 64519 | 64520
5 =R |6
8 n 092 | 1521 |1.521 |1.134 | 1.134 | 09217 | 09217 | 1.117 | 1117 | 1472 | 1472
S EH 1058 | 98347 | 98347 | 65600 | 65600 | 1752 1752 48230 | 48230 | 32428 | 32428
26
0.73 | 1.282 | 1.282 | 0918 | 0.918 | 0.7386 | 0.7386 | 0.892 | 0.892 | 1.220 | 1.220
> ém 9186 | 97122 | 97122 | 68856 | 68856 | 2270 2270 14722 | 14727 | 72931 | 72933
O 08
8 A, 0.04 | 0.080 | 0.080 | 0.058 | 0.058 | 0.0484 | 0.0483 | 0.060 | 0.060 | 0.082 | 0.082
— ém 8418 | 62301 | 62301 | 06065 | 06065 | 3504 5504 23630 | 23636 | 62582 | 62589
- 52
=
4 =S n 092 | 1.521 | 1.521 | 1.134 | 1.134 | 0.9216 | 0.9216 | 1.121 1.121 | 1.472 | 1.472
o = § 1058 | 98347 | 98347 | 65600 | 65600 | 2495 2495 64396 | 64396 | 32428 | 32428
= % = 23
Table 2(a): Bootstrap Simulation Study Results.
Coefficients and standard errors of different estimation method at various
Sa conditional quantiles
mpl | Quantiles XY WXY Wild PWY MCMB
g. br fn br fn br fn br fn br fn
ize
13.20
b, | 0010 | 13.200 (1]3'12009 13.200 | 13.200 (1]3'12009 13.200 (1]3'12009
S. |19 0109 (0.50 0109 0109 (0.45 0109 (363 | 7T | ceee
n=1 | © E) 0.57 | (0.717 45-398 (0.434 | (0.425 51'295 (34.78 458.31 -
0709 | 0460) 7610) | 3688) 04600)
5 =0.1 8) ) ) 5)
b 0.309 | 0.3092 | 0.309 | 0.3092 | 0.3092 | 0.309 | 0.3092 | 0.309
(S1 2765 | 765 2765 765 765 2765 | 765 2765 | |
E). 0.190 | (0.210 | 0.159 | (0.142 | (0.125 | 0.135 | 7.5043 | (7.80
2672 | 6324) | 9374) | 7698) | 1882) 7287) | 117)( 96834

© 2023 NSP

Natural Sciences Publishing Cor.




