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Abstract: In this paper, we generalize a new result on absolute index double matrix summability. Dealing with |A|;-summability, Savas
and Rhoades [E. Savas and B. E. Rhoades, Nonlinear Anal. 69, 189-200 (2008)], established a result on absolute indexed double matrix
summability of infinite series which was generalized by Jena et al. [B. B. Jena, S. K. Paikray and U. K. Misra, Tbilisi Math. J. 11 ,
1-18 (2018)], for |A, §|;-summability. Here, we derive a new and more generalized result on |U, 8, y|4-summability. Finally, we also
highlight some important new and well-known results in the line of our findings in the conclusion section. We also suggest a direction
for future researches on this subject towards application areas of science like a rectification of signals in FIR filter and IIR filter to speed
of the rate of convergence.
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1 Introduction and Motivation Definition 2.(see [2]) If

nE ity — 1,1 F <o, 3)

ngk

n
Let {s,}= Y ai be the sequence of partial sums of the
k=0 n
series Y ay,, and let T = (u,;) be an infinite matrix, then
the n'" matrix transform {u, } of {s,} is given by

1

where t, is the sequence of (C,1)-mean of the series, then
Y ay is summable |C,1|y.

d Definition 3.Let {p;} be of positive numbers and
Un =Y UnkSk- (1) .
k=0
Pi=) pr—eo, “
Definition 1.(see [1]) If r=0
i where (P_s=p_s;=0,5 > 1).
lim u, =s, — .
n—eo If oy defines the (N, ps) mean [3] with
thenY ay, is said to be matrix summable (or T - summable) 1 &
to s, and if Gx=f—,sszqsq, P;#0,seN (5)
q:

r;'“"_u"_lkoo' @ and limy,. 05 = k, then Ya; is (N,ps;) summable

enerated by { ps}.
then, Y.a, is absolute matrix summable (or |T|- £ Y {psd
summable). Furthermore, if {o,} is of bounded variation with

index ¢ > 1 [4] with
Moreover, the matrix T = (uyy) is regular if,

o Ps g—1
. . 2 _ q
lim s, = s = lim u, =s. )y ( ) |05 — 0y—1]7 < oo, (6)
n—soe0 n—soo n=1 \Ps
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then Y ay is [N, ps|,-summable.

Let U = (up) be a normal matrix. Then the
transformation of sequence s = {s,} to U(s) = {Ux(s)}
by U is given by:

n

Un(s) = Y ttysy, n=0,1,---. (7
v=0
If N
Z |”nn|liq|ZUn(S)|q<°°a (®)
n=1

then Y a, is |U|, summable, ¢ > 1, and if

8

lttn|' TP AU, (5)]9 <oo, 9)
1

n

then Y.a, is |U, 8|, summable, ¢ > 1.

Also, if

Y [t I ODAU (5) |7 <00, (10)
n=1

where 7 is a real number, ¢ > 1,0 < § < 1/qg and
AU, (s) = Uy(s) — Up_1(5),
then Y a, is said to be |U, 8; y|,-summable.
Taking U = (N,p,) in condition (9), then |U,§|,

changes to [N, p,; 8|, summability. Also, if we take § =0
in condition (9), then |U, 8|, changes to |U |, summability.

Now, we use the following notations in the main
result as below.

We are given with a normal matrix U = (u,). Two
lower semi-matrices U = (&) and U = (i) are defined
as

n
Upy = Zuni; n,v:0,1,2,~-~

(11)
i=v
and
iloo = Upp = up0, Upy = Upy — Up—1, n=12,---. (12)
Then, we have
n n
Un(s) = Z UnpySy = Z UpyQy (13)
v=0 v=0
and
n
AU (s) =Y iimay. (14)
v=0

Similarly, let U = (i, ji) be a lower-triangular matrix
and the partial sum’s sequence of } Y a,,, is denoted by

{Smn}. The mn th U-transform of the sequence {s;,} is
defined as,

m n
Tym = Z Z UmnuvSuv-

u=0v=0
Note that, a doubly infinite matrix U = (i) is

doubly triangular if, u,,, =0 for j>m or k>n. Also, for
any double sequence {Vyy, }, Ay; is defined as:

A1 Vey = Viy = Var 1y — Vay el T Varlyt1-
Similarly, for any fourfold sequence { Vyys},
Allvxyrs = Viyrs — Vax+1y,rs — Vay+1l,s + Vet y+1,ns5
Arsvxyrs = nyrs - Vx,y,r+l S Vx,y,r,s+l + Vx,y,r+l,s+l;

