

Journal of Statistics Applications & Probability An International Journal

http://dx.doi.org/10.18576/jsap/120226

The Performance of Quantile Regression and Linear Regression with Heteroskedasticity was Compared in a Simulated Study

Marwa R. Saad, Ahmed H. Youssef and Shereen H. Abdel Latif*

Department of Applied Statistics and Econometrics, Faculty of Graduate studies for Statistical Research, Cairo University, Cairo, Egypt

Received: 16 Mar. 2022, Revised: 20 Sep. 2022, Accepted: 24 Oct. 2022. Published online: 1 May 2023.

Abstract: The least-square estimator has several drawbacks when dealing with heteroscedasticity; this estimate will not be a Best Linear Unbiased Estimator (BLUE). Quantile Regression is a dependable option; however, it has some substantial computational problems. We compare five resampling approaches to estimate the standard error of the coefficients, in the situation of heterogeneity, for inference. According to simulation study, quantile regression beats linear regression and is also better when predicting errors in the presence of heterogeneity.

Keywords: Bootstrap Approach, Heteroskedasticity Problem, Linear Programming, Linear Regression, Quantile Regression.

1 Introduction

An estimator approach must be employed to estimate the parameter model when modelling the relationship between covariates and responses. When estimating parameter values, the Ordinary Least Squares (OLS) method is used to reduce the sum of squares of the error to the smallest possible value. In this case, the OLS is known as BLUE (Best Linear Unbiased Estimator), when all model assumptions are fulfilled. However, if one or more of the assumptions are not satisfied, it may be deceptive. While the great majority of regression models focus on assessing the conditional mean of the dependent variable, there is growing interest in approaches for modelling other features of the conditional distribution. Quantile Regression (QR) is a common method for modelling the quantiles of a dependent variable given a collection of covariate variables (Huang et al., 2017)[1].

While it is well known that Simple Linear Regression (SLR) may be used to predict the anticipated value of a continuous outcome given the variables in the model, Quantile Regression (QR) is a statistical approach used to estimate and infer conditional quantile functions. Quantile regression can be used to compare across groups the full distribution of a continuous response or a single quantile of the answer (Cade & Noon, 2003)[2]. The quantile regression approach has the benefit of allowing for the analysis of connections between factors other than the conditional mean of the response. The most appealing aspect of QR is that it does not implicitly impose limiting assumptions of changing location on the way variables impact the response by allowing covariate effects to be investigated at different quantiles. This similar property makes QR estimates more robust to outliers than LSR estimates. Furthermore, in the presence of a patterned dataset, a skewed distributed data set, or outliers, it would be conceivable to assess the influence of a set of independent factors on a particular conditional quantile of a certain outcome using variant estimates (John & Nduka, 2009)[3].

Quantile regression differs from Ordinary Least Squares (OLS) in various ways:

- I. Given a collection of explanatory variables, quantile regression may be used to define the full conditional distribution of a dependent variable.
- II. QR provides a more complete view of the independent factors' influence on the dependent variable.
- III. QR has a linear programming model that allows for straightforward estimate; it provides a robust measure of location.
- IV. When the error term is non-normal, the quantile regression estimator outperforms the least squares estimator.
- V. Modeling flexibility for data with diverse conditional distributions.
- VI. The median regression is less sensitive to outliers than the OLS regression.

^{*}Corresponding author e-mail: shereen_hamdy_@cu.edu.eg

(Ibrahim & Yahaya, 2015)[4] and (Rodriguez & Yao, 2017)[5]

Koenker and Basset (1978)[6] created quantile regression to model the quantile of a response variable, such as the median, based on the values of a set of predictors. The conditional quantile gets its name from the fact that it is calculated depending on a set of predictors. Because researchers are often more interested in the more extreme values of the conditional distribution than the mean. Therefore, quantile regression is an acceptable approach of study in the field of public health.

In this study, we compare modelling generated data with non-constant error variance using the quantile regression technique with straightforward linear regression. The theoretical underpinning of quantile regression is described in Section 2 of the study. Section 3 discusses two approaches for estimating the simplex and the interior point quantile models. We provide five different techniques for conducting standard error using the "bootstrap approach" for the inference quantile model. In section 4, we demonstrated how to compare quantile regression and simple regression using a simulated case study with and without Leave-One-Out-cross validation (LOOCV) and some error measures such as, Mean Absolute Error (MAE), Mean Absolute Percent Error (MAPE), and Root Mean Square Error (RMSE).

The simulation study was conducted for various conditional quantiles of the response variable (10th, 25th, 50th, 75th, and 90th) and with different sample sizes (15, 25, 30, 50, 200,500, and 700), and two methods for estimating coefficients of the quantile model; simplex, and interior point methods. In Section 4, we wrap off with a brief discussion.

2 The Essentials of the Quantile Regression Model (QRM)

Quantile Regression introduced by "Koenker and Basset (1978)" [6] is a good alternative to ordinary least squares regression. While simple least squares regression minimizes the sum of squared errors, the median regression estimator minimized the total of absolute errors. By minimizing an asymmetrically weighted sum of absolute errors, the remaining conditional quantile functions are estimated.

Quantile Regression model specifies changes in the conditional quantiles. Quantiles defined to be a particular location for a given random variable (y); therefore, $\tau - th$ quantile denotes the value of (y) such that prob ($Y \le y$) = τ by using the definition of cdf, $F(y) = \text{prob} (Y \le y)$ the quantile function can be denoted as its inverse as following:

$$Q_{y}(\tau) = F_{y}^{-1}(\tau) = \inf\{y: F(y) \ge \tau\}$$
(1)

A linear regression model for the τ -the conditional quantile of y_i can be expressed as

$$Q_{\tau}(\mathbf{y}|\mathbf{x}) = \mathbf{x}'\boldsymbol{\beta}_{\tau} \tag{2}$$

Where y is a scalar dependent variable, x' is the k × 1 vector of explanatory variables, β is the coefficient vector, τ is the conditional quantile of interest for $\tau \in (0,1)$

An estimate for the $\tau - th$ quantile of (Y) can be obtained by minimizing the next objective function

$$\hat{\beta}_{\tau} = \min_{\beta} \sum_{i=1}^{n} \rho_{\tau}(\mathbf{y}_i - \mathbf{x}_i'\beta) \qquad \qquad i = 1 \dots n$$
(3)

Where the loss function:

$$\rho_{\tau}(u) = u(\tau - I(u < 0))$$

Or

$$\hat{\beta}_{\tau} = \min_{\beta} \sum_{\substack{y_i < x_i'\beta}}^{n} (1 - \tau)(|y_i - x_i'\beta|) + \sum_{\substack{y_i \geq x_i'\beta}}^{n} (\tau)(|y_i - x_i'\beta|)$$
(4)

Since, minimizing a sum of asymmetrically weighted absolute residuals (giving different weights to positive and negative residuals) produces the quantiles, the symmetry of absolute value yields the median (by setting $\tau = 0.5$).

Since, the symmetry of absolute value yields the median (by setting $\tau = 0.5$) (l_1 problem), then minimizing a sum of asymmetrically weighted absolute residuals (giving different weights to positive and negative residuals) yields the quantiles. So, we can use (loss function ρ_{τ}) that is an asymmetric weight to the error depending on the quantile and the overall sign of the error (Koenker & Hallock, 2001)[7] and (John & Nduka, 2009)[3].

3 Aspects of Quantile Regression Computation

Since, the objective function (3) is not differentiable; the traditional method of differentiating the objective function is no longer applicable. A feasible method for estimating the parameters β of quantile regression is the linear programming method (Zhao & Yu, 2020)[8].

Let
$$\begin{cases} \mu = [y - X\beta]_{+} \\ \nu = [X\beta - Y]_{+} \\ \phi = [\beta]_{+} \\ \varphi = [-\beta]_{+} \\ y = [y_{1}, \dots, y_{n}] \\ y = [y_{1}, \dots, y_{n}] \end{cases}$$

 $\emptyset = [\beta]_+$ $\varphi = [-\beta]_+$ $\mathbf{y} = [\mathbf{y}_1, \dots, \mathbf{y}_n]$ $\begin{bmatrix} X = [x_1, \dots, x_n] \\ [z]_+ \text{ is the non - negative part of } z \end{bmatrix}$

Let
$$D_{LAR}(\beta) = \sum_{i=1}^{n} |y_i - x'_i\beta|$$
 and $D_{\rho_\tau}(\beta) = \sum_{i=1}^{n} \rho_\tau(y_i - x'_i\beta)$. The l_1 problem, $\min_{\theta} D_{LAR}(\theta)$, can be reformulated as:
 $\min_{\theta} \{e' \ \mu + e'v | y = X\beta + \mu - v, (\mu, v) \in \mathbb{R}^{n+}\}$
(6)

$$\min_{\beta} \{ e' \mu + e' \nu | y = X\beta + \mu - \nu, (\mu, \nu) \in \mathbb{R}^{n+} \}$$

Where *e* denotes a *n* vector of ones.

Let
$$\begin{cases} B = [X, -X, I, -I] \\ \theta = [\emptyset', \varphi', \mu', \nu']' \\ d = [0'0'e'e']' \end{cases}$$

Where $0' = [0 \ 0 \dots]_p$

The reformulation presents a standard LP problem

Subjected to
$$\begin{array}{l} \min_{\theta} & \{d' \, \theta\} \\ B \, \theta = y \\ \theta \ge 0 \end{array}$$
 (Primal Problem)(P) (7)

The primal problem has the dual formulation

$$\max_{d} \{y' z\}$$
(Dual Problem)(D) (8)
$$B' z \le d$$

This can be simplified as:

Subjcted to

 $\max \{y' \, z | X' \, z = 0 \, , z \in [-1 \, , 1 \,]^n\}$ By setting $\gamma = (\frac{1}{2}z + \frac{1}{2}e)$, $b = (\frac{1}{2}X'e)$ The problem becomes $\max \{y' \gamma | X' \gamma = b, \gamma \in [0, 1]^n\}$ (9) γ

For quantile regression, the minimization problem is $\min_{\beta} \sum \rho_{\tau}(y_i - x'_i\beta)$, and a similar set of steps leads to the dual formulation:

$$\max\{y' \, z | X'z = (1 - \tau)X'e, \ z \in [0, 1]^n\},\tag{10}$$

(Davino et al., 2013)[9] and (Chen & Wei, 2005)[10].