J. Stat. Appl. Pro. 12, No. 2, 635-655 (2023) / http://www.naturalspublishing.com/Journals.asp NS N 643

)( ( ( )
13.58
b | 0554 | 13.580 (112‘55489 13.580 | 13.580 (112‘55580 13.580 | 13.58
K S50 | g | 5550|554 | V| ssa0 f0sss | e |
by | @77 | @21 | GFF | 0647 | @719 | T | (4056 | (506 |-
T 4743 | d0d6) | 7137) | 2004) | 1319) | 9988)
=0.2 7
03701 o 3702 [ 9370 | 93702 | 03702 | 0370 | 03702 | 0.370
b, | 2841 2841 2841
6. | 0217 |34 | g202 | 341 | 841 0212 | 84 284
by | 7864 | 0253 | Jq00 | 0-1834 | 01924 | D | 0.9038 | 1123
O sy | B | 63)( | 805)( | 042)(
14.56
4412 | 14.564 | 1450 | 14564 | 14564 | 1436 | 14564 | 1436
b, 44123 44123 44123
Rk a3 | B fa123 anas S fanas RS e
o oo | @999 | SO0 o6t | ozr | S0h | Late | G | -
T 4128 | 2879) | 7473) | 8951) || 5838) ||
=0.5 0)
0212 1 55126 | %212 | 2126 | 0.2126 | 212 | 02126 | %212
b, | 6863 6863 6863 6863
863 863 | 863 863
S. | 0346 033 0.31 (048 | comee | oo
B | opss | 03031 | g | 0333 | 0278 | LEL | 03das | Gl
o e | 3361) | 4370) || S0 | |
1532
2324 | 15322 | 1932 | 15300 | 15322 | 1332 | 15302 | 1332
b, 23247 23248 23248
& |7 3248 | ol (3248 3247 | RO I 3zar | RO e
o |06 | @935 | (D 0963 | 0882 | (ol | oot | (el |-
T 4350 | 3268) || 1866) | 2022) | 3828) |
=0.7 5)
01571 1575 | 0157 | 91575 | 01575 | ©17 | 1575 | 17
b, | 5487 5487 5487 5487
487 487 | 487 487
(S. | 0.355 (0.32 (0.30 (0.93 | - | -
b | ome | 03414 | 1070 L @311 | 03eas | | 07926 | (120
s | 7396) | 120 | BNC |
15.16
3425 | 15163 | 110 | 15163 | 15163 | 1516 | 15163 | 15:16
b, 34252 34249 34249
& |2 azag |t Laaa0 sy |0 sy | RO
by | @65 | ©6ss | S00 @601 | (Liza | {00 Gaso | S -
T 0984 | 1189) | 0100) | 0403) | 751 |
=0.9 6)
04371 o 4371 | 9937 | 94371 | 04371 | OB | 04371 | 047
b, | 1506 1506 1506 1506
506 506 | 506 506
S. |0.253 0.224 0.461 (130 | comee | oo
O | dies | 0253 | 2 | @241 | 14 | (S0 15358 | GOt
YO8 | aesay || 2366) | 8630 | 8 |
11.97
1365 | 11971 | 1197 | q1.071 | 11971 | 1197 | q1.071 | 1197
b, 13655 13655 13655
& |5 3655 | 0 | 36ss | 3ess | (NS 3ess | O )
by | @00 | @om | Gl | 1076 | (136 | Gt | @542 | i | -
I 8327 | 9559) 4742) | 1568) 33071)
n=2 | _ ) 0) )
i =01 9)
0.653 | o 6535 | 0-653 | 96535 | 0.6535 | 0653 | 0.6535 | 0653
b, | 5483 5483 5483 5483
483 483 | 483 483|483 1
S. | (0.24 0.239 0.33 0992 | T | e
O | Sg0g | 02401 | g0 | 02433 | 03161 | (L | 12296 | Joit | -
s | 904 | 38( || 70 | ¢
T b, | 13.06 | 13.063 | 13.06 | 13.063 | 13.063 | 13.06 | 13.063 | 13.06 | —ome | —rev
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=0.2 (S. |3129 | 1294 31294 | 1294 1294 31294 | 1294 31294
E) 4 (1.011 | (0.72 | (0.871 | (0.710 | (0.71 | (0.952 | (1.07
(0.92 | 0607) | 12653 | 8788) | 4839) 43362 | 4745) 23410
8501 ) ) )
0)
0.466 0.4663 0.466 0.4663 | 0.4663 0.466 0.4663 0.466
b; | 3367 3367 3367 3367
367 367 367 367 | amm | -
(S. 0.211 (0.16 0.17 0277 | | m——-
E) 3682 (0.233 76842 (0.201 | 0.1743 91747 0.2205 6870) |
9501) 3055) | 010)( 762)(
) ) ) (
13.60
1824 | 13.601 13.60 13.601 | 13.601 13.60 13.601 13.60
b, 18247 18248 18248
s |7 8248 | (g4 |B248 | 8247 1 e | 8247 ) 084 | | e
E). (0.87 | (0.897 27'379 (0.854 | (0.670 99'513 (0.942 34-673
T 6643 | 0655) ) 0242) | 6197) ) 1437) )
=0.5 6)
0.442 0.4429 0.442 0.4429 | 0.4429 0.442 0.4429 0.442
by, | 9737 9737 9737 9737
737 737 737 737 | i ya | -
(S. 0.182 0.10 0.167 019 | | -
E) 6778 0.1823 58435 0.1946 | (0.162 8885) (0.221 77849 |
267)( 474)( | 3970) 4462)
) ) ( )
14.30
5383 | 14.305 14.30 14.305 | 14.305 14.30 14.305 14.30
b, 53836 53836 53836
S 6 3836 (1.06 3836 3836 (1.01 3836 E R YR [P
E). (1.03 | (1.104 7§386 (1.082 | (1.013 40-564 (1.090 66-680
T 4569 | 5071) ) 8197) | 26945) ) 1656) )
=0.7 6)
0414 1 4145 | 9414 | 04145 | 0.4145 | 044 | g 4145 | 0414
b, | 5441 5441 5441 5441
441 441 441 41 | N | mm——-
(S. 0.23 0.244 0.23 0241 | | mm———--
E) 8610 0.2710 2832) 0.2596 | (0.224 54877 0.3087 4805) |~
6) 297)( ( 042)( 5814) ) 461)( (
15.30
b, | 8070 | 15.308 15.30 15.308 | 15.308 15.30 15.308 15.30
80701 80697 80697
(S. 1 0697 (0.50 0697 0701 (0.64 0701 2 I D p—
E) 0.71 | (0.670 57'041 (0.510 | (0.630 57-548 (2.501 35-776 -
T 8456 | 3760) ) 0743) | 4444) ) 8992) )
=0.9 3)
b, 0.313 0.3136 0.313 0.3136 | 0.3136 0.313 0.3136 0.313
6087 6089 6089 6087
(S. 087 089 089 087
0.163 0.118 0.14 (111 N I —
E) 2574 0.1526 5471) (0.119 | 0.1380 19836 (1.422 6198)
860)( 4674) | 578)( 2036)
) ( ) (
Table 2(b): Bootstrap Simulation Study Results.
Coefficients and standard errors of different estimation method at various conditional
Sam Quantil quantiles
ple uanties XY WXY Wwild PWY MCMB
Size br fn br fn br fn br fn br fn
12.73
b, 0019 | 12.730 | 12.73 | 12.730 | 12.730 | 12.73 | 12.730 | 12.73
n=3 |t (S. 3 0193 00193 0193 0193 00193 019 0019 | - |
0 =0.1 E) (0.67 | (0.693 | (0.504 | (0.521 | (0.3283 | (0.353 | (14.373 | (9.956 -
1033 | 3380) | 0184) | 0013) 073) 7431) 496) 973)
0)
b; | 0.404 | 04044 | 0.404 | 0.4044 | 0.4044 | 0.105 | 0.4044 | 0404 | -————- | -———--
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(S. | 4950 | 950 4950 950 950 4547 95 495
E) | 0.193 | 0.1889 | (0.141 | 0.1495 | 0.1111 | 0.404 | 2.5796 | (1.789
8495) | (584) | 1655) | (226) | (093) | 4950) | (38) 425)
( (
12.74 12.
6211 | 12746 | 1574 | 12746 | 746211 | 1274 | 12746 | 1274
b, 9 2123 | o0 | 2123 | 62123 | 5.5 | 62123 |
(S. (0.829 0.737 0.841 | | -
E) (0.82 0897) (0.839 | (0.857 | (0.7151 5095) (1.5163 | 6 -
i 1183 9858) | 6918) | 080) 1900)
_ 2)
=02 0.584
0.584 | 0.5846 | 0.584 | 0.5846 | 0.5846 | 0.584 | 0.5846 6804
b, | 6809 | 804 6809 804 804 6804 809 0.238
S. | (0.23 | (0.237 | (0.231 | 0.2408 | 0.2408 | (0.169 | (0.3519 8'603) --------------
E) | 4092 | 1166) | 0246) | (090) | (090) | 2123) | 569) (
2
14.23
b | 3633 | 14233 31;‘3231 14.233 | 14.233 31;‘3233 14.233 | 14.23
(SO 4 6334 0,690 6334 6334 (0.580 6334 | 36334 | ——- |
E) (0.64 | (0.668 07'78) (0.697 | (0.6975 | 69) (0.6985 | (0.658 | --
. 6939 | 0720) 5387) | 387) 993) | 3637)
=05 2)
‘;'312 03129 | %312 | 93129 | 03129 | 0312 | 03129
b 3411 Ta 9341 341 341 9341 341 0.312
1 10.176 0.173 9341
(S. 1038) (0.169 2867) (0.173 | (0.1519 | (0.152 | 0.1718 0169 | 7| T
E) ( 9850) ( 9151) | 304) | 5903) | (602) 4058)
14.79
b 1038 | 14.791 | 14.79 | 14.791 | 14.791 | 14.79 | 14.791 | 14.79
(S" 6 0386 | 10386 | 0386 0386 | 10386 | 0386 | 10386 | —— |
E) (0.54 | (0.561 | (0.501 | (0.519 | (0.5523 | (0.599 | (0.7683 | (0.671 -
T 3703 | 8364) | 5292) | 8659) | 533) | 3602) | 011) | 9141)
=0.7 9)
b (i'g’gg 0.3784 | 0.378 | 0.3784 | 0.3784 | 0.378 | 0.3784 3'93;3
(sl 0.160 | 980 4980 980 980 4980 980 0190 | oo | e
E) 6'587) 0.1730 | (0.127 | (0.151 | (0.1525 | (0.164 | 0.2881 9'988)
( (406) | 1904) | 7791) | 111) | 2814) | (093) (
15.04
b 3812 | 15.043 | 15.04 | 15.043 | 15.043 | 15.04 | 15.043 | 15.04
(SO 2 8122 | 38122 | 8122 8122 | 38122 | 8122 | 38122 | —— |
E) (0.87 | (0.891 | (0.770 | (0.771 | (0.7219 | (0.741 | (4.2602 | (2.635 | --
T 8438 | 2758) | 9910) | 8941) | 908) | 2098) | 714) | 3400)
=0.9 4)
b ‘i';:; 0.4221 | 0.422 | 0.4221 | 0.4221 (:';f; 0.4221 | 0.422
(sl 022 348 1348 348 348 0.228 348 1348 | |
E) 2008 | (0234 | (0.199 | (0.200 | (0.2280 3'029) 2.8433 | (1.402
4) 2686) | 6093) | 5876) | 205) ( (730) | 6491)
12.81
=5 | b 2642 | 12.812 | 12.81 | 12.812 | 12.812 | 12.81 | 12.812 | 12.81
0 | o1 (sO 0 6420 | 26420 | 6420 6420 | 26420 | 6420 | 26420 | ——- |
' E) (0.41 | (0.453 | (0.410 | (0.388 | (0.4157 | (0.485 | (0.8463 | (0.885 | --
0130 | 9058) | 7345) | 5764) | 610) | 3485) | 566) | 8923)