AOstyrs = Vayrs — Vxyrs+15

ArOnyrs = Vxyrs — Vxyr+1,s- (15)

Let {sy; } denotes the partial sum of the series Y} by;.
If [5]

YYD AN Ty 1] <o, (16)
k=1i=1
then .Y by, is |U|, summable, g > 1 and if [3]
YOY (k)P A Ty g [ <o, (17)
k=11=1
then Y'Y by, is |U, 6|, summable, g > 1 and 6 > 0.
Also, if
Z Z(kl)y(6q+q71)|Allkal,lfl |9<oo, (18)

then Y. Y by is |U,0;7|, summable, g > 1,0 < 6 < 1/q,
YEZ.

Let U and U be two doubly triangular matrices defined
as follows

m n
Umnpn = Z Z Umnuy

p=pv=n

and
mppn = Allﬁmfl’nflyip,n (m,n eNp=: {O}UN). (19)
Note that,

110000 = 10000 = @0000-
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Let yu represents the (kI)" term of U-transform of

k
Yy Z byvAyuy, then we can write,
n=0v=0

k1 noov
Ykl = Z Z Ul py Z Z bpnApn
n=0v=0 p:On:O
ko1
= Z Z bpnApn Z Z Ukl v
p=0m=0 =pv=n
k

2:. Z bpnApnTikipy -

Thus,
Ap1Yk—1,-1
-1

Kool
=Y Y bondoniipn — Y brneniic—11-1kn
p=01=0 n:‘)
k—1

=Y bpidpiti—14-1p0+ Z bpiApitiki—1,p
p=0 p=0

!
+ Y brdinTic—114n
n=0

kol
=Y. Y bonAonikipn.
p=0n=0

Since,

W11 =Wk 1,p0 = Ukl 1,p0 = Up—1140 =0

and
b = Sk—11-1—Sk—1— Ski—1 + Sk,
S0,
Anyr-1,-1
kol
= figipn Aon (Sp—1,n—1 = Sp—1,9 — Sp.n—1 + Spn)
p=0n=0
k111 k-1
= Apn (lxipndon)Spn — Y fitp+1,1hp+1,15p1
p=0n=0 p=0

- !
=Y dkrgnet MnSin + Y rakn Ay S

Also, we have

ApoliripiApr = Ap1Apoiixipr + ik 1p+1,14p0Ap1
and
Aonlkikn Ay = MenAon Gkikn + Ak 1.k n+180n Akn -
Clearly,

k-1 -1
Y (ApoiikipiApi)spr + Y (Aoniiein Ay )sin
p=0 n=0
k—
Z Ap1Apolikipr + Gk 1.p+1.18p0Ap1]Sp1
-1
+ Y [ Aon ik + Gt k180 Men sk - (21
n=0

Next, we present the following Lemma for two
dimensional case, which is similar to the one dimensional
formula helpful in proving our main result.

Lemma 1.(see [5]) Let (vpy) and (wpy) be two double
sequences. Then

Apn (Vonwpn)
= wpnApnvpn + (Aonvp+1,n)(Apowpn)
+ (Ap0vp.n+1)(Aonwpn) +Vpr1m+148pnwpn.  (22)

In the year 2008, Savag [1] has proved a theorem for
generalized absolute summability factors. Subsequently,
Savas and Rhoades [5] has proved some inclusion
theorems based on double absolute summability factor
theorems and applications. Furthermore, in 2018, Jena et
al. [6] has established a result on |A;J|;-summability.
Also, many interesting results related to matrix
summability were provided by many researchers in [7,8,
9,10].

Motivated essentially by the above-mentioned works,
here based on |U, 3, y|,-summability of double infinite
lower triangular matrix, we have proved a new theorem
that generalizes the result of Jena et al. [3]. Finally, at the
concluding section we have presented some remarks in
support of our result.

n=0 p=0
k=l 2 Main Result
+ Z Mklplﬂvplspl
p=0 The purpose of the article is to generalize the result of Jena
k=101 k=1 etal. [3] for |U, §,7|,~summability, where g > 1.
=Y Y Aonldwpnion)son + Y (Anoiiuipidpr)spl !
p=01=0 p=0 Theorem 1.Let U be a doubly triangular matrix with non-
—1 negative terms satisfying
+ Y (Aoy s My ) sk + Aaia M Sia - (20)
n=0 Ang_14-1pn =0, (23)
© 2022 NSP
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-1

