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Abstract: In this paper, we generalize a new result on absolute index double matrix summability. Dealing with |A|k-summability, Savaş

and Rhoades [E. Savaş and B. E. Rhoades, Nonlinear Anal. 69, 189–200 (2008)], established a result on absolute indexed double matrix

summability of infinite series which was generalized by Jena et al. [B. B. Jena, S. K. Paikray and U. K. Misra, Tbilisi Math. J. 11 ,

1–18 (2018)], for |A,δ |k-summability. Here, we derive a new and more generalized result on |U,δ ,γ |q-summability. Finally, we also

highlight some important new and well-known results in the line of our findings in the conclusion section. We also suggest a direction

for future researches on this subject towards application areas of science like a rectification of signals in FIR filter and IIR filter to speed

of the rate of convergence.
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1 Introduction and Motivation

Let {sn}=
n

∑
k=0

ak be the sequence of partial sums of the

series ∑an, and let T = (unk) be an infinite matrix, then
the nth matrix transform {un} of {sn} is given by

un =
∞

∑
k=0

unksk. (1)

Definition 1.(see [1]) If

lim
n→∞

un = s,

then ∑an, is said to be matrix summable (or T - summable)

to s, and if
∞

∑
n=1

|un − un−1|<∞. (2)

then, ∑an is absolute matrix summable (or |T |-
summable).

Moreover, the matrix T = (unk) is regular if,

lim
n→∞

sn = s ⇒ lim
n→∞

un = s.

Definition 2.(see [2]) If

∞

∑
n=1

nk−1|tn − tn−1|
k<∞, (3)

where tn is the sequence of (C,1)-mean of the series, then

∑an is summable |C,1|k.

Definition 3.Let {ps} be of positive numbers and

Ps =
s

∑
r=0

pr → ∞, (4)

where (P−s = p−s = 0,s ≥ 1).

If σs defines the (N, ps) mean [3] with

σs =
1

Ps

s

∑
q=0

pqsq, Ps 6= 0, s ∈ N (5)

and lims→∞ σs = k, then ∑as is (N, ps) summable
generated by {ps}.

Furthermore, if {σs} is of bounded variation with
index q > 1 [4] with

∞

∑
n=1

(

Ps

ps

)q−1

|σs −σs−1|
q < ∞, (6)
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then ∑as is |N, ps|q-summable.

Let U = (unv) be a normal matrix. Then the
transformation of sequence s = {sn} to U(s) = {Un(s)}
by U is given by:

Un(s) =
n

∑
v=0

unvsv, n = 0,1, · · ·. (7)

If
∞

∑
n=1

|unn|
1−q|∆Un(s)|

q<∞, (8)

then ∑an is |U |q summable, q ≥ 1, and if

∞

∑
n=1

|unn|
1−q−δq|∆Un(s)|

q<∞, (9)

then ∑an is |U,δ |q summable, q ≥ 1.

Also, if

∞

∑
n=1

|unn|
γ(1−q−δq)|∆Un(s)|

q<∞, (10)

where γ is a real number, q ≥ 1, 0 ≤ δ ≤ 1/q and

∆Un(s) =Un(s)−Un−1(s),

then ∑an is said to be |U,δ ;γ|q-summable.

Taking U = (N, pn) in condition (9), then |U,δ |q
changes to |N, pn;δ |q summability. Also, if we take δ = 0
in condition (9), then |U,δ |q changes to |U |q summability.

Now, we use the following notations in the main
result as below.

We are given with a normal matrix U = (unv). Two
lower semi-matrices U = (unv) and Û = (ûnv) are defined
as

unv =
n

∑
i=v

uni, n,v = 0,1,2, · · · (11)

and

û00 = u00 = u00, ûnv = unv − un−1,v n = 1,2, · · ·. (12)

Then, we have

Un(s) =
n

∑
v=0

unvsv =
n

∑
v=0

unvav (13)

and

∆Un(s) =
n

∑
v=0

ûnvav. (14)

Similarly, let U = (umn jk) be a lower-triangular matrix
and the partial sum’s sequence of ∑∑amn is denoted by

{smn}. The mn th U-transform of the sequence {smn} is
defined as,

Tmn =
m

∑
µ=0

n

∑
v=0

umnµvsµv.