L))
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b 235515 0.3552 | 0.355 | 0.3552 | 0.3552 | 0.355 | 0.3552 (;;5515
(Sl 0.114 351 2351 351 351 2351 351 0194 | T | el
E) 9459) 0.127 | (0.111 | (0.105 | 0.1181 | (0.127 | 0.2018 0885) -
( 0548) | 0114) | 4487) (989) | 6330) | (122) (
13.73 13.73
b 6943 | 13.736 | 69433 | 13.736 | 13.736 | 13.73 | 13.736 | 13.73
(SO 30 9433 0 9433 94330 | 69433 9433 69433 | |
E) (0.38 | (0.404 | (0.390 | (0.424 | (0.3598 | (0.403 | (0.4144 | (0.493
. 6363 | 1277) | 61659 | 9780) 7854) | 8099) 503) 3480)
03) )
-0 0.231 0.231 0.231
b 9469 | 0.2319 9"‘ 699 0.2319 | 0.2319 9' 470 0.2319 | 0.231
(Sl 9 470 0.094 470 4699 0.107 470 9470 | - |
E) 0.086 | 0.1058 7 6137 0.1031 | (0.0942 0'911) 0.1052 | (0.152 -
7200 | (229) a7s) 4508) (772) | 7233)
0 (
(6)
13.96
b 5019 | 13.965 | 13.96 | 13.965 | 13.965 | 13.96 | 13.965 | 13.96
(SO 5 0195 | 50195 | 0195 0195 | 50195 | 0195 | sS0195 | |
E) (0.51 | (0.475 | (0.425 | (0.468 | (0.5250 | (0.536 | (0.4993 | (0.506
T 6527 | 6555) | 3507) | 2694) 806) 8228) 309) 2857)
=0.5 1)
0.386 0.3868 0.386 0.1701 | 0.3868 | 0.386 | 0.3868 0.386
b, | 8798 8798 8798
(S. | 0.176 798 0.175 708 798 8798 798 0.178 | | -
E) | 0076) 0.1671 2756) 0.3868 | 0.1525 | (0.165 | 0.1679 3012) -
( (737) ( (798) (493) | 4687) | (039) (
14.21
b 6477 | 14.216 | 14.21 | 14.216 | 14.216 | 14.21 | 14.216 | 14.21
(SO 4 4774 | 64774 | 4774 4774 | 64774 | 4774 | 64774 | |
E) 0.39 | (0.354 | (0.370 | (0.413 | (0.3593 | (0.410 | (0.5413 | (0.753
T 8205 | 0801) | 4471) | 4776) 911) 3692) 691) 0600)
=0.7 8)
0514\ g5142 | 9514 | g5142 | 05142 | 031 | 95142 | 0514
b, | 2862 2862 2862 2862
862 862 862 862 | ., | ——
(S. | (0.16 0.149 0.155 0223 | | -
E) | 2230 0.1437 3434) 0.1601 | 0.1399 6043) (0.1804 8824) -
4) (561) ( (326) (584) ( 779) (
14.86
b 8846 | 14.868 | 14.86 | 14.868 | 14.868 | 14.86 | 14.868 | 14.86
(SO 2 8461 | 88462 | 8461 8462 | 88461 846 88461 | - |
E) (0.67 | (0.684 | (0.555 | (0.605 | (0.7281 | (0.753 | (1.5016 | (1.182 -
T 4824 | 5897) | 7487) | 9213) 399) 5891) 50) 7868)
=0.9 5)
0.544 0.5448 0.544 0.5448 | 0.5448 | 0.544 | 0.5448 0.544
b, | 8430 430 8430 430 430 8430 43 8430
(S. | 0.167 0.136 0322 | ———- | -
E) | 2983) 0.1648 3276) 0.1372 | (0.2155 | (0.219 | 0.3168 9455)
( 302) ( (621) 226) 29430 (80) (
Table 2(c): Bootstrap Simulation Study Results.
Coefficients and standard errors of different estimation method at various conditional
Sam . quantiles
ple | Quantiles XY WXY Wwild PWY MCMB
Size br fn br fn br | fn br fn br fn
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13.14 13.14 13.14 13.14 | 13.14
b, | 2833 | 13.142 | 28337 | 13.142 | 13.142 | 28337 | 13.142 | 28337 | 28337 | 13.142
S. | 79 8379 o9 8338 | 83379 9 83379 9 9 | 83379
E) | (0.18 | (0.178 | (0.182 | (0.164 | (0.1661 | (0.162 | (0.2268 | (0.204 | (0.17 | (0.190
. 4583 | 02201) | 35164 | 5578) | 7240) | 34749 | 5298) | 75323 | 86014 | 55186)
92) ) ) ) 8
=0.1
0.273
b, | 1881 | 02731 %7135 0.2731 | 0.2731 %7135 0.0803 %7135 fgéﬁ 0.2731
(Sl 5 8815 | (uc3 | 882 | 8815 | ULl 3402 | el g0so | 8813
|y | 0067 | 0.0604 | (oUE | 0.0594 | 0.0567 | 0 | 02731 | sl giang | 0.0557
7681 | 8671) | ©) (808) | (1353) | T | (8815) | T o | (0625
@
13.34 13.34 13.34 1334 | 13.34
b | 3334 | 13.343 | 33349 | 13.343 | 13343 | 33349 | 13.343 | 33349 | 33349 | 13.343
(SO 92 | 33492 | 2 | 33492 | 33492 2 33492 2 2| 33492
|y | (022 | (0237 | (0237 | (0.235 | (0.2210 | (0.205 | (02352 | (0.237 | (022 | (0.232
. 9836 | 75469) | 49582 | 70058) | 9014) | 61813 | 7573) | 70188 | 37864 | 25180)
06) ) ) ) 7
=0.2
0.355
b, | 8814 | 03558 gﬁf‘i 0.3558 | 0.3558 gﬁf‘i 0.3558 gﬁf‘i 3;1356 0.3558
1 6 8146 8146 | 8146 8146 8146
S- 10074 | 00753 | Q0731 00730 | (0.0724 | 066 | g9737 | (0073 ) 0.068 1 co7
E) | . 21328 | - . 10478 | - 87268 | 89019 |
4563 | (8099) | )70 | (3501) | 9207) o | ©259 | 77 0 | @237
3
13.83 13.83 ;3%35 13.83 | 13.83
b | 8975 | 13.838 | 89755 | 13.838 | 13.838 | ©,7 | 13.838 | 89755 | 89755 | 13.838
- (SO 52 | 97552 | 2| 97552 | 97552 | . | 97552 2 2 | 97552
00 Ey | (020 | (0208 | (0188 | (0.194 | (02007 | gicer | (02045 | (0.200 | (0.20 | (0.206
. 3758 | 57639) | 43754 | 30959) | 3800) ) 7488) | 28358 | 05337 | 85797)
