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Abstract: In this work, we investigate a new sequential coupled differential system of Duffing type. The considered system involves
Caputo Hadamard derivatives. Based on both Banach contraction principle and Scheafer fixed point theorems, we establish two results
on the existence and uniqueness of solutions for the introduced problem. Some examples are presented to show the validity of our
results. To give more interpretation to the examples, we establish a new approximation of Caputo-Hadamard derivative for the case
1 < B < 2. Then, we plot the dynamics of one of the examples in terms of time and space coordinates.
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1 Introduction

Mathematical models involve fractional order derivatives
have been introduced significantly for studying several
phenomena in engineering and scientific disciplines, such
as physics, population dynamics, biology and health,
complex system, decision and control, see, for
example, [1-5]. In the present paper, in general we shall
be concerned with an important type of differential
problem that has many applications in real word
phenomena. The equation is called Duffing equation. For
more information and some applications of classical
Duffing equation on electric circuits and propagation in
electromagnetic, we refer the reader to the papers [6—15].
The standard form of such equation has been introduced
by G. Duffing [16] as follows:

d? d 3 .
m—x (r)+ cox (1) +kx(t)+ Ax’ (t) = Asin(ot),

such that m, c,k,A,A and o are respectively, the mass, the
damping coefficient, the linear stiffness, the nonlinear
stiffness, the excitation amplitude and the excitation
frequency.

For some other papers on Duffing equations of classical

or fractional order, one can see the papers [3-5, 17-20].
For some other papers on applications of fractional
derivatives in real word phenomena, the reader can
consult the references [1, 16,21,22], and [25-41].

Before introducing our Duffing type system, we cite also
the following nonlinear forced Duffing problem which
can be seen as a fractional version of the above standard
Duffing equation:

DPu(t)+8D% (t) + pu(t) + pu’ () = Asin (),
t€10,1],a>0

u(0)=A* e R,D*u(0)=B*cR,0< ax < 1,
1<pB<2,t€]0,1]

where D%, DP are the Caputo fractional derivatives and
8,p,1,A>0.

The motivation of our present work is in the use of
Caputo Hadamard approach and also in dealing with
sequential derivatives, this is in one hand. On the other
hand, the motivation of the present paper can be seen also
in the fact that Caputo Hadamard approach has many
advantages with respect to the usual Hadamard (and the
other) derivatives; the reader can confirm that the
Hadamard fractional derivatives cannot be used to
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generalize the fundamental theorem of fractional calculus
(FTFC) whereas the Caputo-Hadamard derivative can be
applied perfectly. The obtained Caputo Hadamard FTFC
is then very used to formulate other results with
applications in the study of Green and Stoke theorems, as
well as in the study of anomalous diffusion in some other
works. Many important properties like, semigroup and
commutativity for the derivatives are studied in details for
Caputo Hadamard approach.

So based on these advantages, we feel motivated in this
work to present a new contribution in this study since, to
the best of our knowledge, this is the first time in the
literature where such problem is investigated.

So, we consider the following nonlinear sequential
differential problem:

GDP (GDM 4 Ly)uy () + 61 fi (1,01 (1) u2 (1),
FD% uy (1)) + g1 (t,ur (1) ,uz (1) 1P uy (1))
=h(t),r€[1,T],T >1,

GDP2 (D% + Ly) ua (1) + 622 (t,u1 (1) ;2 (1),
GD%us (1)) + g2 (t,u1 (1) ,uz (1), 1P2u3 (1))
=hy(t),t €[1,T], T >1,

(GD% + L) ui (1) = 0,u; (1) = w; (T) = I%u; (),

O<oi<o<l,1<Bi<2,1<n<T,p;d >0,

i=1,2,

ey
where gDﬁf & D% and $; D% are the derivatives in the sense
of Caputo-Hadamard, I? denotes the Hadamard integral of
order p;, with: L;, 6; > 0,J = [1,T], the functions f;,g; € C
(J X R3,R) and h; are defined over J,i = 1,2.

More precisely, in Section 2, we will recall some
preliminary related to fractional calculus concepts for our
problem. In Section 3, by proving two main theorems, we
apply the fractional integral inequality theory combined
with the fixed point theory to study the questions of
existence and uniqueness of solutions for the considered
system. In Section 4, some examples are studied; we
establish a new approximation of the Caputo-Hadamard
derivative for the case 1 < B < 2, we present some
comparative graphs for one of our examples . At the end,
a conclusion follows.

