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Abstract: This work is devoted to propose a new solution to Schrödinger equation into a representation of the kinetic energy operator

on a discrete lattice. The matrix method is illustrated by studying stability of some heavy charm mass spectra. Theoretical calculations

are in good agreements with newly published experimental data.
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1 Introduction

Quarkonia are mesons with hidden flavor. They consist of
one quark and its anti–quarks. A charmonium is a
‘charm–quarkonium’; a bound state consisting of a charm
quark and its anti-quarks. Due to their huge masses, the
quantum numbers and basic properties of most states in
the charmonium family [1] can be described within a
simple model of a non-relativistic quark–anti–quark pair
(cc). In this model, the states, characterized by the orbital
angular momentum L, total spin S of the quark pair, and
the total angular momentum J. The total angular
momentum is reproduced easily by the vector sum of the
orbital and the spin momenta as per below

J = L+S , (1)

The total spin S is determined by the vector sum of the
quark and anti–quark spins;

S = SC +SC , (2)

Moreover, the total spin S should be even 0 or 1 only,
thus splitting of the four possible spin states of the pair
into singlet and triplet states. Moreover, the excitation of
the radial motion of the cc pair [2,3,4] results in a
spectrum of levels with the same L, S and J, and also
differing by this spectrum. It is customary to insert the

values of these quantum numbers for each charmonium
state in well–known spectroscopic notation form n2S+1LJ ,
where n = nr + 1, nr is the radial quantum number.

The time–independent Schrödinger Equation (SE) is
one of the basic equations in quantum mechanics. Its
solution is required in studying of atoms, molecules and
their underlying structures in addition to their spectra.
Many numerical methods (e.g., matrix method [5],
Numerov method [6,7,8,9,10], eigenfunctions expansion
method [8] and Newton method) have been used in
solving SE. One of the most important and simplistic
matrix schemes is extended to deduce the solution of
time–independent Schrödinger equation in spherical
symmetric QQ potentials [10,11], and this scheme is
referred to as Matrix method. In this work, the matrix
method will be introduced effectively to solve SE
numerically. The method is used to deduce the
eigenvalues and eigenfunctions of SE. The obtained
results are used to calculate spectra of some cc

charmonium states. Computed masses will be compared
to with experimental data. This paper is organized as
follows: In Section 2, the potential model and the
considered method used in solving Schrödinger equation
are outlined. Section 3, is devoted to discuss the results of
S, P and D charmonium states. And finally a short
summary is given in Section 4.
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2 Numerical method

The potential model used in solving SE is [12,13]
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where SC.SC = S(S+1)
2

− 3
4
, The spin–spin contact hyperfine

interaction term SC.SC is one of the spin–dependent terms
predicted by OGE (One Gloun Exchange) forces [14,15].
The reduced mass of the quark–anti–quark is referred to as
µ , mc is the mass of the charm quark, and S is the total spin
quantum number of the meson. For the considered mesons,
the parameters αs, b, σ , and mc are taken to be 0.5461,
0.1425 GeV 2, 1.0946 GeV and 1.4796 GeV , respectively
[16]. T represents the tensor operator, and the spin–orbit
operator is diagonal in a |J,L,S > basis, with the matrix
elements

< L.S >= [J(J + 1)−L(L+ 1)− S(S+1)]/2 , (4)

Charmonium properties could be defined as a wave
function of the bound quark–antiquark state that satisfies
the SE using the potential model given in the Eq.(1).
Radial Schrödinger equation with wave function
U(r) = rR(r) is written (in natural units) as

∇2U(r)+ 2µ(E −V(r))U(r) = 0 , (5)

where R(r) is the radial wave function, r is the
interquark distance and E is the total energy of
quark–anti–quark system. Eq.(3) could be rewritten as

−1

2µ

δ 2

dr2
U(r)+ [V(r)+

l(l + 1)

2µr2
]U(r) = EU(r) , (6)

The second derivative form of U(r) function can be written
as

d2U(i)

dr2
=

Ui+1 − 2Ui+Ui−1

h2
+O(h2) , (7)

where h is the interval between two points

h =
RMax −RMin

N
, (8)

where Rmax and Rmin are the extreme values of the
distance between the quark–anti–quark, N is the matrix
order.

An arbitrary value for r could be defined as per below

ri = Rmin + ih, i = 1,2, ..,N − 1 , (9)

Hence, we can rewrite Schrödinger equation for ri as per
blow

−U(ri + h)− 2U(ri)+U(ri − h)

2µh2

+[V(r)+m1 +m2 +
l(l + 1)

2µr2
]U(ri) = EU(ri) , (10)
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where Ui =U(ri) and Ui±1 =U(ri ± h)

− 1
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which could be written as

eiUi+1 + diUi + eiUi−1 = EUi , (13)

d(i) =
1

µh2
+V(r)+

l(l + 1)

2µr2
],e(i) =

−1

2µh2
. (14)

Eq.(11) could be transformed into a matrix form in
which d (i) (e (i)) represents the diagonal (non–diagonal)
elements, respectively. To solve this matrix to get the
spectra of charmonium, N and Rmax must be determined
accurately.

3 Result and discussion

In this work, the reliability of the matrix method is
studied by extracting the matrix method coefficients
which are the matrix order N and the maximum distance
between quark and anti–quark Rmax. The matrix method
coefficients is employed in studying the spectra of
charmonium. The calculated spectra are in reasonable
agreement with new published calculated data [16] and
recent experimental data [17] by using χ2 relation.