38) ) ) 6)
=0.5
0.443
0.443 0.443 0.443 | 0.443
b, | 9087 | 04439 | gles | 04439 | 04439 | greos | 04439 | gpe | oo | 0.4439
s. | 7 0877 | goss | 877 | 0877 | 4060 | 9377 | 0.063 | 0.064 | 9377
|y | (006 | 00665 | g0 | 0.0598 | (0.0608 | )l | 0.0631 | (il Lle | 0.0658
4357 | (3589) | )T | (9468) | 8287) o | 62 | T o | 3652)
03)
14.16 14.16 14.16 14.16 | 14.16
b | 4827 | 14.164 | 48271 | 14.164 | 14.164 | 48271 | 14.164 | 48271 | 48271 | 14.164
(SO 14 | 82714 | 4 | 82714 | 82714 4 82714 4 4 8271
|y | (026 | (0321 | 0264 | (0266 | (02211 | (0.220 | (0.2897 | (0.298 | (0.26 | (0.296
. 8530 | 29018) | 85261 | 45980) | 4173) | 84545 | 8113) | 44708 | 93447 | 5669)
14) ) ) ) 3)
=0.7
0.497
b, | 4537 | 0.4974 “";9775 0.4974 | 0.4974 “";9775 0.4974 “";9775 2;9775 0.4974
(sl 5 5375 | a7 | 3375 | 5375 | Juce| 5375 | use | 0076 | 338
[y | 0081 | 0.0042 | 200 | 0.0816 | 0.0681 | g | 0.0852 | gore || 0.0840
6074 | (1194) | ™7 | (6465) | (6395) ) ®743) | T 0 (198)
“)
14.67 14.67 14.67 14.67 | 14.67
b | 5885 | 14.675 | 58857 | 14.675 | 14.675 | 58857 | 14.675 | 58857 | 58857 | 14.675
(SO 71 | 88571 1 | 88571 | 88571 1 88571 1 1 | 88571
t 0.0 &y | (026 | 0232 | 0224 | (0241 | (02152 | (0.206 | (0.2476 | (0.253 | (0.26 | (0.239
=0 6589 | 05763) | 24049 | 93307) | 2371) | 03881 | 6289) | 39701 | 06856 | 91592)
21) ) ) ) 4)
b, | 0.543 | 0.5433 | 0.543 | 0.5433 | 0.5433 | 0.543 | 0.5433 | 0.543 | 0.543 | 0.5433
(S. | 3258 | 2589 | 32589 | 2589 | 2589 | 32589 | 2589 | 32589 | 32589 | 2589
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E) 9 0.0869 | (0.077 | 0.0916 | 0.0856 | 0.080 | 0.0904 | 0.098 | (0.09 | (0.081
0.091 | (7541) | 38097 | (2944) | (3741) | 66467 | (7083) | 68119 | 16432 | 38216)
5978 ) 0 0 5)
(€)]
13.36 13.36 13.36 13.36 | 13.36
b 1133 | 13.361 | 11339 | 13.361 | 13.361 | 11339 | 13.361 | 11339 | 11339 | 13.361
(SO 96 13395 6 13395 | 13396 5 13396 5 6 13395
By | (021 | 0217 | 0207 | (0220 | (01652 | (0.154 | (0.2211 | (0.214 | (0.20 | (0.194
. 8254 | 11872) | 39731 | 62680) | 7503) | 70078 | 6159) | 92036 | 45112 | 00448)
—o0.1 25) ) ) ) 0)
' 0.196
4974 | 0.1964 0.196 0.0675 | 0.1964 0.051 0.1964 0.196 | 0.196 0.1964
b, 49741 47236 49741 | 49741
S 1 9741 0.065 4907 9741 0.066 9741 0.065 | 0.060 9741
E) 0.069 | 0.0676 0é688 0.1964 | 0.0940 4§741 (0.0689 9i897 2i259 (0.059
6876 | (9167) (9741) | (973) 5719) 26069)
3) 0 0 0 0
13.45 13.45 13.45 | 1345
b 7968 | 13.457 | 79684 | 13.457 | 13.457 | 13.45 | 13.457 | 79684 | 79684 | 13.457
(SO 41 96841 1 96841 9684 | 79684 | 96841 1 1 96841
By | (015 | (0145 | (0.144 | (0.141 | (0.1435 | (0.131 | (0.1407 | (0.145 | (0.13 | (0.150
. 4113 | 07985) | 80593 | 31638) | 010) 3536) | 7720) | 66235 | 34310 | 68411)
—0.2 68) ) ) 2)
. 0.357 0.357 0.357 0.357 | 0.357
1724 | 0.3571 ; 0.3571 | 0.3571 ’ 0.3571 ; ' 0.0464
b, 17246 1725 17246 | 17246
6 7246 7246 725 7246 8076
(S. 0.044 0.040 (0.046 | 0.042
E) (0.04 | 0.0446 20146 0.0458 | 0.0419 4007) 0.0447 12409 | 80595 (0.357
6917 | (7465) a778) | (297 (7365) 17246)
85) 0 ( ) 0
14.02 14.02 14.02 14.02 14.02
n=5 b 8450 | 14.028 | 84503 | 14.028 | 14.028 | 84503 | 14.028 84503 84503 | 14.028
00 (SO 33 45033 3 45033 | 45033 3 4503 3 3 45033
By | ©15 | (0147 | 0152 | (0158 | (0.1323 | (0.131 | (0.1477 | (50 | (013 | (0.142
2501 | 27767) | 31958 | 91293) | 1353) | 11836 933) : 39646 | 31323)
T 7833)
— 0.5 79) ) ) 9)
' 0.398
2463 | 0.3982 0.398 0.3982 | 0.3982 0.398 0.3982 0.398 1 0.398 0.3982
by 24639 24639 24639 | 24639
S 9 4639 0.038 4639 4639 0.030 464 0.036 | 0.033 4639
E) 0.037 | (0.039 8&015 0.0403 | (0.0304 15527 0.0395 5&738 85846 0.0345
0523 | 79369) (0645) | 1311) (280) (036)
) 0 0 0 0
14.16 14.16 14.16 14.16 | 14.16
b 8622 | 14.168 | 86227 | 14.168 | 14.168 | 86227 | 14.168 | 86227 | 86227 | 14.168
(SO 8 62277 7 6228 62277 7 6228 7 7 62277
By | 013 | (0124 [ 0124 | 0126 | (0.1133 | (0.107 | (0.1287 | (0.126 | (0.13 | (0.158
T 6163 | 28989) | 26196 | 6623) 2027) | 97200 110) 30567 | 10877 | 29412)
=0.7 D ) ) ) 1y
0.544 0.5445 0.544 0.5445 | 0.5445 0.038 0.5445 0.037 1 0.544 0.5445
b, | 5988 59882 83981 31259 | 59882
9882 988 9882 988 9882
(S. | 0.038 (0.034 0.014 0.544 | 0.034