2 Preliminaries

In this section, we need to work with the references [10,
11,18,23,24].

Definition 2.1. Let u > 0. The Hadamard fractional
integral of order p for a continuous function f is defined

by:

t A ds
Pr0) = g [ (le3) s Sn—1<n<n,

N
n=[u]+1,
where [u] denotes the integer part of a real number
i, log(-) = log,(-) and
—+oo
I'(w) ::/ e SsHlds.
0

Definition 2.2. Let
ACy ([a,b]) :==

{f: [, ] —>R,5”'feAC[a,b],5:t%}.

The Caputo-Hadamard fractional derivative of order u
for a function f € AC% ([a,b],R) is defined by:

! t\THLde\" ds
aDh f (1) = ﬁ/a (log;) (tT) f(s)?,

whenever the right-hand side integral exists. Lemma 2.1.
Let «f > 0 and f € L'([a,b],R).Then
19IB £ (1) = 19*B £ (1) and D*I%f (1) = f (1).

Lemma 2.2. Let § > o > 0 and f € L' ([a,b],R) .Then
DOIBf (1) =1P=%f(t).

Lemma 2.3. Let u € ACj ([a,b],R), n—1 < u < n. Then,
the general solution of

CDHu(r) =0

is given by:
n—1 INJ
u(t) = ch (log—) gt >a>0,
Jj=0 @
and we have:

PEDR ) —u(t)+ Y, (log )
aD u(t) =u(t)+ Y cj(log— ),
J=0 “

such that ¢; € R, j =0,1,2,...,n — 1. We need also the
following result:
Lemma 2.4. Let y; € C(J,R),i = 1,2. Then, the problem:

GDP(GD% + L) ui (t) = w; (t) ,t € J,
(D% + L) ui (1) = 0,u; (1) = w; (T) = I%u; (),

O<op<l,I<Bi<2,1<n<T,8>0,i=1,2,
(2)
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admits the following solution
ui(t) ==
1 /" (1 t)“z*' 1 /5' (l S)Bi*]
- 0o — oo =
T (on) i V85 (), V%%

a;+1
() 5 - L)) £ - OB

T T s
G+ [ 1 3)
(logn)% — (8 +1) I (8 + o)
i+ 0t —1
x/ lognl) '

( rp:) /S (1 Og )ﬁﬁl Vi (7) d—TT — Liu; (s)) %

I—vz (al + 2) (10g77 )5,'+Ot,'+1 1 T ( T> a;—1
I'(6+0+2) (1ogT)"‘r+ I'(og) )1 s

< (m/x(lg ) (o) & Lul<>)%},

YA (5+1).

uj,i = 1,2 be a

where (log1;)
Proof. Let solution for the

Caputo-Hadamard problem (2). By using Lemma 2.3, we
have

I/li(t) 2:

T (1oc,~) /lt (l"gg)aﬁl < T(B) / (1027 )ﬁl

dt ds 4)
i(T) — — Liui —
() 5 - L)) &
(logt)ai (10g1)0"Jrl
o+ T@m i

for some real constants a;,b;,c;,i = 1,2.
Since (gDo‘i + ki) u; (1) =0, we geta; =0
and by using the condition u; (1) = u; (T'), we obtain

, , o1
N (logl;"()glJrJlrlz")((xi) -/IT <10g g)

ri ()

ds

W) 5~ L)) L.

By using the fact that u; (1) = I%u; (1;), we have

r&+1) { 1
(logn;)® — I (&+1) LT (8i+ o)

X/O (og T) Si+ayi—1 (F(1ﬁl) ./'s (] 0g’ )ﬁz*l
() T L))
I'(0;+2)

S
B iF(5i+(Xi+2

C;i =

(oante]

Substituting (5) , in (5) , we get
r (6,~ +1) [ 1
(logn,) i (5 +1) LT (6 + )

< loe ) (g )

(0D L)) ©

r?(g+2) (logn)% %t
r(&i+ai+2) (logT)%t" I'(o)

o) ([ )

U L (s)> %} .

C;i =

d
X‘I/i(T)7

Then, replacing a;, b;, c; in (4), we obtain (3).

3 Main Results

For computational convenience, we introduce the notions:
Let

X ={ui|u; € C(J,R) , 5D%u;(t) e C(J,R);i=1,2}.