χ2 =
1

n

n

∑
k=1

(Mexp.
k −Mcal.

k )2 . (15)

where n is the number of existing experimental data,
M

exp.
k is the experimental mass and Mcal.

k is calculated
mass. To solve Schrödinger equation by using matrix
method, an accurate values of N and Rmax must give a
stable value for the charmonium mass spectra by setting
Rmax = 20 f m while changing N to the best fitting value.
The relation between N and the reverse of the calculated
spectra masses in GeV−1 of charmonium is studied by
changing the values of N from 50 to 300 with interval 5.
A FORTRAN program is constructed to accomplish this
task.

The stability of the reverse of mass is found around
N ≥ 45,75,110 and 142 for 1S,2S,3S and 4S states,
respectively, at Rmax = 20 f m. Similarly, we get the best
value for N by fitting the relationship between reverse
masses of P,D states and N at N = 61,86 and 110 for
1P,1D and 2D, respectively. Figures 1,2 and 3, represent
the relation between calculated spectrum and the order of
the matrix N at Rmax = 20 f m for S,P and D charmonium
states, respectively. Furthermore, studying the behavior of
the reversed calculated masses by changing the values of
Rmax from 2 f m to 50 f m at N = 200 is done perfectly.
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Fig. 1: The relation between theoretical spectrum and the order

of the matrix N at Rmax = 20 f m of S− charmonium states.
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Fig. 2: The relation between theoretical spectrum and the order

of the matrix N at Rmax = 20 f m of P− charmonium states.

The values which make stability of spectra are found at
Rmax ≥ 4,9,12 and 17 for 1S,2S,3S and 4S states,
respectively, at N = 200, and 14,10,12 for 1P,1D,2D,
respectively.

The calculated values of the masses spectra as well as
the experimental values for the considered states and best
fits χ2 are listed in table 1. From this table, one can easily
notice that the computed values of the spectra by using
the matrix method algorithm are in good agreements with
the measured data. This conclusion comes closer to the
smaller values of the fitting parameter χ2, ranges from
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Fig. 3: : the relation between theoretical spectrum and the order

of the matrix N at Rmax = 20 f m of D− charmonium states.
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Fig. 4: the relation between theoretical spectrum and the distance

between the quark and anti-quark Rmax for S− states.

0.0002 to 0.0003, imply the success of describing the
experimental data for the above algorithm.

Figures (1 - 3) represent the relation between the
calculated spectrum and the order of matrix N at
Rmax = 2 ( f m) for S,P and D charmonium states,
respectively. Figures (4 - 6) represent the relation between
calculated spectrum and the distance between the quark
and anti–quark Rmax at N=200 for S,P and D charmonium
states, respectively.

From the previous figures, the best value of N could
be set to be larger than or equal to 200. This value could
reflect perfectly the calculated masses as well as the
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Fig. 5: The relation between theoretical spectrum and the

distance between the quark and anti-quark Rmax for P− states.
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Fig. 6: the relation between theoretical spectrum and the distance

between the quark and anti-quark Rmax of D− states.

experimental data. Rmax = 20 f m could be used safely to
obtain theoretical spectra in good accordance with the
recently published available experimental data [17]. The
small value of χ2 shows that there is a good agreement
between our calculations and the available experimental
data as shown in table 1.

4 Conclusion

In this work, Schrödinger equation is solved numerically
as an eigenvalue problem within the matrix method. From

Table 1: Experimental and calculated mass spectra of (cc) states

in GeV . Summation of errors squares between Calculated and

measured masses χ2 have been outlined.

Name State Experimental Masses Calculated Masses Ref.[16]

MeV[17] MeV

j/ψ(1S) 13S1 3096.87± 0.04 3072 3090

ηC(1S) 10S1 2979.2 ± 1.3 3047 2982

ψ(2S) 23S1 3685.96 ± 0.09 3664 3672

ηC(2S) 20S1 3637.7 ± 4.4 3653 3630

ψ(3S) 33S1 4040 ± 10 4066 4072

ηC(3S) 30S1 - 4059 4043

ψ(4S) 43S1 4415 ± 6 4401 4406

ηC(4S) 40S1 - 4395 4384

χ2(1P) 13P2 3556.18 ± 0.13 3545 3556

χ1(1P) 13P1 3510.51 ± 0.12 3507 3505

χ0(1P) 13P0 3415.3 ± 0.4 3401 3424

hc(1P) 11P1 - 3521 3516

χ2(2P) 23P2 - 3959 3972

χ1(2P) 23P1 - 3929 3925

χ0(2P) 23P0 - 3857 3852

hc(2P) 21P1 - 3939 3934

χ2(3P) 33P2 - 4303 4317

χ1(3P) 33P1 - 4276 4271

χ0(3P) 33P0 - 4219 4202

hc(3P) 31P1 - 4284 4279

ψ3(1D) 13D3 - 3805 3806

ψ2(1D) 13D2 - 3800 3800

ψ1(1D) 13D1 3769.9 ± 2.5 3780 3785

ψc2(1D) 11D2 - 3800 3799

ψ3(2D) 23D3 - 4165 4167

ψ2(2D) 23D2 - 4158 4158

ψ1(2D) 23D1 4159 ± 20 4136 4142

ψc2(2D) 21D2 4158 4158

χ2 - - 0.0003 0.0002

the current study we noticed that the corresponding
obtained calculated spectra reflect reasonable description
to the new published experimental data [17] and recent
theoretical data [16]. The obtained results revealed that
predicted masses of S, P and D waves are very close to
the existing experimental values and other hypothetical
assessments. We have newly predicted states for the S,P
and D waves state of heavy mesons. It is found that the
method is simple for calculation and plotting of accurate
eigenvalues. The prediction of the model agrees well with
the experimental data. New extended studies by using the
matrix method to obtain the series of mesons spectra such
as bb, cn, cs, and cb are recommended.
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