E) | 5513) (0.034 04164 0.0344 | (0.0303 50882 (0.0365 50882 | 46117 0.0360
O 424 | T (185) | 3834) 0 621) 0 ) | 0439
14.42 14.42 14.42 14.42 | 14.42
T b 0862 | 14.420 | 08625 | 14.420 | 14.420 | 08625 | 14.420 | 08625 | 08625 | 14.420
—0.9 (SO 59 86259 9 86259 | 86259 9 86259 9 9 8626
T By | @19 ] 0213 1 0191 | (0188 | (01603 | (0.150 | (0.1733 | (0.163 | (0.18 | (0.179
9593 | 94292) | 41528 | 34413) | 7539) | 70290 | 7869) | 50420 | 49764 | 1312)
71) ) ) ) 4
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0.629
3115 | 0.6293 0.629 0.6293 | 0.6293 0.629 0.6293 0.629 | 0.629 0.6293
b, 31157 31157 31157 | 31157
S 7 1157 0.059 1157 1157 (0.049 1157 0.055 | (0.05 116
E) (0.06 | 0.0642 5&37 5 (0.057 | 0.0518 42.18 4 (0.0544 4i 073 92'570 0.0585
5225 | (0037) 89011) | (7316) 1719) (164)
0 ) 0 3)
83)
Table 2(d): Bootstrap Simulation Study Results.
Coefficients and standard errors of different estimation method at various conditional
Sa quantiles
mpl | Quantiles XY WXY Wild PWY MCMB
Siie Br Fn br Fn Br fn br Fn br fn
13.26 13.26 13.26 13.26
b, 5205 13.265 52059 13.265 13.265 | 52059 | 13.265 13.26 5205 | 13.265
20591 20591 52059
(S. 91 (0.235 1 (0.227 2059 1 20591 (0.25 91 20591
E) | (0.25 59.228 (0.25 65.399 (0.201 | (0.20 | (0.234 7 6.933 0.25 | (0.235
- 3459 ) 17468 ) 2906) | 04011 | 91763) ) 3459 | 59228)
— 0.1 03 7) 8) 03
- 0.267 0.267
0.2678 | 0.267 | 0.2678 0.267 0.267
b, 81709 1097 | 81097 | 1097 0'12163 8 | 81007 Oif)69778 8110 81709 0&2778
(S. (0.060 | 0.066 | (0.059 0.050 (0.06
E) (0.06 37501 | 94987 | 11688 (0.051 67935 (0.061 73241 (0.06 | (0.060
7448 ) 0 ) 9626) 0 70839) ) 7448 | 37501)
43) 43)
13.56 13.56 13.56 13.56 | 13.56
b 9892 32523 98924 32523 13.569 | 98924 | 13.569 | 98924 | 9892 | 13.569
(SO 48 (0.095 8 (0.090 89248 8 89248 8 48 89248
E) (0.09 28.379 (0.09 37.328 0.102 | (0.09 | (0.103 | (0.09 | (0.09 | (0.095
- 3053 ) 39035 ) 85546) | 70743 | 75223) | 87138 | 3053 | 28379)
— 0.2 91) 3) 5) 6) 91)
- 0.337 0.337
2663 | 0.3372 0.337 0.3372 | 0.3372 0.337 0.3372 0.337 2663 | 0.3372
b, 26639 26639 26639
S 9 6639 (0.02 6639 6639 0.029 6639 (0.03 9 6639
n= E) (0.02 | 0.0303 8 562 5 0.0276 | 0.0306 1 :';177 0.0318 08.7 45 (0.02 | 0.0303
00 5904 | (9945) (8527) | (7456) (5442) 5904 | (9945)
5) 0 S)
0) 0)
13.94 13.94 13.94 | 13.94
0069 13.940 | 13.94 | 13.940 13.940 | 00699 | 13.940 | 00699 | 0069 | 13.940
b, 06997 | 00700 | 06997
(S 97 ©.097 | (0.10 | (0.091 06997 7 06997 7 97 06997
E) (0.09 39'919 59;‘99 62.193 (0.079 | (0.07 | (0.086 | (0.09 | (0.09 | (0.097
- 5950 ) ) ) 21619) | 56366 | 40105) | 10530 | 5950 | 39919)
— 0.5 77) 7) 9) 77)
- 0.425 0.425
1166 | 0.4251 0.425 0.4251 | 0.4251 0.425 0.4251 0.425 1166 | 0.4251
b, 1166 11664 11664
@ 4 1664 0.034 1664 1664 (0.02 1664 0.033 4 1664
E) (0.03 | 0.0320 6218 6) 0.0310 | 0.0269 53571 (0.027 2217 6 (0.03 | 0.0320
2387 | (6496) ( (5137) | (9180) 4) 49462) 0 2387 | (6496)
33) 33)
14.16
14.16 14.16 14.16 14.16
4390 | 141641 13909 | 14164 1, 164 | 43009 | 14.164 | #32%° | 4300 | 14.164
b, 39095 39095 5
- S 95 (0.103 5 (0.091 39095 5 3909 (0.10 95 39095
— 07 E) (0.09 21454 (0.09 45564 (0.097 | (0.09 | (0.100 11943 0.09 | (0.103
- 8287 ) 58073 ) 99735) | 17946 | 6565) 5) 8287 | 21454)
92) 4) 7) 92)
b, | 0.535 | 0.5359 | 0.535 | 0.5359 | 0.5359 | 0.535 | 0.5359 | 0.535 | 0.535 | 0.5359
(S. | 9934 9346 | 99346 | 9346 9346 | 99346 935 99346 | 9934 9346
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E) | 6 | (0.032 ] (0.03 | 0.0304 | 0.0293 | 0.022 | 0.0325 | (0.03 | 6 | (0.032
0.032 | 40598 | 01764 | (8352) | 2217) | 18227 | (470) | 34596 | 0.032 | 4059
0135 | ) 6) ) 7| 0135
3) 3)
14.71 1471 1471 1471 | 1471
L | 8850 ;‘;'g;;; 88503 ;‘;'g;;; 14.718 | 88503 | 14.718 | 88503 | 8850 | 14.718
@ |3 ot | T | oars | 85037 | 7| 4 |7 37 | 85037
O | @17 | (a2t | @16 | 12| 061 | .14 | 0187 | .19 | 017 | (0.164
. 9637 | I | soas7 | 17 | ams1z) | 12173 | 9247) | 08843 | 9637 | 09051)
* 0o 23) 6) 1) 8) | 23)
: 0.542 0.542
1176 | 05421 | %% | 05421 | 0.5421 | %2 | 05421 | 932 | 1176 | 0.5421
b, 11762 11762 11762
& 2 e | e | amez | 16 | (glE | 2| 1762
Gy | 0041 | 00378 | 0% | 00301 | 0.0396 | (3% | 0.0425 | (L0 | 0.041 | 0.0378
5461 | (9154) 6738) | (3913) (027) 5461 | (9154)
6) 0 0 1) )