(5)

3.1 Simplex Algorithm

Median regression (l_1 regression) has been defined as linear programming problems that can be addressed fast using a simplex approach since the 1950s. Barrodale and Roberts (1974)[11] devised an efficient variant of the simplex method that uses the special structure of the coefficient matrix (B) to solve the fundamental LP problem (P) in two steps. In the first step, only the columns ending in (X) or (-X) are chosen as crucial columns. In the second step, only the columns in (I) or (-I) as a basis or non-basic columns are exchanged. The algorithm obtains an optimal solution by executing these two stages interactively (Chen, 2004)[12]. The approach of Barrodale and Roberts was the first to use the bounded variables dual form of the median regression issue. Koenker & d'Orey (1993)[13] utilized a specific version of the simplex method for median regression to conduct quantile regression with any given quantile, encompassing the complete quantile process. The worst case for this simplex technique is computationally demanding for large datasets. The algorithm's careful and exact coding, on the other hand, makes it suitable for datasets with fewer than 5,000 observations and 50 variables (Chen & Wei, 2005)[10] and (Chen, 2004)[12].

3.2 Interior Point Algorithm

Alternative methods have been developed for addressing huge LP problems. Karmarkar's (1984)[14] inner point technique solves a series of quadratic issues by using an ellipsoid to approximate the relative interior of the constraint set, rather than proceeding from vertex to vertex around the constraint set's outer surface as the simplex requires (Chen &Wei, 2005)[10]. Karmarkar's method was a new polynomial-time algorithm with polynomial computational complexity in linear programming. Despite, the fact that a single iteration of the Karmarkar algorithm is expensive, optimality is achieved after just a few iterations, making the technique computationally appealing (Zhao & Yu, 2020)[8]. The interior point method is shown to perform better than the Simplex algorithm in the worst-case scenario (Chen, 2004)[12]. Interior point algorithms come in a variety of shapes and sizes. The Primal-Dual with Predictor-Corrector method is the most often used l_1 regression or quantile regression technique (Chen & Wei, 2005)[10].

Let $c = y, b = (1 - \tau)X'e$ and A = X'. The dual problem, eq. (10), with a general upper bound (u) is

max $\{c'z\}$

Subjcted to

$$Az = b$$
$$0 \le z \le u$$

To solve this LP problem, $0 \le z \le u$ is split in to $z \ge 0$ and $z \le u$. Let (v) be the primal slack that z + v = u, and associated dual variable (w) with these constraints. The interior point solves the system of equations to satisfy the "Karush-Kuhn-Tuker (KKT) conditions for optimality:

	Az = b	
	z + v = u	
(VVT)	$\int A't + s - w = c$	(11)
(NNI) ·	ZSe = 0	(11)
	VWe = 0	
	$\bigcup_{z,s,v,w} \geq 0,$	

where Z = diag(z), that is $Z_{i,j} = z_{i,j}$ if i = j, $Z_{i,j} = 0$ otherwise, S = diag(s), W = dig(w), V = diag(v) these are the conditions for feasibility with the complementarity conditions ZSe = 0, VWe = 0 added c'z = b't - u'w must occur at the optimum. Complementarity conditions force the optimal objectives of the primal and dual to be equal, $c'z_{opt} = b't_{opt} - u'w_{opt}$ (Chen & Wei,2005)[10].

The interior point algorithm works by iteratively using Newton's method to locate a decent direction $(\Delta z^k, \Delta t^k, \Delta s^k, \Delta v^k, \Delta w^k)$ to move from the current solution $(z^k, t^k, s^k, v^k, w^k)$ towards a better solution (Chen, 2004)[12].

This is accomplished in two steps. The first step is known as an affine step, and it involves solving a linear problem using Newton's method in order to determine a direction $(\Delta z_{aff}^k, \Delta t_{aff}^k, \Delta s_{aff}^k, \Delta v_{aff}^k, \Delta w_{aff}^k)$ for reducing complementarity toward zero. The second step is known as the *centering step*, and it involves solving another linear system to find a centering vector $(\Delta z_e^k, \Delta t_e^k, \Delta s_e^k, \Delta w_e^k)$ in order to reduce complementarity even further. The centering phase may not

significantly reduce complementarity, but it does strengthen the central path and makes significant progress toward the optimal in the next iteration. After you've completed these two steps, then

$$(\Delta z^k, \Delta t^k, \Delta s^k, \Delta v^k, \Delta w^k) = (\Delta z^k_{aff}, \Delta t^k_{aff}, \Delta s^k_{aff}, \Delta v^k_{aff}, \Delta w^k_{aff}) + (\Delta z^k_c, \Delta t^k_c, \Delta s^k_c, \Delta v^k_c, \Delta w^k_c)$$
(12)

$$(z^{k+1}, t^{k+1}, s^{k+1}, v^{k+1}, w^{k+1}) = (z^k, t^k, s^k, v^k, w^k) + \alpha (\Delta z^k, \Delta t^k, \Delta s^k, \Delta v^k, \Delta w^k),$$
(13)

where, α is the step length assigned a value as large as possible but not so large that a z_i^{k+1} , s_i^{k+1} , v_i^{k+1} or w_i^{k+1} is "too close" to zero. The Predictor-Corrector variant usually takes less iteration to reach the optimum, although requires solving two linear equations instead of one. In both the affine step and the centering step, factorization of the $(X'[\emptyset^k]^{-1}X)$ matrix, where \emptyset^k is a diagonal matrix computed in k^{th} iteration, takes the majority computing time when solving the linear systems. However, the additional overhead of calculating the second linear system is small, as the factorization of the $(X'[\emptyset^k]^{-1}X)$ matrix has already been performed to solve the first linear system (Chen & Wei, 2005)[10].

3.3 Resampling Methods

Resampling procedures can be utilized as a viable alternative to asymptotic inference since they allow parameter standard errors to be calculated without any assumptions about the error distribution (Yanuar et al., 2019)[15].

In QR analysis, several contributions in the literature imply that bootstrap is the best resampling approach. This simulation compares empirically the bootstrap approaches in two quantile regression models for predicting standard error of coefficients at various conditional quantiles for each sample size:

- "XY" pair method or design matrix bootstrap (Kocherginsky et al., 2005)[16].
- "WXY" uses the generalized bootstrap with unit exponential weights (Bose & Chatterjee, 2003)[17].
- "WILD" uses the wild bootstrap method (Feng et al, 2011)[18].
- "PWY" method based on pivotal estimating functions (Parzen et al., 1994)[19].
- "MCMB" Markov chain marginal bootstrap (He & Hu, 2002)[20].

4 Simulation Study

In practice, we want to compare many statistical prediction scenarios and select the most effective one. To assess a model's performance on a dataset, we must assess how well the model's predictions match the observed data. Leave-One-Out Cross-Validation (LOOCV) is a popular approach for accomplishing this. Cross-validation is a superior approach for evaluating models than residuals. The difficulty with residual assessments is that they do not show how well the learner will do when asked to generate new predictions for data it has not seen before (Wong, 2015)[21].

One way to overcome this problem is to not use the entire data set when training a learner. Some of the data is removed before training begins. After training, the data that was deleted can be used to assess the learned model's performance with "fresh" data. This is the fundamental concept behind a broad family of model assessment techniques known as cross-validation. The purpose of our simulation is to know the ability of both quantile regression and simple linear regression models can generate new predictions with cases it has not already seen (using situations they haven't encountered before). To measure the difference between the predictions made by the model and the actual observations, some measures are used in the comparison such as Mean Absolute Error "MAE", Mean Absolute Percentage Error "MAPE", and Root Mean Square Error "RMSE" with and without the use of Leave One - Out of Cross-Validation Method (LOOCV) in the heterogeneous case. Simulation study compares simple linear regression to quantile regression with "the simplex algorithm and the interior point algorithm" at each sample sizes for n=15, 25, 30, 50, 200,500 and 700 in order to observe the performance of SLR and QR as sample size increased.

The generated response variable was defined as $y_i = 14 + 0.4x_i + \varepsilon_i$. With x_i is generated from a Uniform distribution ranging from 1 to 6, ε_i is generated from a Normal distribution with mean (0) and variance is $0.5 + 0.03 * x_i^2$. Generating the random error term with a function depending on x_i yields a response variable that is heteroscedastic for the range of x_i . Therefore, the problem of heterogeneity of variance is summarized in the error distribution, which is $\varepsilon_i \sim N(0, \sqrt{0.5 + 0.03 * x_i^2})$. The number of replication was set to be S=1000 times, which is the average number of iterations that were used in previous researches; the results of this part presented in Table 1(a) and Table 1(b).

The second purpose of the simulation estimate parameter and its standard errors for the quantile regression analyses with simplex method (br) and interior point algorithm frich newton or (fn) using different methods of the bootstrap approach such as (XY- WXY- PWY- Wild- MCMB). With $y_i = 14 + 0.4x_i + \varepsilon_i$ for the sample sizes, n=15, 25, 30, 50, 200, 500 and 700 at different conditional quantiles (10th, 25th, 50th, 75th, and 90th) were conducted, these results are presented in Table 2(a), Table 2(b), Table 2(c) and Table 2(d).