Obviously (X x X, ||(u1,u2)|[y,x) is a Banach space,
endowed with the norm

([ ur,u2) [l x =
max { | [ D% 01 o [ § D0
such that
uill.. = suplui (1)],  ||D%u;|., = sup |5 D%u; (1)]
teJ teJ
. We need also the bounded closed ball:
Cr={(u1,u2) € X x X : || (ur,u2)ycx <R|}-

In view of Lemma 2.4, we can define
A:XxX =X xX,by

A (ur,u2) (1) = (A1 (ur,u2) (t) , Az (ur,u2) (1)),

where, for any 7 € J, we have

ﬂi (logt)a,Jrl
O e 1) "I (o)

—L;u;

T ai—1 s Bi—
< (o2) (g f (o)
i (2) = 0 (5o (2) () f; D% ()

—gitn (7). (1) 1P ()]
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ds (5 +1)

—Liu; (s)) o N — 2 (logT)* r(o+1)
| (lc:’fgnz) o é(faj}) T T(aw+)) (logn,-)‘S"fF(SiH)’
* {F(&l—’—m) 0 (logﬁ;l) (log ;)% +o
X (F( 5, (log%) " [hi(T) . (F(8i+oc,»+1)
—6ifi (7,u1 (), uz (7)., D%u; (7)) —g,;lc,ul(f), (0 + 17T (o + 1) (log ;) 341
w2 (). 1Py (1)) 7 — L (5)) F(8,+05-+2)logT |

171—‘(06,'—6,'-1-1) F(OC,'—G,'—I—Z)

| I(0i+2)  (logmy)®t ! /‘T (10 T)“fl
r(6+o0;+2) (logT)“’H (o)1

i ) oe2)" o

v, (ogD)™ ™% (o +1)(log 7)™

—06ifi (T ur (7) ,uz (1), D% (7)) — git,u1 (1), Theorem 3.1. If (H,) and (H,) are satisfied and suppose
drt d
us (), 1Piu; (1)) — - —Liu; (s)) SS] also that

We begin by taking into account the hypotheses:
(H) : The functions f;, g; are continuous over
J x R3 and A; is continuous over J, i = 1,2.
(H>) :There exist nonnegative constants

Fij, Qij, i=1,2,j=1,2,3,

such that for allr € J,uj,v; €R:

max{(G,-.in +.le.)M,'+L,']V,' R (Gj-in—f—.Qgi)Mj‘i‘Liﬁj} < 1.

Then, (1) has a unique solution on J.
Proof. We have to prove that A is a contraction mapping.

For (uy,u3),(vi,v2) € X x X, we can write

3
|ﬁ(l,v1,v2,V3)—ﬁ(t,ul,uz,u3)| S Z lj|vj uj|7
J=1 [[Ai (vi,v2) = A (ur,u2) ||,
3 . .
1 4 %1 1 s s\ Bi—1
i (1,V1,v2,v3) — gi(l,uy,uz,u < Vi—Uujl, :<su log - —/ log —
|gl( 1,V2 3) gl( 1, U2 3)| j; lj| J j| ;e‘ll){r(ai) 1( gs) (F(ﬁz)l ( gf)
we put fori—= 1,2, X [01 ‘ﬁ (T,V[ (T) V2 (T) 52D6ivi(f)) 7ﬁ(7’-aul (T) s
{ } { } uz (T) 72Do-iui (T)) } + |gl (T,V] (T) y V2 (T) 7Ipivl' (T))
Qp =max Fj; and Q, =maxQ;j;. d
=12t oot — (T (2) 2 (7). 1P ()|
(H3) : There exist nonnegative constants Kj;, K»;, K3, ds (10gt)°‘i+1
i=1,2, such that forall 1 € J,u; €R,j=1,2,3: HLifvi(s) —ui (s)]) — (oe 1 1T ()
|fi (t,ur,uz,u3)| < Kyiy  |gi (¢, ur,u2,u3)| < Koy, T 7\ %! 1 s s\ Bi—1
></ log — / (log—)
|h,'(l)| < Kj;. 1 s F(ﬁ,’) 1 T
Then, for all i = 1,2, we set the following quantities: X [9"fi (T vi(7),v2(7) HDGiVi( ))—fi(Ta”l(T) )
¢ D%u; (T T,v1 (T 7),IPv; (7T
o 2(10gT)a"+p" I'(&+1) () D )‘+[|gl . d)r 2(2), (7))
@B Jtogn) (a1 — (e (2) i (1) Py ()]
LB d I(6+1
[ _togm)* P r(ar2) L) — (o)) 2 L0
T(oi+Bi+6+1) T'(&+0+2) \(logni)‘—F(&H)
. LB i i\ Oit0lii—
x(logni)a’w'ﬂ (log7) %P X {Fial /n (logm) e
(ogT) ™ T(a+fiD)) St
] 2 1
( </sl>./ (t027)
M — (log7)“HPi—e I(oi+2) x [6:]fi (T,v1 (7) ,v2 (1) .5 DOvi (2)) — fi (T,u (1),
Teth-o+1) I'(a-ot2) w2 () 55 D%ui (2)) |+ [ (7.1 (1) w2 (2) 170w (2)
(log T)a"Jrﬁ"*U" , dt
“TlatBr1) =i (Tun (7),u2 (7). 1P (7))] —
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N 2 i
L) =0l )5+ T s