Table 1(a) and Table 1(b) show, in the instance of LOOVE, that the values of MAE, MAPE, and RMSE, for the quantile
regression at the conditional quantile (t =0.5), "median regression" are less than their values for the simple linear regression
with a small sample size (n=15). When the sample size is increased to n=25, 30, 50, 200, 500, and 700, the results show
that the values of MAE and MAPE for quantile regression (t =0.5) is smaller than their values for simple linear regression,
but the value of RMSE is lower for simple linear regression than the median regression (t =0.5).

In the absence of LOOVE, with all sample sizes, the RMSE for quantile regression at the conditional quantile (t =0.5)
"median regression” is bigger than the RMSE for simple linear regression, although the values of MAE and MAPE for
quantile regression (t =0.5) are fewer than their values for simple linear regression.

When we compare the performance of the Simplex method to the Interior-Point algorithm, we see that with and without
(LOOVE), for all used measures MAE, MAPE, and RMSE, for extreme values of conditional quantiles (t =0.1 and 0.9)
with a small sample size n < 30, the simplex algorithm gives results that are relatively smaller than the interior point, which
is implying that the simplex algorithm is more accurate than the interior-point algorithm in the lower and upper quantiles.
However, in the middle conditional quantile (t = 0.25, 0.5, and 0.75), the two approaches perform nearly identically.