Table 1(a): Comparison of simple linear regression and quantile regression with both the simplex and the interior-point algorithms across "MAE, MAPE and RMSE" with and without "leave one out cross-validation" in case of heteroscedasticity with sample sizes 15, 25, 30, and 50.

				Quanti	e Regres	ssion							
e			_	τ =	0.1	τ =	0.25	τ =	0.5	τ =	0.75	τ =	0.9
Sample siz		Criteria	Simple Regression	br	fn	br	fn	br	fn	br	fn	br	fn
		MA E	0.6176 7722	1.115 0383	1.115 039	0.989 11847	0.989 11847	0.542 4120	0.5424 120	0.796 0522	0.796 0522	0.92 312 20	0.92 312 21
	V	MAP E	0.2730 7395	0.492 95663	0.492 95675	0.437 28743	0.437 28743	0.239 7994	0.2397 994	0.351 9332	0.351 9332	0.40 811 060	0.40 811 062
	LOOC	RMS E	0.6748 6695	1.271 01019	1.271 01020	0.912 95520	0.912 95520	0.665 4364	0.6654 364	0.878 2305	0.878 2305	1.08 904 746	1.08 904 759
	CV	MA E	0.5295 1206	0.974 22120	0.974 22121	0.765 71426	0.765 71426	0.528 9507	0.5289 507	0.691 6220	0.691 6220	0.85 120 311	0.85 120 347
	it LOO	MAP E	0.0352 4703	0.062 72881	0.062 72882	0.049 70719	0.049 70719	0.035 2291	0.0352 291	0.047 2457	0.047 2457	0.05 792 767	0.05 792 769
n=15	Withou	RMS E	0.6653 5925	1.165 95468	1.165 95469	0.917 22817	0.917 22817	0.665 4364	0.6654 364	0.878 2305	0.878 2305	1.08 904 746	1.08 904 788
		ШA	0.8162 6190	1.524 4690	1.524 4692	1.219 27664	1.219 27664	0.789 6364	0.7896 3646	0.876 90042	0.876 90042	1.29 465 91	1.29 465 92
	V	MAP E	0.2127 8923	0.397 4096	0.397 4099	0.317 85011	0.317 85011	0.205 84831	0.2058 4831	0.228 59693	0.228 59693	0.33 750 139	0.33 750 140
	LOOC	RMS E	0.9322 3218	1.790 5153	1.790 5154	1.271 01554	1.271 01554	0.942 68831	0.9426 88313	1.116 44855	1.116 44855	1.56 485 051	1.56 485 055
	CV	MA E	0.7514 4802	1.488 7560	1.488 7561	1.063 1811	1.063 1811	0.738 75697	0.7387 5697	0.857 39611	0.857 39611	1.25 224 111	1.25 224 119
	ut LOO	MAP E	0.0496 6508	0.093 5124	0.093 5125	0.067 21518	0.067 21518	0.049 50694	0.0495 0694	0.058 47572	0.058 47572	0.08 528 960	0.08 528 962
n=25	Withou	RMS E	0.9305 4370	1.790 5151	1.790 5154	1.271 0155	1.271 0155	0.953 06472	0.9530 64672	1.124 16136	1.124 16136	1.56 485 053	1.56 485 055
	DCV	MA E	0.7255 2387	1.190 94505	1.190 94506	1.069 80964	1.069 80964	0.692 41344	0.6924 1344	0.936 45192	0.936 45192	1.05 968 525	1.05 968 528
n=3(LOC	P A	0.1589 2681	0.076 71633	0.076 71636	0.069 54358	0.069 54358	0.151 67393	0.1516 7393	0.063 90930	0.063 90930	0.07 246	0.07 246

J. Stat. Appl. Pro. 12, No. 2, 635-655	2023) / http://www.naturalspublishing.com/Journals.ast	b
11))		

												300	302
		S	0.9553	1 265	1 265	1 152	1 152	0.961	0.8610	1 1 2 9	1 1 2 9	1.27	1.27
		W	0.0333	1.303	1.303	1.132	1.132	0.001	0.0010	1.120	1.120	585	585
		R	3032	10/30	10/32	40007	40009	07717	<i>3317</i>	02202	02202	570	571
			0 6725	1 1 5 8	1 158	0.038	0.038	0.662	0 6620	0.886	0.886	1.03	1.03
		1A	0.0723	1.130	1.130	0.950	26636	0.002	0.0020	0.000	0.000	659	659
	CV	N	//00	1//40	1//43	20030	20030	00104	0104	10052	10032	946	953
	õ	Р	0 0447	0 074	0 074	0.060	0.060	0 044	0 0440	0.060	0.060	0.07	0.07
	ΓO	AA	20447	26160	26163	20736	20736	0.044	1631	0.000 76575	76575	105	105
	ut	N	2044	20100	20105	20750	20750	01051	1051	10313	10313	363	366
	ho	S	0 8550	1 365	1 365	1 152	1 152	0 864	0 8644	1 1 2 8	1 1 2 8	1.27	1.27
	Vit	NN []	6335	18753	18756	40069	40069	40330	0330	02262	02262	585	585
		ЦЦ	0000	10/50	10/50	10002	1000)	10000	0000	02202	02202	570	577
			0.7066	1.188	1.188	0.814	0.814	0.701	0.7011	0.902	0.902	1.26	1.26
		MA 3	6761	51227	51227	23564	23564	10940	0940	15870	15870	357	357
			0/01	01227	01227		20001	10/10	0710	10070	10070	166	198
		Ъ	0.0907	0.152	0.152	0.104	0.104	0.090	0.0900	0.115	0.115	0.16	0.16
		MA	5675	63967	63967	57162	57162	04291	4291	86351	86351	227	227
	$\mathbf{\hat{z}}$		0010		00/01	0.102	0.102	0.2/1		00001	00001	948	953
	ŏ	S	0.8355	1.469	1.469	0.982	0.982	0.835	0.8351	1.043	1.043	1.46	1.46
	0]	E	9279	85672	85672	54600	54600	17793	7793	28798	28798	874	874
	_											730	732
		-	0.6747	1.174	1.174	0.778	0.778	0.674	0.6743	0.836	0.836	1.23	1.23
	\mathbf{N}	ΜA	3311	23460	23460	31943	31943	31496	1496	37168	37168	569	569
	Ċ											990	991
	00	٩N	0.0433	0.072	0.072	0.048	0.048	0.043	0.0433	0.055	0.055	0.08	0.08
	Ĺ	ΜA	8722	58479	58479	52791	52791	32856	28556	17642	17642	193	193
	out											149	150
20	the	IS	0.8351	1.412	1.412	0.982	0.982	0.835	0.8351	1.043	1.043	1.46	1.46
ľ	Wi	RN	0629	01004	01004	42085	42085	17793	7793	28798	28798	874	874 522
-	-											730	732

Table 1(b): Comparison of simple linear regression and quantile regression with both the simplex and the interior-point algorithms across "MAE, MAPE and RMSE" with and without "leave one out cross-validation" in case of heteroscedasticity with sample sizes 200, 500, and 700.

	_		Sim	Quanti	e Regres	ssion							
e		a	ple	$\tau =$	0.1	$\tau =$	0.25	au =	0.5	$\tau =$	0.75	$\tau =$	0.9
ldu		teri	Reg										
San size		Cri	ressi	br	fn								
		-	on o ==										
		MA E	0.77 9129 93	1.300 25520	1.300 25520	0.925 93823	0.925 93823	0.7732 5244	0.7732 5244	0.928 56418	0.928 56418	1.270 81959	1.270 81960
	V	MAP E	0.02 5358 71	0.042 32001	0.042 32001	0.030 13694	0.030 13694	0.0251 6741	0.0251 6741	0.030 22241	0.030 22241	0.041 36192	0.041 36196
	LOOC	RMS E	0.98 1356 34	1.531 83824	1.531 83824	1.157 67227	1.157 67227	0.9825 6352	0.9825 6352	1.175 94741	1.175 94741	1.528 29715	1.528 29718
	ut V	MA E	0.77 1200 87	1.294 85455	1.294 85455	0.924 39021	0.924 39021	0.7699 1157	0.7699 1157	0.926 71232	0.926 71232	1.267 45071	1.267 45074
n=200	Withou LOOC	MAP E	0.05 0543 91	0.081 72777	0.081 72777	0.058 61890	0.058 61890	0.0503 5119	0.0503 5119	0.062 53366	0.062 53366	0.085 70370	0.085 70371