(logny) ! 1 g7 T\

“logr)® T T (a)/ (logs)
s s\ Bi—
X<F /( )

x [6) \fz(”l ) (t
1y (7) 7 D%u; (7)) |
+gi (T, v1 (7),v2 (7) 1P (7)) — gi (7,1 (7) |
(@) P G+ L) -6 5|}

which implies that

[Ai (vi,v2) = Ai (w1, u2) .
2(10gT)ai+ﬁi

I'(oi+pi+1)
r(&+1) < (logn;) %P+
fogn 8 ] \T(@ A 57D
I’ (a;+2) (logni)5i+ai+1
L(Gi+ai+2) (logT)%"!

(logT)a"Jrﬁ"
T (ai+Bi+1)

< (612 + Q)

+

|(vi,v2) = (w1, u2) 5 x

. 2(logT)% I'(6+1)
|F@+ 0 Toognp o)
" (logn;)“*2
F(&'—I—OC,'—{-])
(04 1> (0 + 1) (logn;) %+ %!
I'(6i+o+2) logT

X[ (visv2) = (ur,u2) |y x

< [(6:i22f, + Qg,) Mi+ LiNi] || (vi,v2) — (u1,u2) ||y x -

Also, the reader can observe that

] ] 't t a;—0;—1
DOA; (u1,u2) (1) = 77/ (logg)

F(al Gi)ﬁ-l
1 s s\ Bi—1
X (m/l (log;) [hi (7)
_Gifi(Taul(T)vL‘Z(T)angUi”i(T)) .,
—&i(t,u1 (7),u2 (7). IP'u; (7))] % —Liu; (s)) Ts

N

(o+2)(1 o—0o;+1 1 T T o;—1
(@) (logn) )/ (e

I(o— o,+2)(1ogT)°‘f“F(ocl

), (oe) ).
Gﬁ(r uy (7),u> (7 )CCIZ):’W(T)) .
=8i(t,u1 (7),u2 (), 1Pui (7)) — —Liui(s)) —

)aHDUivi(T)) 7ﬁ(7’-a“| (T)v

We have also

DA (01,v2) = DA ) ..
t

1 t o;j—o;—1
D <supy —— (10 —)
ze?{r(a'_ci) < gs
—1

(ﬁ,) / (1027 )ﬁl

x [0 |fi (z,v1 () ,v2 (1) .5 D% i (7))
— fi (z,u1 () ,u2 () 5 Dui (7)) |
+gi (7, v1 (1) ,v2 (7). IPvi (1))

— gi(tur (7),uz (1 ,Ipiui(f))|]d_,:

HLalvils) = 6))

[ (04+2) (logr) %"
I (04— 0;+2) (logT)% ' I (o)

< (o) (r 022"

X I:Gj‘ﬁ (T,vl (T),VZ( ),HDU’VI'( ))

_ﬁ(Tvul (T),Mz( )72D0'i (T))‘

+lgi (z,v1 (1) ,v2 (7). 1Pvi (7))
)

(
— gi(t,u; () ,uz(7)
+Li|vl~<s>—ui<s>|>@}

drt
1Py (1))

s
(log T)aiJFﬁi*O'i
I'(ei+pi—oi+1)

IN

(6:27; + Q)