The performance of the two algorithms is equal in large data, with increasing sample size (n=50,200,500, and 700), except
at the upper conditional quantile, where the simplex algorithm gives results that are lower than the interior-point algorithm.
This ensured that, while the interior-point algorithm's performance has improved in the lower quantile (t =0.1), it still has a
lower performance than the simplex algorithm at the upper quantile (t =0.9).

The XY, WXY, Wild bootstrap, PWY, and MCMB approaches are compared in terms of their capacity to estimate standard
errors of coefficients. The differences between the five bootstrap approaches may be better highlighted by comparing the

results of a heterogeneous quantile model based on calculating coefficients using the simplex and interior-point algorithms.
Table 2(a), Table 2(b), Table 2(c), and Table 2(d) display the results.

With a small sample of n=15 and 25, both methods WXY and Wild bootstrap are the best ways to estimate the standard
error of coefficients. We notice that with the Wild bootstrap, the simplex algorithm outperforms the interior-point
algorithm, whereas with the WXY method, the interior point algorithm outperforms the simplex algorithm.

In reality, its performance improves as (n) increases, such as (n=30 and 50). The XY technique performs somewhat better,
while the PWY method performs the poorest at each conditional quantile. One restriction of MCMB's asymptotic validity is
that both the number of observations and the duration of the Markov chain must be infinite. As a result, it may not be
appropriate for situations with small sample sizes, as MCMB is only valid for high sample sizes.

According to Table 2(c) and Table 2(d), with a large sample size (n=200, 500, 700), the estimated coefficients of the
quantile model were derived using the two methods mentioned above (the simplex and interior-point), and the standard
errors of the estimated coefficients were determined individually in each technique. As a result, we will first provide
discussion on both strategies for estimating our quantile model.
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The warning message in the above code cautions about the solution's non—uniqueness while using the simplex technique.
According to Barrodale and Roberts (1974), the inclusion of a null variable in the basis is a clue but not a necessary
condition for non—uniqueness. This suggests that the ideal solution is an edge rather than a single vertex of the simplex. The
interior-point approach may produce the same warning message about the solution's non-uniqueness, but for a different
cause. Because the optimal solution is already near a central path, the non—uniqueness from the interior point implies that a
group of points may be the best optimum solution.

The results will be compared for five variants of the bootstrap approach for the standard error according to the two prior
algorithms to provide an educated comparison for standard errors. The comparison is carried out in two scenarios: one with
a small sample size and the other with a large sample size.

With small sample sizes, n=15, 25, and 30, each WXY and Wild bootstrap methods are the best ways to estimate the
standard error of coefficients. We notice that the simplex algorithm outperforms the interior-point algorithm for the Wild
bootstrap, but not for the WXY method. In reality, the performance improves as n increases, such as n=30 and 50.
Although the XY technique performs somewhat better, the PWY method performs the poorest at each conditional quantile.
One disadvantage of MCMB's asymptotic validity is that it needs infinity for both the number of observations and the
length of the Markov chain. As a result, it may not be appropriate for situations with small sample sizes, as MCMB is only
valid for high sample sizes.

The performance of WXY continues to appear impressive with high sample sizes, n=200, 500, 700, especially with the
interior point approach. Both XY and WXY are clearly inferior performance when estimating the model using the interior-
point technique to the Wild bootstrap when estimating the model using the simplex technique. The efficiency of the PWY
method steadily improves with large samples, especially in the upper quantiles, until it becomes competitive with the XY,
but it still falls short of the Wild bootstrap.

The MCMB method is too time-consuming for large problems, and the most important characteristic of this method is that
it has higher performance in the middle conditional quantile (0.25, 0.5, and 0.75) when estimating the model with the
simplex algorithm, and the best performance in the extreme quantile when estimating the model using the interior point
algorithm (0.1 and 0.9).

The violation of the homoskedastic assumption is perhaps the most common reason for using QR, although it is far from
the only one. In the following portion of this section, the same prior simulation is utilized to demonstrate many QR
properties with regard to the error component. The goal of this application is to demonstrate the SLR "mean regression”
and QR behavior for various typologies of homogeneous and heterogeneous error terms using graphs with regression lines
at each quantile (10th, 25th, 50th, 75th, and 90th) for large sample sizes of 200,500, and 700. Two models are shown in
Table 3: A homogeneous error model with a normal error term is represented by model (1). A heterogeneous error model is
represented by Model (2).

Table 3: A summary of the several illustrative models utilized in this article

Error model Error term model ;

Homogeneous e~N(0,1) model (1) = y; =144+ 04x; + ¢

Heterogeneous model (2) - y; = 14 + 0.4x; + ¢;
& s~N(0,\/0.5 +0.03%x?) @)=y P

The first column indicates the kind of error model, the second column indicates the error term, and the third column
indicates the resultant model.

This part focuses on the interpretation of the QR estimated coefficients by drawing a parallel between homogeneous and
heterogeneous regression models.
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OLS VS Quantile Regression

mean with OLS -
median with LAD
0.1th quantile
0.25 th quantile
0.75 th quantile
0.9 th quantile -

Fig. 1(a). Model (1): homogeneous error model (normal

errors)

Fig. 1: Scatterplots, OLS line (red line), and conditional quantile lines (other lines), T = {0.1, 0.25, 0.5, 0.75, 0.9}, for a

OLS VS Quantile Regression

mean with OLS
median with LAD
0.1th quantile
0.25 th quantile

0.75 th quantile
0.9 th quantile

Fig. 1(b). Model (2) : heterogeneous error model

homogeneous error model (1) and for a heterogeneous error model (2) with sample size n=50.