Zuklpv— Z”kl 1o = b(k,p)

and Z Uklun = Z Up—1lun = u(l,n), (24)
u=0 u=0
Klugy = 0(1), (25)
Ukipn = max{uk,lﬂ,p,naMk+l,l,p,n}7 (26)
where (k> p,l>mn; p,n=0,1,...),
koI
Y Y wpn =001 (27)
p=0M=0
K+l L+l s
Y Y (k) Apniinpn|
k=p+1i=n+1
= 0((pn)"upnpy), (28
K+1 L+l s S
Y Y )Py =0 ((en)). (29)
k=p+1I=n+1

Also, let (X)) be a given double sequence of positive
numbers and suppose that (sy) = O (i) (k,l — o). If
(Ax1) € R satisfying

VoY (k) g (|| 20 T <o, (30)
k=1i=1
k—11-1
Z pn) y q|A0nxpn|%pn =0(1), 3D
p=0n=0
Y Y (o) Apodpn oy <oe, (32)
p=0n=0
k—11-1 s
Y (pm)"°!ApnApn | xpn = O(1), (33)
p=0M=0
and
k l
Z Z pn)7o4( ([Apnl2pn)? = 0(1), (34)
p: :
then the series YY byhy is summable |U,8,y|,

(q>1;0<06<1/q).

Proof.To prove our main result, it is enough to show that

LL

By using Lemma 1, we have

YOTHI= | Ay | <oo.

HMS

Apy (ﬁklpnlpn)
= ApnApn (fkipn) + (Aonkt,p+1n)(ApoAon)

+ (Arhooﬁk,l,p,nﬂ ) (AOn /,Lpn) + ﬁk,l,p+1,n+1Apn /'Lpn-
(35)

Now, using the above condition

Z’o Zo pn (dkipn Apn)spn

k—11-1
Z Z [Apn (Apniikipn ) (Aon ik .p+1,n) (Apodpn)

+ (Apouk,l-,p.,nﬂ)(AOnApn)

+ k1 p+1.0+1(ApnAon)]spn- (36)

Next, using (20), (21) and (36), we may write

9
Anyi—ti—1=Y. Tur-

r=I1

Now using Minkowski’s inequality, it is suffices to show,

L

For r=1, we have

kl 104+4=1)| 7, |9 := Jy<oo (r=1,2,---,9).

HMS

Y(6g+q—1)

W L

(
(EX

Also, from (19)

! M~ T M+

Apnﬁkan [ 2pn | 2pm |q>

q—1
Apnﬁklpn |> :

HM‘

Aripn = Antlk—1,1-1,p.n

k—1 1—1 ko 1—1
= Z Z Mk*lﬁl*lﬂp-ﬂ - Z Z uk,l*l,p,n
H=pv=n u=pv=n
k=1 1 ko1
- Z Z Uk—11pn — Z Z Uklpn -
H=pv=n n=pv=n

Again since,
Up—1 1 gy = U g—1,u, =0,

s0, by using (15) and (24),

lipn
k—1 n-1 n-1
=Y [blk=1,0) = Y w11 —blk, )+ Z Uk d—1,u,v
H=p v=0 =
n—1
—b(k— +Z”k 1w + bk, ) — Zuklpv
k-1 171
—U— =1 W= 1w F U1y — Wl
i=p V=n

@© 2022 NSP
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YooY (et - U1y — Yl
=p

v=0
n-1 n-1
= [—u(k—1,v)+ Z uk,l_’[,l,u_y%»u(k,v)
=0 u=0
p—1
*Z Up -1 +u(k Z”kllyv u(k,v)
“:
p
+ Y o)
u=0
p—1n-1
= Z Z Apug—1 g1y > 0. 37
u=0v=0
Next, using (15) and (37),
Apniixipn
—1In—1 n-1 p=ln p 7
Z ) - Z Z Y XYY JAnme
u=0v=0 pu=0v=0 pu=0v=0 u=0v=0
=An—17-1,p.1n-

Again, from the condition (24),

k—11-1
Z Z Apnitkipn
p=01=0
k—1
= Z (b(k_ 1ap) _b(kap) _b(k_ ]ap)—*—ukfl,l,p,l
p=0
+b(k,p) — uripr)
= (ukfl,l,p,lfuklpl)
l,l)—u(l,l)—i—uklkl.

Now, using the condition (25), we get

(kluggg) 79~V (k1) 754

X Y Y Apnikipy | 2on| 24,
n:
K L Kl Lil s
=o) Y. Y (Apnlxon)? Y, Y (kD)7 Apniiipy .

k=p+1i=n+1

Moreover, using the condition (28) and (29), we have

(P’?)yaq”ijij(Mpn |Xpn)?