I'(0+2) (logT)%+hi—ai
r(og—o0i+2)T(a+Bi+1)
X [(vi,v2) = (u1,u2) ||y« x
L'[ (log )%~ (ai+1)<logT)“i6i]
"IT (04— o0+ 1) I'(0;—0;+2)
X [[(vi,v2) = (u1,u2) | o -
< [(6:2f;+ Q) Mi+ LiN]
X |(vi,v2) = (u1,u2) ||y ex -
Thus,
A (vi,v2) = Ai (u1,u2) ||,
< max { (6.2, + 2;) M,
+ LiN;, (6:2f, + Qq,) M; + LiN; }

X [(vi,v2) = (a1, u2)[[x o x -

We conclude that A;,i = 1,2 is contractive, so A is
contractive. As a consequence of Banach contraction
principle, we deduce that A has a unique fixed point
which is the unique solution of (1). Now, we prove the
existence solution by applying following Lemma of
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Schaefer fixed point.
Lemma 3.1. Let X be a Banach spaceand S: X — X

be a completely continuous operator. If the set
G={xeX:x=uSx,0<pu<l1}

is bounded, then § has a fixed point in X.

Theorem 3.2. Assume that the hypotheses (H),(H3) are
satisfied. Then, (1) has at least one solution defined over J.

Proof. We proceed as follows:

Step 1: Since f;,g; and h; i = 1,2 are continuous,
then A is continuous on X x X.

Step 2: For all (u1,u;) € Cg and by (H3) we have

A (ur,u2)..
2 (logT)%*Pi
I'(og+Pi+1)
I'(6+1)
[(logm)* — I (8,+1)|
" (logm;)* Pt
I'(0+Bi+6+1)
% (o +2) (logT)P~" (logn;) o+ %!
I'(6+0+2)I (a;+Bi+1)
2 (logT)% rs+1)
Fl@+1) " J(ogn)® — I (8+1)

X O!i+5i
X(U%m)

< [6,K1; + Ka;i + K3/]

+L;R

r (61 =+ o; + 1)
(0 + 1)T (04 +2) (logm;) ¥ % +!
I'(Gi+oi+2)logT
< [0iK1i + Ko + K3i]) M; 4 LiRN; < 4-00,i = 1,2.

and

D% A; (ur,u2) || <
(logT)aH“ﬁi*o'i
(i +Bi—oi+1)

I (042)(logT)%+Fi—ai
F(oci—cri+2)1"(a,~+[3,~+l)
Lpr|0eD)¥ % | T(0i+2)(logT)** ]

F(OC,'—G,'—I—I)_ F(OC,'_—G,'—I—z)F(OC,'—i-])
< [6iKii+ K+ K3i]M; + LiRN; < +o0,i =1,2.

[6,K1; + Kai + K3;] [F

Hence, for any (uj,up) € Cg, we obtain
[[A; (1, u2) ||y x < 4eo,i = 1,2, which implies that the
operator A is bounded on Cg.

Step 3: A can map bounded sets into some
equicontinuous ones of X x X : Let 1,1, € J with 1] <1,
and let Cr be the above bounded set of X x X.

For all (u,u;) € Cg, we have

] |Ai(?]17”2) (fi)—aﬁil(uhuz) (tf1)|m71
= ’r(ai),[(log?z) ~(1027) ]

X(r%»ﬂ“@gi)mlmﬂﬂ

—6if; (t,u1 (1) ,u2 (1) 5 D%ui (7))

ds

) i~ s s i{
+ﬁfn <logt—2 l l<ﬁ/l (log;)ﬁ :

X [//li(f) — B,f, (‘L’,u] (T) N75) (‘L') ,gDGiu,’(T))

— g1 (1 () (2), PP ()]

)Oc,'+1 _ ( )OCH»I

ds (logt logt
—Liu; (s)) - (log )&

Al e

X [//li(f) — B,f, (‘L’,u] (T) N75) (‘L') ,gDGiu,’(T))

— g (0 (3) 0 (1) 1P (1))]
—Liui(s)) %

0:K1i + Ko + K3
I'(;+Bi+1)
+ ‘(10gt2)0"'+1 - (10gl1)ai+l‘ (10gT)ﬁ"71]