41

	AL AND
642	SENSP

		RMS E	0.98 1328 21	1.531 83823	1.531 83823	1.161 38025	1.161 38025	0.9830 0454	0.9830 0454	1.175 94721	1.175 94721	1.528 29715	1.528 29718
		MA E	0.73 4403 893	1.275 80294	1.275 80294	0.919 64965	0.919 64965	0.7323 4535	0.7323 4535	0.863 35570	0.863 35571	1.228 14110	1.228 14111
	V	MAP E	0.09 5508 91	0.016 59176	0.016 59176	0.011 96000	0.011 96000	0.0952 412	0.0952 412	0.011 22790	0.011 22791	0.015 97191	0.015 97192
	LOOC	RMS E	0.90 7426 11	1.492 10468	1.492 10468	1.113 77176	1.113 77176	0.9085 89356	0.9085 89356	1.100 71040	1.100 71041	1.477 19477	1.477 19479
	CV	MA E	0.72 9430 91	1.273 71382	1.273 71382	0.908 49912	0.908 49912	0.7279 74576	0.7279 74576	0.861 38944	0.861 38948	1.220 04030	1.220 04032
	ut LOO	MAP E	0.04 7870 24	0.080 30161	0.080 30161	0.057 64926	0.057 64926	0.0477 03962	0.0479 03962	0.058 22842	0.058 22848	0.082 49321	0.082 49328
n=500	Withou	RMS E	0.90 7426 10	1.492 10468	1.492 10468	1.107 48103	1.107 48103	0.9084 27428	0.9084 27428	1.100 71040	1.100 71041	1.477 19472	1.477 19479
		MA E	0.74 1040 27	1.286 70576	1.286 70576	0.919 37315	0.919 37315	0.7409 9904	0.7409 9904	0.895 74630	0.895 74632	1.221 06976	1.221 06978
	V	MAP E	0.04 8539 62	0.080 89447	0.080 89447	0.058 10915	0.058 10915	0.0483 0981	0.0483 0981	0.060 45874	0.060 45875	0.082 64519	0.082 64520
	LOOC	RMS E	0.92 1058 26	1.521 98347	1.521 98347	1.134 65600	1.134 65600	0.9217 1752	0.9217 1752	1.117 48230	1.117 48230	1.472 32428	1.472 32428
	CV	MA E	0.73 9186 08	1.282 97122	1.282 97122	0.918 68856	0.918 68856	0.7386 2270	0.7386 2270	0.892 14722	0.892 14727	1.220 72931	1.220 72933
	it LOO	MAP E	0.04 8418 52	0.080 62301	0.080 62301	0.058 06065	0.058 06065	0.0484 3504	0.0483 5504	0.060 23630	0.060 23636	0.082 62582	0.082 62589
n=700	Withou	RMS E	0.92 1058 23	1.521 98347	1.521 98347	1.134 65600	1.134 65600	0.9216 2495	0.9216 2495	1.121 64396	1.121 64396	1.472 32428	1.472 32428

 Table 2(a): Bootstrap Simulation Study Results.

Sa			Coeffic condition	Coefficients and standard errors of different estimation method at various conditional quantiles												
mpl	Quanti	les	XY		WXY		Wild		PWY		MCM	3				
e Size			br	fn	br	fn	br	fn	br	fn	br	fn				
n=1 5	τ = 0.1	b ₀ (S. E)	13.20 0010 9 (0.57 0709 8)	13.200 0109 (0.717 0460)	13.20 00109 (0.50 45398)	13.200 0109 (0.434 7610)	13.200 0109 (0.425 3688)	13.20 00109 (0.45 51295)	13.200 0109 (34.78 04600)	13.20 00109 (36.3 45831 5)						
		b ₁ (S. E)	0.309 2765 0.190 2672	0.3092 765 (0.210 6324)	0.309 2765 0.159 9374)	0.3092 765 (0.142 7698)	0.3092 765 (0.125 1882)	0.309 2765 0.135 7287)	0.3092 765 7.5043 117)(0.309 2765 (7.80 96834						

)((()	
	τ = 0.2	b ₀ (S. E)	13.58 0554 9 (0.77 4743 7)	13.580 5550 (0.921 4046)	13.58 05549 (0.75 50544)	13.580 5550 (0.647 7737)	13.580 5549 (0.719 2004)	13.58 05550 (0.77 21260)	13.580 5549 (4.056 1319)	13.58 0555 (5.06 9988)	
		b ₁ (S. E)	0.370 2841 0.217 7864)(0.3702 841 (0.253 5473)	0.370 2841 0.202 2040) (0.3702 841 0.1834 732)(0.3702 841 0.1924 623)(0.370 2841 0.212 7359) (0.3702 84 0.9038 805)(0.370 284 1.123 042)(
	τ = 0.5	b ₀ (S. E)	14.56 4412 3 (1.09 4728 0)	14.564 4123 (0.999 2879)	14.56 44123 (1.07 41791)	14.564 4123 (1.061 7473)	14.564 4123 (1.027 8951)	14.56 44123 (1.03 23510)	14.564 4123 (1.116 5838)	14.56 44123 (1.84 06719)	
		b ₁ (S. E)	0.212 6863 0.346 0653)(0.2126 863 0.3031 749)(0.212 6863 (0.33 88922)	0.2126 863 (0.333 3361)	0.2126 863 (0.278 4370)	0.212 6863 (0.31 85852)	0.2126 863 0.3445 505)(0.212 6863 (0.48 03286)	
	τ = 0.7	b ₀ (S. E)	15.32 2324 7 (0.96 4350 5)	15.322 3248 (0.935 3268)	15.32 23247 (0.88 98476)	15.322 3248 (0.963 1866)	15.322 3247 (0.882 2022)	15.32 23248 (0.88 59767)	15.322 3247 (1.601 3828)	15.32 23248 (1.90 15461)	
		b1 (S. E)	0.157 5487 0.355 0746)(0.1575 487 0.3414 888)(0.157 5487 (0.32 71975)	0.1575 487 (0.311 7396)	0.1575 487 0.3045 120)(0.157 5487 (0.30 73315)	0.1575 487 0.7926 737)(0.157 5487 (0.93 14562)	
	τ = 0.9	b ₀ (S. E)	15.16 3425 2 (0.65 0984 6)	15.163 4249 (0.655 1189)	15.16 34252 (0.60 22785)	15.163 4249 (0.601 0100)	15.163 4252 (1.124 0403)	15.16 34249 (1.29 30095)	15.163 4252 (3.159 7951)	15.16 34249 (2.23 29777)	
		b ₁ (S. E)	0.437 1506 0.253 2182)(0.4371 506 (0.253 4684)	0.437 1506 0.224 4259) (0.4371 506 (0.241 2366)	0.4371 506 (0.414 8632)	0.437 1506 0.461 6529) (0.4371 506 1.5358 851)(0.437 1506 (1.30 03938)	
n=2	τ = 0.1	b ₀ (S. E)	11.97 1365 5 (1.09 8327 9)	11.971 3655 (1.079 9559)	11.97 13655 (1.06 68898)	11.971 3655 (1.076 4742)	11.971 3655 (1.365 1568)	11.97 13655 (1.43 95314 0)	11.971 3655 (95.42 33071)	11.97 13655 (4.11 81646)	
5		b ₁ (S. E)	0.653 5483 (0.24 8896 1)	0.6535 483 0.2401 527)(0.653 5483 0.239 9803) (0.6535 483 0.2433 904)(0.6535 483 0.3161 381)(0.653 5483 (0.33 93415)	0.6535 483 1.2296 740)(0.653 5483 0.992 2930) (
	τ	b ₀	13.06	13.063	13.06	13.063	13.063	13.06	13.063	13.06	

= 0.2	(S. E)	3129 4 (0.92 8501 0)	1294 (1.011 0607)	31294 (0.72 12653)	1294 (0.871 8788)	1294 (0.710 4839)	31294 (0.71 43362)	1294 (0.952 4745)	31294 (1.07 23410)	
	b 1 (S. E)	0.466 3367 0.211 3682)(0.4663 367 (0.233 9501)	0.466 3367 (0.16 76842)	0.4663 367 (0.201 3055)	0.4663 367 0.1743 010)(0.466 3367 (0.17 91747)	0.4663 367 0.2205 762)(0.466 3367 0.277 6870) (
au = 0.5	b ₀ (S. E)	13.60 1824 7 (0.87 6643 6)	13.601 8248 (0.897 0655)	13.60 18247 (0.84 27379)	13.601 8248 (0.854 0242)	13.601 8247 (0.670 6197)	13.60 18248 (0.68 99513)	13.601 8247 (0.942 1437)	13.60 18248 (0.84 34673)	
	b ₁ (S. E)	0.442 9737 0.182 6778)(0.4429 737 0.1823 267)(0.442 9737 (0.10 58435)	0.4429 737 0.1946 474)(0.4429 737 (0.162 3970)	0.442 9737 0.167 8885) (0.4429 737 (0.221 4462)	0.442 9737 (0.19 77849)	
$\tau = 0.7$	b ₀ (S. E)	14.30 5383 6 (1.03 4569 6)	14.305 3836 (1.104 5071)	14.30 53836 (1.06 78386)	14.305 3836 (1.082 8197)	14.305 3836 (1.013 26945)	14.30 53836 (1.01 40564)	14.305 3836 (1.090 1656)	14.30 53836 (1.04 66680)	
	<i>b</i> ₁ (S. E)	0.414 5441 (0.23 8610 6)	0.4145 441 0.2710 297)(0.414 5441 0.244 2832) (0.4145 441 0.2596 042)(0.4145 441 (0.224 5814)	0.414 5441 (0.23 54877)	0.4145 441 0.3087 461)(0.414 5441 0.241 4805) (
au = 0.9	b 0 (S. E)	15.30 8070 1 (0.71 8456 3)	15.308 0697 (0.670 3760)	15.30 80701 (0.50 57041)	15.308 0697 (0.510 0743)	15.308 0701 (0.630 4444)	15.30 80697 (0.64 57548)	15.308 0701 (2.501 8992)	15.30 80697 (1.79 35776)	
	<i>b</i> ₁ (S. E)	0.313 6087 0.163 2574)(0.3136 087 0.1526 860)(0.313 6089 0.118 5471) (0.3136 089 (0.119 4674)	0.3136 089 0.1380 578)(0.313 6089 (0.14 19836)	0.3136 087 (1.422 2036)	0.313 6087 0.994 6198) (

 Table 2(b): Bootstrap Simulation Study Results.