M=
™M™=

Ji=0(1)
k
=0(1).

Il
-
-

Il

1

Next, for r = 2, we have

K+1L+1

Z Y(8g+q—1)

=1 l:l

?«7‘

k=111
[Z ) |A0nﬁk,lyp+1,n||Apoxpn|%pn]
p=0n=0

=0 n:()

k=1 1—1 q-1
X Z Z |A0nﬁk,l,p+1,n||Ap0/’tpn|7Cpn .

Using (37) and (24), we have

0<idip+1n (33)

p n-1
- Z Z A1 1

nu=0v=0
k=11-1

<Y Y (et gy — kg1 — Mt g+ Uy
n=0v=0

k-1
=Y (blk—1,1) = b(k, ) —b(k— 1, 0) + up_1 10
u
+b(k7“) -

(=)

ukluv)

?v*

Z Uk— 1,100 — Ukipy)
u=0
=u(l,

D) —u(l,1) + upp.- (39)

Again, since

[ Aoniikp,pi1.| < fkppi1n + Brp+1n+s

so by using properties (25), (29) and (32), we get

K L
DY Y 14040 %on
=1i=1

K+1  L+1

Y Y (P1)7%| Aon Ak 1p+1m
k=p+1i=n+1

K L
DY Y [4p020n]2pn

k=11=1
K+1  L+1 s
Y Y (om)" ks pr1n + ks 1)
k=p+11=n+1
=0(1).
In the similar way, it can be proved that
J3=0(1).

Next, for r = 4,
+
Jy= Z

k1 1—1
lz Y |ﬁk,1,p+1,n+1||Apnlpn|%pn]

p=0n=0

Y(6g+q—1)

T M+

k=1 -1 a-1
< | Y, Y laesps1n+1ll4pn2onlxen :

=0n=0

@© 2022 NSP
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Using (24), (37) and follow the concept used in (38), we
have

p -1
Y ) Avweipy

n=0v=0
=u(l,l)—

0<driptin+1=

u(l,1) + urn -
So, by using properties (25), (29) and (31),

K+1L+1

Jo=0) Y Y (Klugyy)"9 (k1) 109
k=1 i=1

Z ”k.,l.,p+1,n+1|Apn/1anpn}

HM\

| q-1
|Apnlpn%pn}

X
=~

™ML s
T

T
>
+ 5
=
=
+O

(kl )78 {Z Z |k1pt1, n+1|AU7LUX’/]
p=0n=0

~
Il
—
Il
-

=0(1) (k1)"°| Apn Apn | %pn

gkl
M=

o
Il
o
=
Il
o

=0(1).

Now, for r = 5, we have

K+1L+1 —
)Y Y (knrPata=h (Z

q
plApouklpl|Xpl>
p:

Y(8g+q—1)

I
2
=
=
L
[ pe
~
l+
l—l

k7
Z [Apoiikipr| (1 2p1]2p1)? }

k-1 g1
X {Z |Ap0’2klpl|:| :
p—=0
Also, from (19),

= Apo(An1Tig—1,-1,p,)

k=1 k
= Apo <— Z Up—1,1v, + Z ”klul)
u=p i=p

=uk—11,p,0F Upipr < 0.

Apoﬁklpl

Again, by the property (25), (26) and (29),

k—1 k—1
Y 1Apoiiipil = Y (e—10-1.p0 — tkipr)
p=0 p=0

= u(l,1) —u(l,1) + ugn-
Thus, by using property (25), (26) and (30),

K+1L+1
ny Z kluggr )19~ (k1) 704
k=1 I=1
k-1
Z |Apotixipr | (|Ap1]2p1)?
p=0

L+1 K k—1
(MY, Y (Apilxen)? <Z(kl)y5q|Ap0ﬁklpl|>

I=1p=0 p=0
=0(1).
Further, for r=6

K+1L+1

k—1
DY Y (kyreatat) {Z ﬁk,lﬁpH,A(ApoApl)mpz}
k=1 I=1 p=0

Jo=0

k—1 q-1
X [Z ﬁk,lﬁp+1,l|(ApOApl)|XpZ:| .
p=0

We have, from (19), (24), and using the concept in (38)

i pi1 =u(l, ) —u(l,1) + urgp-
Clearly, using conditions (25), (29) and (32), we get