H (logtz)a"Jrﬁ" - (logtl)“i+ﬁi

LR ) )
a1 [[(logt) — logn)*|
1
(1Ogt2>a,‘+l - (10gtl )O!,'+l ’
+

logT

Similarly as before, we have

suz) () — DA (ur,u2) (t)| <

|D6iAi (u] u
]|: H o;—0o;—1 151 0;—0;—1
log—) — (log—)
S S
1

1
— g (2) 0 (1) 1P (1)) Lo (5))

S

1 15 t2 a;j—o;—1 1 N Ky ﬂifl
- - log 2 _ log =
=0 /,, oz ) (r(ﬁ,»)/, (1o2)

)
X [//li(f) — Q,fl (‘L’,u] (T) N75) (‘L') ,2Do;ui(7:))
— gi(%,u1 (1), (2), P (1))

ds  T(0;+2)

Lo (s 22\ E)
i (8)) < I'(0—0;+2)

)oci—o‘,-+1 - (10gtl )Ot,'fo‘H»l

(logT)OCi+1

o—1 s o\ Bie
w ) (25) (e ) ()"

% (logt>
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—6:f; (T ui ( ),gDafui(T))
fgm m( ) e (3), mu;( m"—f ~Lui(s))
< [6iK1; + Ko + K3
‘(logtz)aﬁﬁﬁaf — (logt )aﬁﬁ"*q"
I'(og+pBi—oi+1)
T ’(logtg)a"fc"ﬂ ~ (logt, )a,-—aiJrl’
I (0;42) (logT)P!
I'(ai—0;+2)T (a+Bi+1)
|(log2) %% — (log )%~ |
I'(aj—0;i+1)
(o+1) ‘ (logh,) %~ %! _ (logs, )%~ ’
I' (aj—0;+2)logT

+L;R

+

The right hand sides of (5) and (5) tend to zero and they

do not depend on (uy,uy) ast; — 1.

As an implication of Steps 1,2 and 3, and thanks to

Ascoli-Arzela theorem, we can conclude that A

completely continuous.

Step 4: The set

G={(u,up) €X x X : (u1,up) = UA (u1,uz), 0< u < 1},

is

can be bounded. Let (u),u2) € G, then, we have (u),uz) =
UA (u1,uz) for some 0 < u < 1, so that means (uy,uz) =

PA; (uy,up) i =1,2.

Hence, for i = 1,2 we can write

lAp (uy,u2) |, <

2(10gT)a"+B"
0Ki;+ Ko+ Ky | —=——2——
pmax [6:K1; + K> + K3 Tt Bt 1)

r (61 + ]) (log nl.)ai+ﬁi+5i
’(logni)‘s"—l"(5,~+1)‘ T(o+Bito+1)
I? (0 +2)(log T)ﬁ,-fl (log ni)5i+a,-+1 )

F(&+ow+2)C(o+Bi+1)

2 (logT)% I'(6+1)

PO togm)® —r (84 1)
y ( (logn)*“**

+L;R

I'(Gi+oi+1)

and
D% A (ur,u2) .. <

(]OgT)Otﬁﬁi*Gi
'+ Bi—oi+1)

I (0 +2) (logT)% Pi=ci
I'(ai—0i+2)I' (0 +fi+1)
LR { (log7)%%  (o+1) <1ogT>""'ﬂ } <

I'(aj—0;i+1) I'(aj—0;+2)
[.Lm%ll)é{[eiK”Jeri+K3,']M,'+L,'N,'R} < o0,
=1,

pmax { (6K + Ka; + K3/

i=1,

+

From (5) and (5), we see that ||(u1,u2)|/yyy < oo
Consequently, G is bounded.

As a consequence of our above lemma, it can be
concluded that A has a fixed point which is one of the
solutions of the coupled system (1).

4 Examples

Example 1.Consider the following system:

G0N (G055 +102) i (1) + [0 1)

507+ (14| 5D%5uy (1))
1
cos (uy (1) +1%%ur (1)) ¢

904 =e2 1€ ]l,e],
CD1.71 CDO.67+ (t)+ 1073
H H 66m3 ) o7

cosu (t) N 5D u; (1)