			Coeff	icients an	d standa	rd errors	of differen	nt estima	tion meth	od at var	ious con	ditional				
Sam	Oner			quantiles												
ple	Quan	itties	Х	KΥ	W	XY	Wi	ld	PW	/Y	MO	CMB				
Size		br	fn	br	fn	br	fn	br	fn	br	fn					
			12.73													
		b ₀	0019	12.730	12.73	12.730	12.730	12.73	12.730	12.73						
n=3	τ	(S.	3	0193	00193	0193	0193	00193	019	0019						
0	= 0 . 1	E)	(0.67	(0.693	(0.504	(0.521	(0.3283	(0.353	(14.373	(9.956						
			1033	3380)	0184)	0013)	073)	7431)	496)	973)						
			0)													
		b ₁	0.404	0.4044	0.404	0.4044	0.4044	0.105	0.4044	0.404						

J. Stat. Appl. Pro. 12, No. 2, 635-655 (2023	/ http://	www.naturalspublishing.com/Journals.as	sp
--	-----------	--	----

<u>Énsp</u>	645

		(S. E)	4950 0.193 8495) (950 0.1889 (584)	4950 (0.141 1655)	950 0.1495 (226)	950 0.1111 (093)	4547 0.404 4950) (95 2.5796 (38)	495 (1.789 425)	
	τ02	b ₀ (S. E)	12.74 6211 2 (0.82 1183 2)	12.746 2123 (0.829 0897)	12.74 62112 (0.839 9858)	12.746 2123 (0.857 6918)	12. 746211 2 (0.7151 080)	12.74 62123 (0.737 5095)	12.746 2112 (1.5163 1900)	12.74 62123 (0.841 5016)	
	= 0.2	b ₁ (S. E)	0.584 6809 (0.23 4092 2	0.5846 804 (0.237 1166)	0.584 6809 (0.231 0246)	0.5846 804 0.2408 (090)	0.5846 804 0.2408 (090)	0.584 6804 (0.169 2123)	0.5846 809 (0.3519 569)	0.584 6804 0.238 8603) (
	τ - 0 5	b ₀ (S. E)	14.23 3633 4 (0.64 6939 2)	14.233 6334 (0.668 0720)	14.23 36334 (0.690 0778)	14.233 6334 (0.697 5387)	14.233 6334 (0.6975 387)	14.23 36334 (0.580 7569)	14.233 6334 (0.6985 993)	14.23 36334 (0.658 3637)	
	- 0.3	b ₁ (S. E)	0.312 9341 0.176 1038) (0.3129 341 (0.169 9850)	0.312 9341 0.173 2867) (0.3129 341 (0.173 9151)	0.3129 341 (0.1519 304)	0.312 9341 (0.152 5903)	0.3129 341 0.1718 (602)	0.312 9341 (0.169 4058)	
	τ = 0.7	b ₀ (S. E)	14.79 1038 6 (0.54 3703 9)	14.791 0386 (0.561 8364)	14.79 10386 (0.501 5292)	14.791 0386 (0.519 8659)	14.791 0386 (0.5523 533)	14.79 10386 (0.599 3602)	14.791 0386 (0.7683 011)	14.79 10386 (0.671 9141)	
		b ₁ (S. E)	0.378 4980 0.160 6587) (0.3784 980 0.1730 (406)	0.378 4980 (0.127 1904)	0.3784 980 (0.151 7791)	0.3784 980 (0.1525 111)	0.378 4980 (0.164 2814)	0.3784 980 0.2881 (093)	0.378 4980 0.190 9988) (
	τ = 0.9	b ₀ (S. E)	15.04 3812 2 (0.87 8438 4)	15.043 8122 (0.891 2758)	15.04 38122 (0.770 9910)	15.043 8122 (0.771 8941)	15.043 8122 (0.7219 908)	15.04 38122 (0.741 2098)	15.043 8122 (4.2602 714)	15.04 38122 (2.635 3400)	
		b ₁ (S. E)	0.422 1348 (0.22 7008 4)	0.4221 348 (0.234 2686)	0.422 1348 (0.199 6093)	0.4221 348 (0.200 5876)	0.4221 348 (0.2280 205)	0.422 1348 0.228 3029) (0.4221 348 2.8433 (730)	0.422 1348 (1.402 6491)	
n=5 0	au = 0.1	b 0 (S. Е)	12.81 2642 0 (0.41 0130 1)	12.812 6420 (0.453 9058)	12.81 26420 (0.410 7345)	12.812 6420 (0.388 5764)	12.812 6420 (0.4157 610)	12.81 26420 (0.485 3485)	12.812 6420 (0.8463 566)	12.81 26420 (0.885 8923)	

	b ₁ (S. E)	0.355 2351 0.114 9459) (0.3552 351 (0.127 0548)	0.355 2351 (0.111 0114)	0.3552 351 (0.105 4487)	0.3552 351 0.1181 (989)	0.355 2351 (0.127 6330)	0.3552 351 0.2018 (122)	0.355 2351 0.194 0885) (
τ	b 0 (S. Е)	13.73 6943 30 (0.38 6363 03)	13.736 9433 (0.404 1277)	13.73 69433 0 (0.390 61659)	13.736 9433 (0.424 9780)	13.736 94330 (0.3598 7854)	13.73 69433 (0.403 8099)	13.736 9433 (0.4144 503)	13.73 69433 (0.493 3480)	
= 0.2	b ₁ (S. E)	0.231 9469 9 0.086 7200 (6)	0.2319 470 0.1058 (229)	0.231 94699 0.094 76137 ()	0.2319 470 0.1031 (175)	0.2319 4699 (0.0942 4508)	0.231 9470 0.107 0911) (0.2319 470 0.1052 (772)	0.231 9470 (0.152 7233)	
au = 0.5	b ₀ (S. Е)	13.96 5019 5 (0.51 6527 1)	13.965 0195 (0.475 6555)	13.96 50195 (0.425 3507)	13.965 0195 (0.468 2694)	13.965 0195 (0.5250 806)	13.96 50195 (0.536 8228)	13.965 0195 (0.4993 309)	13.96 50195 (0.506 2857)	
	b1 (S. E)	0.386 8798 0.176 0076) (0.3868 798 0.1671 (737)	0.386 8798 0.175 2756) (0.1701 708 0.3868 (798)	0.3868 798 0.1525 (493)	0.386 8798 (0.165 4687)	0.3868 798 0.1679 (039)	0.386 8798 0.178 3012) (
$\tau = 0.7$	b ₀ (S. Е)	14.21 6477 4 (0.39 8205 8)	14.216 4774 (0.354 0801)	14.21 64774 (0.370 4471)	14.216 4774 (0.413 4776)	14.216 4774 (0.3593 911)	14.21 64774 (0.410 3692)	14.216 4774 (0.5413 691)	14.21 64774 (0.753 0600)	
	b 1 (S. Е)	0.514 2862 (0.16 2230 4)	0.5142 862 0.1437 (561)	0.514 2862 0.149 3434) (0.5142 862 0.1601 (326)	0.5142 862 0.1399 (584)	0.514 2862 0.155 6043) (0.5142 862 (0.1804 779)	0.514 2862 0.223 8824) (
$\tau = 0.9$	b ₀ (S. Е)	14.86 8846 2 (0.67 4824 5)	14.868 8461 (0.684 5897)	14.86 88462 (0.555 7487)	14.868 8461 (0.605 9213)	14.868 8462 (0.7281 399)	14.86 88461 (0.753 5891)	14.868 846 (1.5016 50)	14.86 88461 (1.182 7868)	
	b ₁ (S. E)	0.544 8430 0.167 2983) (0.5448 430 0.1648 (302)	0.544 8430 0.136 3276) (0.5448 430 0.1372 (621)	0.5448 430 (0.2155 226)	0.544 8430 (0.219 29430	0.5448 43 0.3168 (80)	0.544 8430 0.322 9455) (

Table 2(c): Bootstrap Simulation Study Resul
--

		Coefficients and standard errors of different estimation method at various conditional										
Sam	Quantiles	Quantiles										
ple		Х	Y	W	XY	Wi	ld	PW	ΥY	MO	CMB	
Size		br	fn	br	fn	br	fn	br	fn	br	fn	