L+1

+
Z Z kg )74 (k1) 104

k—1
Y |ﬁk,l,p+l,l||(Ap0)~pl)|xpl]
p=0

k—1
X [Z [(Ap0p1) | Xp1

p=0
K L+l

1)kZl ZZ (k1) ” 1 Apopt| Xp1

— o).

qg—1

Furthermore, for r =7

Y(6g+q—1)

L L

-1
Y [Aonaksn|(|Axn | xen )ql
n=0

-1 a-1
X lz |Aonﬁk1kn|] -
n=0

Also, from (15),

T M+

-1 !
Uik = — Z Ugi—1kn + Z Uge 1 ke -
v=n v=n

Again, since

Aonlgikn = —Uk 11k T Uk ki
S0, properties (26) and (24), yields
-1

Y |Aoniikiin | = bk, k) — b(k,k) + ugyq-
=0

@© 2022 NSP
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Clearly, using (25), (28) and (31), we get

J;=0(1).
Next, for r =8
K+l L+1 - -1
Z (8g+q-1) Z Akt kn+1(Aon Ain) Xin
k:l =1 n=0

-1

q—1
Y Gkt kne1(Aon iy )an‘| -
n=0

Now in the similar lines as in the proof of Js and by using
properties (25), (29) and (31), we get
Jy=0(1).

Finally, for r=9 and from properties (24), (25), (27) and
(34), together with (20) and under the consideration of
Ukikr = Uik, We get

K+1L+1

=Y ) (Klaggga) "9V (k1) g (| Mg | 20 )?
=1 i=1

=0(1).

The proof of Theorem 1 has been completed.

3 Concluding Remarks and Observations

In this concluding section of our investigation, we present
here various remarks and observations concerning the
criterion for double triangular matrix (N,p,q) [5] and
accordingly establish a factorable double weighted mean
matrix (N, p,q,0) with entries,
Ukipn = — Boln
PN P Ql

where (py), (¢;) are non-negative sequnces with pg, go >0,

and
I
n=0

Remark.Suppose that (N, p, g, 8) satisfies

k
=) pp—ooo Q=
p=0

klprq
=0(1);
1529, M)

K+1L+1 dq
kgl l:Z]( ) PlePk—lQlfl Panpn ’ ( )

let () be a given double sequence of positive
numbers and suppose that (sy) = O(xu) (k,I — oo). If
(A1) € R satisfying

iiu

(40)

_ biqr

42
PO1P.O) “2)

(| At | 201 ) <o,

and condition (31) to (34) of Theorem 1, then Y Y by is
summable [N, p,q,0|,4 (¢ > 0).

Remark.Let sy = Y5 _o Y5 o bpn, define

o

A double infinite matrix (U,8) €
sequence in U, is summable |U, 6|,.

HMS

kl Sq+q— 1|bk1|q < oo} .
B(U,), if every

Remark.Let y = 1 and U satisfy conditions (23) to (29) of
Theorem 1. Then (U, 8) € B(U,).

Remark.In the result of this paper by taking § = 0, the
double absolute |U|,-summability can be obtained from
Theorem 1.

Remark.If we take ¥ =1 in the Theorem 1, then we get a
result of Jena er. al [3] on double absolute indexed matrix
summability.

Remark.Motivated by the recently-published results of
Das et al. [11] and Pradhan et al. (see [12] and [13]) the
interested reader’s attention is drawn toward the
possibility of investigating the basic idea of summability
of infinite series towards application areas of science like
a rectification of signals in FIR filter and IIR filter to
speed of the rate of convergence. Using these techniques,
the output of the waves can be made more balanced
because of the behaviour of the input.

Acknowledgement

The authors offer their true thanks to the Science and
Engineering Research Board for giving financial support
through Project No.:EEQ/2018/000393.

Conflict of Interest The authors declare that they have
no conflict of interest

References

[1]E. Savag, On generalized absolute summability factors,
Nonlinear Anal., 68, 229-234 (2008).

[2] Flett T. M., On an extension of absolute summability and
some theorems of Littlewood and Paley, Proc. London Math.
Sci., 3, 113-141 (1957).

[3] B. B. Jena, S. K. Paikray and U. K. Misra, Double absolute
indexed matrix summability with its applications, Tbilisi
Math. J., 11, 1-18 (2018).

[4] A. A. Das, B. B. Jena, S. K. Paikray and R. K. Jati, Statistical
deferred weighted summability and associated Korovokin-
type approximation theorem. Nonlinear Sci. Lett. A, 9, 238—
245 (2018).