370e3vi+1 w0 (14 |DO¥x (1)]) (5)

sin (I/ll (l‘) —10'6u2 (t) +l‘)
87t +1

=t+5,t€l,e],

(GD* +1072) uy (1) =0,

1
(C13067+—66 )u2(1):o,

uy (1) = uy () = 1°7uy (1.33),

uy (1) = up (e) = 1°7%u, (1.6),

where
oy =0.55,00=0.67,4, = 1.69,5, =171,

1 1 103
Li=102L,= 6, = -
1 s L2 6677:3, 1 5077.'57 2 o7 )
o] = 0.5,62 = 0.49,[)] =04 ,P2 = 067 8] = 075,
52 = 0.72,1‘[1 = 1.33,1"2 = 1.67

|DO‘5u2 (t)‘

i (o ()00 6) 00 0) =

+(ai+1)r(ai+2) logm;)**t! - (1+1D%3uy (1)[)”
I'(6;+a;+2)logT - (11 () 192 (1))
cos :
ymax{[9K1,+K2,+K3l]M +LiN;R} < oo, &1 (tﬂ/ll (t)7u2(t)710-4ul(t)) = & 99¢! “ )
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fo (t,uy (1) ,uz (1) D" Puy (1)) =
cosu; (t) |DOus (1)
3703yt e (1+ (D04 (1)])

& (t,m (t),ua (1) ,1"Cus (t)) =
in (o () 2 0) 1)

87! +1
We havei: | | |
N7 Q2708 T 99,0 2 T 370037782 T 8762

Since, it is found that
M, =0.82663,N; =2.6188, M, =1.1610,
Ni =2.5436,M, = 0.84379,N, = 3.3805,

M> =1.0263,N, =2.6147,
and

(61925, + Qg ) My +LiN; =2.9267 x 1072,
(QQ.QfQ + .ng) My +I,Ny =2.9645 x 1073,
(91.Qf1 +.le)M1 +L1N1 =0.02976,
(6:Q4, + Qq,) M+ LN, =2.8742 x 1077,

Note that
max { (602, + Q) Mi+LiN; , (6:Q; +Qq;) Mi+ LiNi }
<0.02976 < 1.

Thus,Theorem 3.1. implies that the system (5) has a
unique solution on [1,e].

Example 2.Consider the problem:

—4
1(:_ >M|(l‘)+
up (1) +12+1)

' 26‘t3>3
sin (uy (£) —1%%uy (t) +1) 1
2log(3r+5) N

1
(7e)®

Cplol (€063
0 (G000

sin (gDo'51

¢ pl63 CD091+107 s (1)

(
(7+10g2)” |CD07 (1)] ©
2+ 1)@ (1+ 5D uy (1))
|1059 (t)‘ - 1
3e (14 |10%uy (1)) 1+30°

t€lel,

(IC;DO.63+107 ) ( )
(§DO1+1073) up (1)
up (1) =uy(e) —105514
I/lz(l):uz( )*1082

07
07
2),
25).

= =

where
fi (t,m (t),uz (t).5 D% uy (t)) =
sin (§D% uy (1) +13 +1)
2el +3 ’
g1 (11 (1) (0), 10w (1)) =

sin (I/ll (t) 710'6142 (t)+t)
2log (3t +5) ’

fo(tur (1) uz (8) g DT un (1)) =
‘f,D(”uz (t)‘
2+ 1) 72 (14|50 uy (1)])

82 (t,m (t),uy (1) ,1°uy (;)) —
}10.591/[2 (t)}
3et2+1(1+|10.59u2(t)|)’

1 1
hy (1) = pErs hy (1) = 130"

Bi=1.91,B,=1.63, a1 = 0.63,0 = 0.91,

1073 104 )
Li=——L=—,0=——=,060=(7+1log2)”
1= o2 2T 1500 ? (T b = (7+1og2)™",
o = 051,00 =07, p; = 0.6, po = 0.59 ,6; = 0.55,
62:0.82,111:2,172:2.5,R:E.
Wehae'K—lK—lK—]

ve! 11_2@4’3’ 12—271_2; 21_210g87

1 1 1

Kn=15K1=75.Kn =77

and HAI (xl,x2)||(x, < 0.98799, HAZ (xl,)Cz)H(x, < 3.
127,{|D%1 Ay (x1,x2) ||, £0.43617,||D°7 Az (x1,:2) |, <
8.1682 x 1072, || Aipt (uy,u2) ||, < 3.127p,
HDO-"[JA,' (u],uz)Hm <043617u:0<u<1,i=1,2.
Hence, Theorem 3.2. holds true, witch implies that (6)
has at least one solution on [1,¢].