J. Stat. Ap	pl. Pro. 1 2	2 , No. 2	, 635-655	(2023) / htt	p://www.n	aturalspubl	ishing.com/	Journals.as	sp	4		647
			13.14		13.14			13.14		13.14	13.14	
		b ₀	2833	13.142	28337	13.142	13.142	28337	13.142	28337	28337	13.142
		(S.	79	83379	9	8338	83379	9	83379	9	9	83379
		E)	(0.18	(0.178	(0.182	(0.164	(0.1661	(0.162	(0.2268	(0.204	(0.17	(0.190
	т		4583	02201)	35164	5578)	7240)	34749	5298)	75323	86014	55186)
	= 0.1		92))))	8)	
	- 0. 1		0.273		0 273			0 273		0 273	0 273	
		h.	1881	0.2731	18815	0.2731	0.2731	18815	0.0803	18815	18815	0.2731
		(S.	5	8815	(0.063	882	8815	0.054	3402	0.069	0.059	8815
		(S. E)	0.067	0.0604	47104	0.0594	0.0567	42034	0.2731	67245	70739	0.0557
		L)	7681	(8671))	(808)	(1353)	0	(8815)	0	0	(0625
			(1)		,			0		0	V	
			13.34		13.34			13.34		13.34	13.34	
		b.	3334	13.343	33349	13.343	13.343	33349	13.343	33349	33349	13.343
		(S.	92	33492	2	33492	33492	2	33492	2	2	33492
		(~. E)	(0.22	(0.237	(0.237	(0.235	(0.2210	(0.205	(0.2352	(0.237	(0.22	(0.232
	τ	_,	9836	75469)	49582	70058)	9014)	61813	7573)	70188	37864	25180)
	= 0.2		06))))	7)	
			0.355	0.2550	0.355	0.0==0	0.2550	0.355	0.2==0	0.355	0.355	0.0770
		b₁	8814	0.3558	88146	0.3558	0.3558	88146	0.3558	88146	88146	0.3558
		(S.	6	8146	(0.073	8146	8146	0.066	8146	(0.073	0.068	8146
		È)	0.074	0.0753	21328	0.0739	(0.0724)	10478	0.0737	87268	89019	0.0697
		,	4563	(8099))	(5501)	9207)	0	(0259)	0	0	(2237)
			(5)		,			12.02			~	
			13.83		13.83			13.83		13.83	13.83	
		Ŀ	8975	13.838	89755	13.838	13.838	66/68	13.838	89755	89755	13.838
		D ₀	52	97552	2	97552	97552	2 (0.100	97552	2	2	97552
n=2		(8. E)	(0.20	(0.208	(0.188	(0.194	(0.2007	(0.199	(0.2045	(0.200	(0.20	(0.206
00	-	E)	3758	57639)	43754	30959)	3800)	95501	7488)	28358	05337	85797)
	ι - 0 5		38))))	6)	
	- 0. 3		0.443									
		_	9087	0.4439	0.443	0.4439	0.4439	0.443	0.4439	0.443	0.443	0.4439
		b ₁	7	0877	90877	0877	0877	90877	0877	90877	90877	0877
		(S.	(0.06	0.0665	0.058	0.0598	(0.0608	0.060	0.0631	0.063	0.064	0.0658
		E)	4357	(3589)	98371	(9468)	8287)	05614	(3212)	61385	25358	(5652)
			03)	(000))	0	(2.00)	0201)	0	(0=1=)	0	0	(0002)
			14.16		14.16			14.16		14.16	14.16	
		1	4827	14.164	48271	14.164	14.164	48271	14.164	48271	48271	14.164
		D ₀	14	82714	4	82714	82714	4	82714	4	4	8271
		(ð. E)	(0.26	(0.321	(0.264	(0.266	(0.2211	(0.220	(0.2897	(0.298	(0.26	(0.296
	-	E)	8530	29018)	85261	45980)	4173)	84545	8113)	44708	93447	5669)
			14))))	3)	
	= 0. /		0.497		0 407			0 407		0 407	0 407	
		h	4537	0.4974	0.497 15275	0.4974	0.4974	0.49/ 15275	0.4974	U.47/ 15275	0.497 15275	0.4974
		01 (S	5	5375	43373	5375	5375	43373	5375	43373	43373	538
		(3. E)	0.081	0.0942	65122	0.0816	0.0681	05794	0.0852	01236	77711	0.0840
		ш)	6074	(1194)	03122	(6465)	(6395))	(8743)	Ω Ω	0	(198)
			(4)		U			,		U	V	
			14.67		14.67			14.67		14.67	14.67	
		h	5885	14.675	58857	14.675	14.675	58857	14.675	58857	58857	14.675
	τ	(S.	71	88571	1	88571	88571		88571	1	1	88571
	= 0.9	E)	(0.26	(0.232	(0.224	(0.241	(0.2152	(0.206	(0.2476	(0.253	(0.26	(0.239
		_,	6589	05763)	24049	93307)	2371)	03881	6289)	39701	06856	91592)
		1.	21)	0 5 4 2 2)	0 5 4 2 2	0 5 4 2 2)	0 5 4 2 2)	4)	0.5422
		b ₁	0.543	0.5433	0.543	0.5433	0.5433	0.543	0.5433	0.543	0.543	0.5433
		(8.	3258	2589	32589	2589	2589	52589	2589	32589	32589	2589

^{© 2023} NSP Natural Sciences Publishing Cor.

M. Saad et al: The Performance of Quantile Regression...

		E)	9	0.0869	(0.077	0.0916	0.0856	0.080	0.0904	0.098	(0.09	(0.081
			5978	(7341))	(2)44)	(3741)	0	(7005)	0	5)	56210)
			(3)		13.36			13.36		13.36	13.36	
		\boldsymbol{b}_0	1133	13.361	11339	13.361	13.361	11339	13.361	11339	11339	13.361
		(S.	96 (0.21	13395 (0.217	6 (0.207	13395 (0.220	13396 (0.1652	5 (0.154	13396 (0.2211	5 (0.214	6 (0.20	13395 (0.194
	τ	E)	8254	11872)	39731	62680)	7503)	70078	6159)	92036	45112	00448)
	= 0.1		0.196)))	0 196	
		$\boldsymbol{b_1}$	4974 1	0.1964 9741	49741	0.0675 4907	0.1964 9741	47236	0.1964 9741	49741	49741	0.1964 9741
		(S. F)	0.069	0.0676	0.065 08688	0.1964	0.0940	0.066 49741	(0.0689	0.065 91897	0.060 21259	(0.059
		E)	6876 (3)	(9167)	0	(9741)	(973)	0	5719)	0	0	26069)
			13.45		13.45	10.455	10.155	10.15		13.45	13.45	
		b ₀	41	13.457 96841	79684 1	13.457 96841	13.457 9684	13.45 79684	13.457 96841	79684 1	79684 1	13.457 96841
		(S. E)	(0.15	(0.145	(0.144	(0.141	(0.1435	(0.131	(0.1407	(0.145	(0.13	(0.150
	τ	2)	4113 68)	07985)	80593)	31638)	010)	3536)	7720)	66235)	34310 2)	68411)
	= 0.2		0.357		0.357			0.357	0.0	0.357	0.357	
		$\boldsymbol{b_1}$	1724 6	0.3571 7246	17246	0.3571 7246	0.3571 725	1725	0.3571 7246	17246	17246	0.0464 8076
		(S. E)	(0.04	0.0446	0.044 20146	0.0458	0.0419	0.040 4007)	0.0447	(0.046 12409	0.042 80595	(0.357
		2)	6917 85)	(7465)	0	(1778)	(297)	((7365))	0	17246)
			14.02	14.020	14.02	14.020	14.039	14.02	14.029	14.02	14.02	14.020
n-5 00		b ₀	33	45033	84505 3	14.028 45033	45033	84505 3	4503	84503	04505 3	14.028 45033
		(S. E)	(0.15	(0.147	(0.152	(0.158	(0.1323	(0.131	(0.1477	3 (0.143	(0.13	(0.142
	τ	,	2501 79)	27767)	31958)	91293)	1353))	933)	7833)	39646 9)	31323)
	= 0.5		0.398	0.2002	0.398	0.2002	0 2002	0.398	0.2002	0.398	0.398	0.2002
		b ₁	2463 9	0.3982 4639	24639	0.3982 4639	0.3982 4639	24639	0.3982	24639	24639	0.3982 4639
		(S. E)	0.037	(0.039	0.038 87015	0.0403	(0.0304	0.030 15527	0.0395	0.036 57738	0.033 85846	0.0345
		,	0523	79369)	0	(0645)	1311)	0	(280)	0	0	(036)
			14.16	44400	14.16	44450	44450	14.16		14.16	14.16	44400
		\boldsymbol{b}_0	8622 8	14.168 62277	86227 7	14.168 6228	14.168 62277	86227 7	14.168 6228	86227 7	86227 7	14.168 62277
		(S. E)	(0.13	(0.124	(0.124	(0.126	(0.1133	(0.107	(0.1287	(0.126	(0.13	(0.158
	$\tau = 0.7$		6163 1)	28989)	26196	6623)	2027)	97200)	110)	30567	10877 1)	29412)
	0.7		0.544	0 5445	0.544	0 5445	0 5445	0.038	0 5445	0.037	0.544	0 5445
		b 1 (S	5988 0.038	9882	59882 (0.034	988	9882	83981 0.014	988	31259 0 544	59882 0.034	9882
		(.s. E)	5513)	(0.034 42417)	04164	0.0344 (185)	(0.0303 3834)	59882	(0.0365 621)	59882	46117	0.0360 (2435)
			(T#T1/)) 14 42	(105)	5057)	0	<u>, , , , , , , , , , , , , , , , , , , </u>	0	0	(2703)
	τ	h	0862	14.420	08625	14.420	14.420	08625	14.420	08625	08625	14.420
	μ = 0.9	(S.	59 (0.10	86259	9 (0 101	86259 (0.199	86259	9 (0 150	86259 (0 1733	9 (0 162	9 (0.19	8626 (0.170
		E)	9593	94292)	41528	(0.100) 34413)	7539)	70290	7869)	50420	(0.18 49764	(0.179 1312)
			71)	,)	/	, ,)	,)	4)	,

649

	<i>b</i> ₁ (S. E)	0.629 3115 7 (0.06 5225 83)	0.6293 1157 0.0642 (0037)	0.629 31157 0.059 57375 ()	0.6293 1157 (0.057 89011)	0.6293 1157 0.0518 (7316)	0.629 31157 (0.049 42184)	0.6293 1157 (0.0544 1719)	0.629 31157 0.055 41073 ()	0.629 31157 (0.05 92570 3)	0.6293 116 0.0585 (164)
--	------------------------------------	--	------------------------------------	--	------------------------------------	------------------------------------	--	------------------------------------	--	--	----------------------------------