@© 2022 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

322 N

S. Sonker et al.: Double Absolute Factorable Matrix Summability

[5]1 E. Savas and B. E. Rhoades, Double absolute summability
factor theorems and applications, Nonlinear Anal., 69, 189—
200 (2008).

[6] B. B. Jena, Vandana, S. K. Paikray and U. K. Misra, On
generalized local property of |A; & |;-summability of factored
Fourier series, Int. J. Anal. Appl., 16, 209-221 (2018).

[7]1 B. B. Jena, L. N. Mishra, S. K. Paikray and U. K. Misra,
Approximation of signals by general matrix summability with
effects of Gibbs phenomenon, Bol. Soc. Paran. Mat., 38, 141—
158 (2020).

[8] S. K. Paikray, R. K. Jati, U. K. Misra and N. C. Sahoo, On
degree approximation of Fourier series by product means,
Gen. Math. Notes, 13, 22-30 (2012).

[9] S. K. Paikray, U. K. Misra and N. C. Sahoo, Trangular matrix
summability of a series, African Jour. of Math. and Comput.
Sci. Res., 4, 164-169 (2011).

[10] V. N. Mishra, S. K. Paikray, P. Palo, P. N. Samanta, M.
Mishra and U. K. Misra, On double absolute factorable
matrix summability, Thilisi Math. J., 10, 29-44 (2017).

[11] A. A. Das, S. K. Paikray, T. Pradhan and H. Dutta,
Approximation of signals in the weighted Zygmund class via
Euler-Hausdorff product summability mean of Fourier series,
J. Indian Math. Soc., 86, 296-314 (2019).

[12] T. Pradhan, S. K. Paikray, A. A. Das and H. Dutta, On
approximation of signals in the generalized Zygmund class
via (E,1)(N,p,) summability means of conjugate Fourier
series, Proyecciones J. Math., 38, 1015-1033 (2019).

[13] T. Pradhan, S. K. Paikray and U. K. Misra, Approximation
of signals belonging to generalized Lipschitz class using
(N, pn,qn)(E,s)-summability mean of Fourier series, Cogent
Math., 3, 1-9 (2016).

Smita Sonker Smita
Sonker is currently working
as an Assistant Professor
in the Department of
Mathematics, National
Institute ~ of  Technology
Kurukshetra 136119,
Haryana, India. She has
obtained PhD at Department
of  Mathematics, Indian
Institute of Technology Roorkee, India. She has obtained
Master’s in Mathematics from the P.P.N. College, Kanpur
University, Kanpur, India. Her research areas of interests
are Approximation Theory, Summability Theory,
Absolute Summability, Operator Theory, Fourier analysis
and Functional Analysis. She has published 38 research
papers (4 SCI, 13 Scopus, 2 WoS and 19 Conference
proceeding) in reputed International Journals and
Conference proceeding. She has presented many papers at
different conferences in India and Abroad. She has also
published two international chapters.

Bidu Bhusan Jena
is currently working in the
Department of Mathematics,
Veer Surenra Sai University
of Technology, Burla Odisha,
India. He has published more
than 45 research papers, 10
book chapters, and 03 papers
in international conference
proceedings, in  various
National and International Journals of repute. The
research area of Dr. Jena is Summability Theory,
Statistical ~ Convergence,  Approximation  Theory,
Functional Analysis and Fourier series.

2

Rozy Jindal is currently

working on a Research
Project from Department
of Mathematics, National
Institute  of  Technology
Kurukshetra 136119, Haryana
(India). She has obtained
Master’s in  Mathematics
from Department
of  Mathematics, Panjab

University, Chandigarh. Her
research areas of interests are Approximation Theory,
Summability Theory, Absolute Summability, Fourier
analysis and Functional analysis.

Susanta Kumar
Paikray has held the
position of Professor in the
Department of Mathematics,
Veer Surendra Sai University
of Technology, Burla, India
since 2019, having joined
the faculty there in 2014
as a Reader. He began his
College-level teaching career
right after having received his M. Phil degree in 2000
from the Ravenshaw University, Cuttack, India. He has
published 03 books, 13 book chapters, 12 papers in
international conference proceedings, and more than 100
scientific research articles in peer-reviewed National and
International Journals of repute. The research area of Dr.
Paikray is Summability theory, Statistical Convergence,
Approximation Theory, Fourier series, Operations
research and Inventory optimization.

@© 2022 NSP
Natural Sciences Publishing Cor.



	Introduction and Motivation
	Main Result
	Concluding Remarks and Observations