S Numerical Approximations and
Simulations

In this section, we present an approximation for Caputo
Hadamard derivative for the case of 1 < § < 2. To do
that, we need the method developed in the work [10].

Theorem 5.1. Let y € € (J,R), and 0 < o < 1, then the

Caputo-Hadamard derivative presented as the following
convolutional form:

HDa tk Zb]ku t])+Rk

J=
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where

—ayk, Jj=0
bjy= aj,k*aj.#l,k; j=12,...k—1
Qg ks J:k
1-o l-a
1, 1,
o) " (o)
Ii—1 b
ajak_ 1 B
r2-—a)log—-
I
L e\ ¢
Y[ ()
Rk B j=1 tj—1 S
Ir'l—a)
t ul(ti— d
x| Su(s) y(t) t(’ 1) as
10g_f S

Proof. Now, let us consider ourcase 1 < <2.For T > 1,

we divide [1, 7] into N subintervals with 1 =79 <#; <--- <
o1 <ty <---<ty=T,with stepwise h =t —t;_1,1 <
k < N. By a linear interpolation at t =7, 1 <k < N, we
have:

/ o) B
(

o) 2<>"s

N

t 1-B
*ﬁ /,01 (10g) ™

'tk -B
+1"(21—[3) /,7 (log%)l

xu( ) 2M(lk ])+Lt(lk 2) @

173 2 s
(log—)
Tk—2

Y55 Cik (u (1j51) = 2u (1) +u (1j-1))
+F (u(t0) = 2u(tr) + u(t2))
+By (u (1) — 2u (tx—1) +u(te—2)) + R,

where
2-p 2-B
(log —k) — (log t—k)
c lj- j
j!k == t: )
r(3—p)log—
l‘j,
2-B 2-p
( (log —k) — (log ;—) )
0
Fk - 1 5
I'(3—pB)log .
0
1 1 178 )Zﬁ
B log —
‘ (3-B) log T (( fk—2
k=2

We omit the truncation error R. Then (7) can be rewritten
as follows:

k=3

HDB tk ZT5 ju t])+Fku(t0)+Bku(tk)+Tlu(tl)
Jj=3
+Tou(t2) + Tsu (te—2) Tau (tr—1)
where
T5;=Cj 14 —2C;;+Cjy14
=Gy — 2k,

=Gy —2C i+ Fy,
T35 = Ci3 4% —2C 24 + B,
Ty =Ci 24— 2By

To solve numerically our problem, we implement the
previous approximation on

CDP (SD% L) u(t) = w(1),

S0, it yields

By (L 1 bk, k)

l[/(tk (ZTS/M t])+u(t())Fk+u(t|)T1
J=

+u(t2)T2 + u(tk,z)bkfz’kT?) + u(tk,1T4)

k-3 j

_ ( Z 15 ; Z bi’ku(t,-) + u(l())bo,k(Tl + L+ T+ T+ F)
=3 i=0

Fu(t)bi (T + T+ T3+ 1Ty)

+u(t2) ok (To + T3+ Ts) + u(te—2) bi—2 4 (T3 + T4)

k=3
+“(tk71)bk71,k * Ty + (T3 + T4) Z bl-yku(t,')) .
i=3

Now we show the behavior of the dynamics of the first
example, adopting the developed method.

First of all, we attempt to display the solution of the
corresponding ODE by MuPAD, then we tackle the given
problem using Matlab. Behaviors are plotted,
respectively, in figures

@© 2022 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

350 = 0)

M. Bezziou et al.: Solvability for a differential dystem...

enatul
ot A

i)

Fig. 1: A : Numerical simulation for examples (5) for o1 = 0.55,
02 =0.67, B1=1.69, B2 =1.71 and exact solution.

Uiy

Fig. 2: B : numerical simulation for examples (5) for a1 = 0.85,
B1=1.9, B2 =1,85, o2 =0.75, and exact solution

i)

Fig. 3: comparative graph between A and B

6 conclusion

In this work, a sequential differential system of Duffing
type, that involves Caputo Hadamard derivatives, has
been investigated. For the above introduced system, we
have proved two main results on the existence and
uniqueness of solutions. Then, we have illustrated the
results by some examples. Another important point that
has been discussed in this work is the proposition of a
new approximation for the Caputo Hadamard derivative
in the case of 1 < 8 < 2; such approximation has allowed
us to present a numerical study with some graphs and
simulations for one of our examples.
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