	Table 2(d): Bootstrap Simulation Study Results.											
Sa			Coeffi	cients and	d standaı	rd errors	of differe	nt estima	tion meth	od at vai	rious cor	ditional
mpl	Quantiles		X	XY	W	XY	- qua Wi	ild	PW	/Y	M	СМВ
e Size			Br	Fn	br	Fn	Br	fn	br	Fn	br	fn
	τ	b ₀ (S. E)	13.26 5205 91 (0.25 3459 03	13.265 20591 (0.235 59228)	13.26 52059 1 (0.25 17468 7)	13.265 20591 (0.227 65399)	13.265 2059 (0.201 2906)	13.26 52059 1 (0.20 04011 8)	13.265 20591 (0.234 91763)	13.26 52059 (0.25 76933)	13.26 5205 91 (0.25 3459 03	13.265 20591 (0.235 59228)
	= 0.1	b ₁ (S. E)	0.267 8109 7 (0.06 7448 43)	0.2678 1097 (0.060 37501)	0.267 81097 0.066 94987 0	0.2678 1097 (0.059 11688)	0.2678 110 (0.051 9626)	0.267 81097 0.050 67935 ()	0.2678 1097 (0.061 70839)	0.267 8110 (0.06 73241)	0.267 8109 7 (0.06 7448 43)	0.2678 1097 (0.060 37501)
	τ	b ₀ (S. E)	13.56 9892 48 (0.09 3053 91)	13.569 89248 (0.095 28379)	13.56 98924 8 (0.09 39035 3)	13.569 89248 (0.090 37328)	13.569 89248 (0.102 85546)	13.56 98924 8 (0.09 70743 5)	13.569 89248 (0.103 75223)	13.56 98924 8 (0.09 87138 6)	13.56 9892 48 (0.09 3053 91)	13.569 89248 (0.095 28379)
n=7 00	= 0.2	b ₁ (S. E)	0.337 2663 9 (0.02 5904 0)	0.3372 6639 0.0303 (9945)	0.337 26639 (0.02 85025 5)	0.3372 6639 0.0276 (8527)	0.3372 6639 0.0306 (7456)	0.337 26639 0.029 13177 0	0.3372 6639 0.0318 (5442)	0.337 26639 (0.03 08745 5)	0.337 2663 9 (0.02 5904 0)	0.3372 6639 0.0303 (9945)
	τ	b ₀ (S. E)	13.94 0069 97 (0.09 5950 77)	13.940 06997 (0.097 39919)	13.94 00700 (0.10 59499)	13.940 06997 (0.091 62193)	13.940 06997 (0.079 21619)	13.94 00699 7 (0.07 56366 7)	13.940 06997 (0.086 40105)	13.94 00699 7 (0.09 10530 9)	13.94 0069 97 (0.09 5950 77)	13.940 06997 (0.097 39919)
	_ 0.3	b ₁ (S. E)	0.425 1166 4 (0.03 2387 33)	0.4251 1664 0.0320 (6496)	0.425 1166 0.034 6486) (0.4251 1664 0.0310 (5137)	0.4251 1664 0.0269 (9180)	0.425 11664 (0.02 53871 4)	0.4251 1664 (0.027 49462)	0.425 11664 0.033 22176 0	0.425 1166 4 (0.03 2387 33)	0.4251 1664 0.0320 (6496)
	τ = 0.7	b ₀ (S. E)	14.16 4390 95 (0.09 8287 92)	14.164 39095 (0.103 21454)	14.16 43909 5 (0.09 58073 4)	14.164 39095 (0.091 45564)	14.164 39095 (0.097 99735)	14.16 43909 5 (0.09 17946 7)	14.164 3909 (0.100 6565)	14.16 43909 5 (0.10 11943 5)	14.16 4390 95 (0.09 8287 92)	14.164 39095 (0.103 21454)
		b ₁ (S.	0.535 9934	0.5359 9346	0.535 99346	0.5359 9346	0.53 <u>59</u> 9346	0.535 99346	0.5359 935	0.535 99346	0.535 9934	0.5359 9346

© 2023 NSP Natural Sciences Publishing Cor.

650	NS	Ð					Λ	1. Saad et a	il: The Perfo	rmance of	Quantile Re	gression
		E)	6 0.032 0135 (3)	(0.032 40598)	(0.03 01764 6)	0.0304 (8352)	0.0293 (2217)	0.022 18227)	0.0325 (470)	(0.03 34596 7)	6 0.032 0135 (3)	(0.032 4059
	τ	b ₀ (S. E)	14.71 8850 37 (0.17 9637 23)	14.718 85037 (0.164 09051)	14.71 88503 7 (0.16 89457 6)	14.718 85037 (0.174 17147)	14.718 85037 (0.161 48812)	14.71 88503 7 (0.14 12173 1)	14.718 8504 (0.187 9247)	14.71 88503 7 (0.19 08843 8)	14.71 8850 37 (0.17 9637 23)	14.718 85037 (0.164 09051)
	= 0.9	b ₁ (S. E)	0.542 1176 2 0.041 5461 (5)	0.5421 1762 0.0378 (9154)	0.542 11762 0.037 75214 0	0.5421 1762 0.0391 (6738)	0.5421 1762 0.0396 (3913)	0.542 11762 0.032 18176 0	0.5421 176 0.0425 (027)	0.542 11762 (0.04 16164 1)	0.542 1176 2 0.041 5461 (5)	0.5421 1762 0.0378 (9154)

Table 1(a) and Table 1(b) show, in the instance of LOOVE, that the values of MAE, MAPE, and RMSE, for the quantile regression at the conditional quantile ($\tau = 0.5$), "median regression" are less than their values for the simple linear regression with a small sample size (n=15). When the sample size is increased to n=25, 30, 50, 200, 500, and 700, the results show that the values of MAE and MAPE for quantile regression ($\tau = 0.5$) is smaller than their values for simple linear regression, but the value of RMSE is lower for simple linear regression than the median regression ($\tau = 0.5$).

In the absence of LOOVE, with all sample sizes, the RMSE for quantile regression at the conditional quantile ($\tau = 0.5$) "median regression" is bigger than the RMSE for simple linear regression, although the values of MAE and MAPE for quantile regression ($\tau = 0.5$) are fewer than their values for simple linear regression.

When we compare the performance of the Simplex method to the Interior-Point algorithm, we see that with and without (LOOVE), for all used measures MAE, MAPE, and RMSE, for extreme values of conditional quantiles ($\tau = 0.1$ and 0.9) with a small sample size $n \le 30$, the simplex algorithm gives results that are relatively smaller than the interior point, which is implying that the simplex algorithm is more accurate than the interior-point algorithm in the lower and upper quantiles. However, in the middle conditional quantile ($\tau = 0.25, 0.5, and 0.75$), the two approaches perform nearly identically.

The performance of the two algorithms is equal in large data, with increasing sample size (n=50,200,500, and 700), except at the upper conditional quantile, where the simplex algorithm gives results that are lower than the interior-point algorithm. This ensured that, while the interior-point algorithm's performance has improved in the lower quantile ($\tau = 0.1$), it still has a lower performance than the simplex algorithm at the upper quantile ($\tau = 0.9$).

The XY, WXY, Wild bootstrap, PWY, and MCMB approaches are compared in terms of their capacity to estimate standard errors of coefficients. The differences between the five bootstrap approaches may be better highlighted by comparing the results of a heterogeneous quantile model based on calculating coefficients using the simplex and interior-point algorithms. Table 2(a), Table 2(b), Table 2(c), and Table 2(d) display the results.

With a small sample of n=15 and 25, both methods WXY and Wild bootstrap are the best ways to estimate the standard error of coefficients. We notice that with the Wild bootstrap, the simplex algorithm outperforms the interior-point algorithm, whereas with the WXY method, the interior point algorithm outperforms the simplex algorithm.

In reality, its performance improves as (n) increases, such as (n=30 and 50). The XY technique performs somewhat better, while the PWY method performs the poorest at each conditional quantile. One restriction of MCMB's asymptotic validity is that both the number of observations and the duration of the Markov chain must be infinite. As a result, it may not be appropriate for situations with small sample sizes, as MCMB is only valid for high sample sizes.

According to Table 2(c) and Table 2(d), with a large sample size (n=200, 500, 700), the estimated coefficients of the quantile model were derived using the two methods mentioned above (the simplex and interior-point), and the standard errors of the estimated coefficients were determined individually in each technique. As a result, we will first provide discussion on both strategies for estimating our quantile model.

-

Warning message: In rq.fit.br(x, y, tau = tau, ...) : Solution may be nonunique

The warning message in the above code cautions about the solution's non–uniqueness while using the simplex technique. According to Barrodale and Roberts (1974), the inclusion of a null variable in the basis is a clue but not a necessary condition for non–uniqueness. This suggests that the ideal solution is an edge rather than a single vertex of the simplex. The interior-point approach may produce the same warning message about the solution's non-uniqueness, but for a different cause. Because the optimal solution is already near a central path, the non–uniqueness from the interior point implies that a group of points may be the best optimum solution.

The results will be compared for five variants of the bootstrap approach for the standard error according to the two prior algorithms to provide an educated comparison for standard errors. The comparison is carried out in two scenarios: one with a small sample size and the other with a large sample size.

With small sample sizes, n=15, 25, and 30, each WXY and Wild bootstrap methods are the best ways to estimate the standard error of coefficients. We notice that the simplex algorithm outperforms the interior-point algorithm for the Wild bootstrap, but not for the WXY method. In reality, the performance improves as n increases, such as n=30 and 50. Although the XY technique performs somewhat better, the PWY method performs the poorest at each conditional quantile. One disadvantage of MCMB's asymptotic validity is that it needs infinity for both the number of observations and the length of the Markov chain. As a result, it may not be appropriate for situations with small sample sizes, as MCMB is only valid for high sample sizes.

The performance of WXY continues to appear impressive with high sample sizes, n=200, 500, 700, especially with the interior point approach. Both XY and WXY are clearly inferior performance when estimating the model using the interior-point technique to the Wild bootstrap when estimating the model using the simplex technique. The efficiency of the PWY method steadily improves with large samples, especially in the upper quantiles, until it becomes competitive with the XY, but it still falls short of the Wild bootstrap.

The MCMB method is too time-consuming for large problems, and the most important characteristic of this method is that it has higher performance in the middle conditional quantile (0.25, 0.5, and 0.75) when estimating the model with the simplex algorithm, and the best performance in the extreme quantile when estimating the model using the interior point algorithm (0.1 and 0.9).