OLS VS Quantile Regression

mean with OLS
median with LAD
0.1th quantile
0.25 th quantile
0.75 th quantile
0.9 th quantile

Fig. 2(a). Model (1): homogeneous error model (normal

eIrors)

Fig. 2: Scatterplots, OLS line (red line), and conditional quantile lines (other lines), T = {0.1, 0.25, 0.5, 0.75, 0.9}, for a

OLS VS Quantile Regression

mean with OLS
median with LAD
0.1th quantile

0.25 th quantile - -
0.75 th quantile
0.9 th quantile -

Fig. 2(b). Model (2): heterogeneous error model

homogeneous error model (1) and for a heterogeneous error model (2) with sample size n=200.

OLS VS Quantile Regression

mean with OLS -

—— median with LAD
0.1th quantile °.
0.25 th quantile o™ oo o
0.75 th quantile RS -
0.9 th quantile - > : -

Fig. 3(a). Model (1): homogeneous error model (normal

eIrors)

Fig 3: Scatterplots, OLS line (red line), and conditional quantile lines (other lines), T = {0.1, 0.25, 0.5, 0.75, 0.9}, for a

X

OLS VS Quantile Regression

18

—— 0.75 th quantile

— mean with OLS hd
—— median with LAD

0.1th quantile
0.25 th quantile -

0.9 th quantile

Fig. 3(b). Model (2) : heterogeneous error model
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homogeneous error model (1) and for a heterogeneous error model (2) with sample size n=500.

OLS VS Quantile Regression OLS VS Quantile Regression
o I
—— mean with OLS - hd - A —— mean with OLS *
—— median with LAD - - e o @ o o —— median with LAD
-

. 0.1th quantile - . - - L] 's 0.1th quantile * 04
= 0.25 th quantiles T e T LT e o Seece *° — © 0.25 th quantile - - ®

—— 0.75th quantile « - -, o Lt g e . @ —— 0.75 th quantile e A I .

0.9th quantile o¢®_ e o 3% ol LT . 0.9 th quantile LS T 4 F-
- ® < > . P ..
XX T -
e -

Fig. 4(a). Model (1): homogeneous error model (normal Fig. 4(b). Model (2) : heterogeneous error model
errors)

Fig. 4: Scatterplots, OLS line (red line), and conditional quantile lines (other lines), T = {0.1, 0.25, 0.5, 0.75, 0.9}, for a
homogeneous error model (1) and for a heterogeneous error model (2) with sample size n=700.

The previous section focuses on the interpretation of the QR estimated coefficients results by drawing a parallel between
homogeneous and heterogeneous regression models. Starting from a comparison of QR behavior on such different models.
In fact, it is easy to understand how QR is important in dealing with heteroskedasticity, also, the utilize of different
distributions for the error term will offer the opportunity to observe QR capability to estimate the whole conditional
distribution in the presence of homoskedasticity.

For both models (1) and (2), scatter plots of conditional mean, conditional median, and conditional quantiles were
presented in each figure for == (0.1, 0.25, 0. 5, 0.75, and 0.9). Model (1) in each image (1, 2, 3, and 4) shows estimated
impact in the homogeneous variance regression: a change in the mean of the (y) distribution conditional on the value of (x).
Model (2) in each image (1, 2, 3, and 4) shows impact in the heterogeneous variance regression: a change in each part
"quantiles" of the (y) distribution conditional on the value of (x).

We notes that scatter plot of model (2) in case of heterogeneous variance is more scattered than model (1). For the
homogeneous variance regression model (1) the only estimated effect is a change in the mean of the distribution of (y)
conditional on the value of (x), where SLR slope estimates are then the same at all QR’s. In contrast, in the (model 2), QR
shows that slope estimates differ across quantiles because the variance in (y) changes as a function of (x). Thus, in such a
case, OLS regression analysis provides an incomplete picture of the relationship between variables, as it only focuses on
changes at the conditional mean. Therefore, the importance of QR is clear to describe the entire conditional distribution of a
dependent variable.

From the previous discussion we conclude that QR offers a more complete view of relationships among variables for
heterogeneous regression models, providing a method for modeling the rates of changes in the response variable at multiple
points of the distribution when such rates of change are different. However, QR is also a useful tool in the case of
homogeneous regression models outside of the classical normal regression model. When the error term satisfies the
classical normal assumption.

5: Conclusion

Both MAE and MAPE, in the case of LOOCV, show that quantile regression offers more accuracy than simple linear
regression when predicting error in the presence of a heteroscedasticity problem of variance. With all sample sizes, the
simplex approach provides greater accuracy of prediction, especially at extreme conditional quantiles (t=0.1 and 0.9). In the
intermediate conditional quantiles (t=0.25, 0.5, and 0.75), both the simplex and the interior point algorithms do equally well
in predicting errors with and without LOOCV. For simple linear regression, the RMSE with LOOCYV is the best metric.
Based on the preceding simulation results, we may deduce and suggest the following inferential statistics surrounding
standard errors of the coefficients of the quantile regression model:

1- The estimates of the "Wild bootstrap”" approach are closer to the beginning point in our simulation in the median
regression at (t=0.5) values than the other methods in terms of the capacity to estimate parameter values.
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2- With small sample sizes, the "PWY" approach delivers the poorest results, especially in lower quantiles (0.1 and
0.25).

3- While the "XY" approach produces adequate results, it is inefficient in comparison to "Wild" and "WXY".

4- When using the simplex approach to estimate the coefficients, both the "WXY" and "Wild" methods are
competitive with all sample sizes.

5- When using the interior point approach to estimating coefficients, there is no objection to using "WXY" with all
sample sizes.

6- The "MCMB" method is considered invalid with small samples; however, with large samples, it is recommended
to use the "MCMB" with the interior-point algorithm if the values of interest are in the extreme conditional
quantiles (0.1 and 0.9), and the "MCMB" with the simplex algorithm if the values of interest are in the middle
quantiles (0.25, 0.5, and 0.75).
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