The violation of the homoskedastic assumption is perhaps the most common reason for using QR, although it is far from the only one. In the following portion of this section, the same prior simulation is utilized to demonstrate many QR properties with regard to the error component. The goal of this application is to demonstrate the SLR "mean regression" and QR behavior for various typologies of homogeneous and heterogeneous error terms using graphs with regression lines at each quantile (10th, 25th, 50th, 75th, and 90th) for large sample sizes of 200,500, and 700. Two models are shown in Table 3: A homogeneous error model with a normal error term is represented by model (1). A heterogeneous error model is represented by Model (2).

Error model	Error term	model _i
Homogeneous	ε~N(0,1)	model (1) $\rightarrow y_i = 14 + 0.4x_i + \varepsilon_i$
Heterogeneous	$\varepsilon \sim N(0, \sqrt{0.5 + 0.03 * x_i^2})$	model (2) $\rightarrow y_i = 14 + 0.4x_i + \varepsilon_i$

Table 3: A summary of the severa	al illustrative models utilized in this article
----------------------------------	---

The first column indicates the kind of error model, the second column indicates the error term, and the third column indicates the resultant model.

This part focuses on the interpretation of the QR estimated coefficients by drawing a parallel between homogeneous and heterogeneous regression models.

Fig. 1(a). Model (1): homogeneous error model (normal errors)

Fig. 1(b). Model (2) : heterogeneous error model

Fig. 1: Scatterplots, OLS line (red line), and conditional quantile lines (other lines), $\tau = \{0.1, 0.25, 0.5, 0.75, 0.9\}$, for a homogeneous error model (1) and for a heterogeneous error model (2) with sample size n=50.

Fig. 2(a). Model (1): homogeneous error model (normal errors)

Fig. 2(b). Model (2): heterogeneous error model

Fig. 2: Scatterplots, OLS line (red line), and conditional quantile lines (other lines), $\tau = \{0.1, 0.25, 0.5, 0.75, 0.9\}$, for a homogeneous error model (1) and for a heterogeneous error model (2) with sample size n=200.

Fig. 3(a). Model (1): homogeneous error model (normal **Fig. 3**(b). Model (2): heterogeneous error model errors)

Fig 3: Scatterplots, OLS line (red line), and conditional quantile lines (other lines), $\tau = \{0.1, 0.25, 0.5, 0.75, 0.9\}$, for a

homogeneous error model (1) and for a heterogeneous error model (2) with sample size n=500.

Fig. 4(a). Model (1): homogeneous error model (normal **Fig. 4**(b). Model (2): heterogeneous error model errors)

Fig. 4: Scatterplots, OLS line (red line), and conditional quantile lines (other lines), $\tau = \{0.1, 0.25, 0.5, 0.75, 0.9\}$, for a homogeneous error model (1) and for a heterogeneous error model (2) with sample size n=700.

The previous section focuses on the interpretation of the QR estimated coefficients results by drawing a parallel between homogeneous and heterogeneous regression models. Starting from a comparison of QR behavior on such different models. In fact, it is easy to understand how QR is important in dealing with heteroskedasticity, also, the utilize of different distributions for the error term will offer the opportunity to observe QR capability to estimate the whole conditional distribution in the presence of homoskedasticity.

For both models (1) and (2), scatter plots of conditional mean, conditional median, and conditional quantiles were presented in each figure for τ = (0.1, 0.25, 0. 5, 0.75, and 0.9). Model (1) in each image (1, 2, 3, and 4) shows estimated impact in the homogeneous variance regression: a change in the mean of the (y) distribution conditional on the value of (x). Model (2) in each image (1, 2, 3, and 4) shows impact in the heterogeneous variance regression: a change in each part "quantiles" of the (y) distribution conditional on the value of (x).

We notes that scatter plot of model (2) in case of heterogeneous variance is more scattered than model (1). For the homogeneous variance regression model (1) the only estimated effect is a change in the mean of the distribution of (y) conditional on the value of (x), where SLR slope estimates are then the same at all QR's. In contrast, in the (model 2), QR shows that slope estimates differ across quantiles because the variance in (y) changes as a function of (x). Thus, in such a case, OLS regression analysis provides an incomplete picture of the relationship between variables, as it only focuses on changes at the conditional mean. Therefore, the importance of QR is clear to describe the entire conditional distribution of a dependent variable.

From the previous discussion we conclude that QR offers a more complete view of relationships among variables for heterogeneous regression models, providing a method for modeling the rates of changes in the response variable at multiple points of the distribution when such rates of change are different. However, QR is also a useful tool in the case of homogeneous regression models outside of the classical normal regression model. When the error term satisfies the classical normal assumption.

5: Conclusion

Both MAE and MAPE, in the case of LOOCV, show that quantile regression offers more accuracy than simple linear regression when predicting error in the presence of a heteroscedasticity problem of variance. With all sample sizes, the simplex approach provides greater accuracy of prediction, especially at extreme conditional quantiles (t=0.1 and 0.9). In the intermediate conditional quantiles (t=0.25, 0.5, and 0.75), both the simplex and the interior point algorithms do equally well in predicting errors with and without LOOCV. For simple linear regression, the RMSE with LOOCV is the best metric. Based on the preceding simulation results, we may deduce and suggest the following inferential statistics surrounding standard errors of the coefficients of the quantile regression model:

1- The estimates of the "Wild bootstrap" approach are closer to the beginning point in our simulation in the median regression at (t=0.5) values than the other methods in terms of the capacity to estimate parameter values.

- **2-** With small sample sizes, the "PWY" approach delivers the poorest results, especially in lower quantiles (0.1 and 0.25).
- 3- While the "XY" approach produces adequate results, it is inefficient in comparison to "Wild" and "WXY".
- 4- When using the simplex approach to estimate the coefficients, both the "WXY" and "Wild" methods are competitive with all sample sizes.
- 5- When using the interior point approach to estimating coefficients, there is no objection to using "WXY" with all sample sizes.
- 6- The "MCMB" method is considered invalid with small samples; however, with large samples, it is recommended to use the "MCMB" with the interior-point algorithm if the values of interest are in the extreme conditional quantiles (0.1 and 0.9), and the "MCMB" with the simplex algorithm if the values of interest are in the middle quantiles (0.25, 0.5, and 0.75).

References:

- [1] Huang, Q., Zhang, H., Chen, J., & He, M. J. J. B. B., Quantile regression models and their applications: A review, *Journal of Biometrics & Biostatistics*, 8(3), 1-6 (2017).
- [2] Cade, B. S., & Noon, B. R., A gentle introduction to quantile regression for ecologists, *Frontiers in Ecology and the Environment*, **1(8)**, 412-420 (2003).
- [3] John, O. O., & Nduka, E. C., Quantile regression analysis as a robust alternative to ordinary least squares, *Scientia Africana*, **8(2)**, 61-65 (2009).
- [4] Ibrahim, A., & Yahaya, A,. Analysis of quantile regression as alternative to ordinary least squares, *International Journal of Advanced Statistics and Probability*, **3(2)**, 138-145 (2015).
- [5] Rodriguez, R. N., & Yao, Y., Five things you should know about quantile regression. In Proc. The SAS global forum 2017 conference, 2-5, (2017).
- [6] Koenker, R., & Basset, G., Asymptotic theory of least absolute error regression, *Journal of the American Statistical Association*, **73(363)**, 618-622 (1978).
- [7] Koenker, R., & Hallock, K. F., Quantile regression, *Journal of economic perspectives*, 15(4), 143-156 (2001).
- [8] Zhao, P., & Yu, S., An improved interior point algorithm for quantile regression, *IEEE Access*, **8**, 139647-139657 (2020).
- [9] Davino, C., Furno, M., & Vistocco, D., *Quantile regression: theory and applications, John Wiley & Sons,* 988, (2013).
- [10] Chen, C., & Wei, Y., Computational issues for quantile regression, *Sankhyā: The Indian Journal of Statistics*, 399-417 (2005).
- [11] Barrodale, I., & Roberts, F. D. K., Solution of an overdetermined system of equations in the 1 norm [F4]. *Communications of the ACM*, **17(6)**, 319-320 (1974).
- [12] Chen, C., An adaptive algorithm for quantile regression, In Proc. Theory and applications of recent robust methods, 39-48, (2004).
- [13] Koenker, K. R. & D'Orey, V., A remark on computing regression quantiles, *Applied Statistics*, 43, 410-414 (1993).
- [14] Karmarkar, N., A new polynomial-time algorithm for linear programming, In Proc. The sixteenth annual ACM symposium on theory of computing, 302-311 (1984).
- [15] Yanuar, F., Yozza, H., Firdawati, F., Rahmi, I., & Zetra, A., Applying bootstrap quantile regression for the construction of a low birth weight model, *Makara Journal of Health Research*, **23(2)**, 5 (2019).
- [16] Kocherginsky, M., He, X., & Mu, Y., Practical confidence intervals for regression quantiles, *Journal of Computational and Graphical Statistics*, **14(1)**, 41-55 (2005).
- [17] Bose, A., & Chatterjee, S., Generalized bootstrap for estimators of minimizers of convex functions, *Journal of Statistical Planning and Inference*, **117(2)**, 225-239 (2003).
- [18] Feng, X., He, X., & Hu, J., Wild bootstrap for quantile regression, *Biometrika*, 98(4), 995-999 (2011).

- [19] Parzen, M. I., Wei, L. J., & Ying, Z., A resampling method based on pivotal estimating functions, *Biometrika*, 81(2), 341-350 (1994).
- [20] He, X., & Hu, F., Markov chain marginal bootstrap, *Journal of the American Statistical Association*, **97(459)**, 783-795 (2002).
- [21] Wong, T. T., Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation, *Pattern Recognition*, **48(9)**, 2839-2846 (2015).