Note that, a doubly infinite matrix U = (umn jk) is
doubly triangular if, umn jk=0 for j>m or k>n. Also, for
any double sequence {νxy}, ∆11 is defined as:

∆11νxy = νxy −νx+1,y −νx,y+1 +νx+1,y+1.

Similarly, for any fourfold sequence {νxyrs},

∆11νxyrs = νxyrs −νx+1,y,r,s −νx,y+1,r,s+νx+1,y+1,r,s;

∆rsνxyrs = νxyrs −νx,y,r+1,s −νx,y,r,s+1 +νx,y,r+1,s+1;

∆0sνxyrs = νxyrs −νx,y,r,s+1;

∆r0νxyrs = νxyrs −νx,y,r+1,s. (15)

Let {skl} denotes the partial sum of the series ∑∑bkl .
If [5]

∞

∑
k=1

∞

∑
l=1

(kl)q−1|∆11Tk−1,l−1|
q<∞, (16)

then ∑∑bkl is |U |q summable, q ≥ 1 and if [3]

∞

∑
k=1

∞

∑
l=1

(kl)δq+q−1|∆11Tk−1,l−1|
q<∞, (17)

then ∑∑bkl is |U,δ |q summable, q ≥ 1 and δ ≥ 0.

Also, if

∞

∑
k=1

∞

∑
l=1

(kl)γ(δq+q−1)|∆11Tk−1,l−1|
q<∞, (18)

then ∑∑bkl is |U,δ ;γ|q summable, q ≥ 1, 0 ≤ δ ≤ 1/q,
γ ∈ R.

Let U and Û be two doubly triangular matrices defined
as follows

umnρη =
m

∑
µ=ρ

n

∑
v=η

umnµv

and

ûm,n,ρ ,η =∆11um−1,n−1,iρ ,η (m,n∈N0 =: {0}∪N). (19)

Note that,

û0000 = u0000 = a0000.
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Let ykl represents the (kl)th term of U-transform of
k

∑
µ=0

l

∑
v=0

bµvλµv, then we can write,

ykl =
k

∑
µ=0

l

∑
v=0

uklµv

µ

∑
ρ=0

v

∑
η=0

bρηλρη

=
k

∑
ρ=0

l

∑
η=0

bρηλρη

k

∑
µ=ρ

l

∑
v=η

uklµv

=
k

∑
ρ=0

l

∑
η=0

bρηλρηuklρη .

Thus,

∆11yk−1,l−1

=
k

∑
ρ=0

l

∑
η=0

bρηλρη ûk,l,ρ ,η −
l−1

∑
η=0

bkηλkηuk−1,l−1,k,η

−
k−1

∑
ρ=0

bρ lλρ luk−1,l−1,ρ ,l +
k

∑
ρ=0

bρ lλρ luk,l−1,ρ ,l

+
l

∑
η=0

bklλkη uk−1,l,k,η

=
k

∑
ρ=0

l

∑
η=0

bρηλρη ûklρη .

Since,

uk−1,l−1,k,η = uk−1,l−1,ρ ,l = uk,l−1,ρ ,l = uk−1,l,k,l = 0

and

bkl = sk−1,l−1 − sk−1,l − sk,l−1 + skl ,

so,

∆11yk−1,l−1

=
k

∑
ρ=0

l

∑
η=0

ûklρηλρη(sρ−1,η−1 − sρ−1,η − sρ ,η−1 + sρη)

=
k−1

∑
ρ=0

l−1

∑
η=0

∆ρη(ûklρηλρη)sρη −
k−1

∑
ρ=0

ûk,l,ρ+1,lλρ+1,lsρ l

−
l−1

∑
η=0

ûk,l,k,η+1λk,η+1skη +
l

∑
ρ=0

ûklkηλk,η skη

+
k−1

∑
ρ=0

ûklρ lλρ lsρ l

=
k−1

∑
ρ=0

l−1

∑
η=0

∆ρη(ûklρηλρη)sρη +
k−1

∑
ρ=0

(∆η0ûklρ lλρ l)sρ l

+
l−1

∑
η=0

(∆0η ûklkη λkη )skη + ûklklλklskl . (20)

Also, we have

∆ρ0ûklρ lλρ l = λρ l∆ρ0ûklρ l + ûk,l,ρ+1,l∆ρ0λρ l

and

∆0η ûklkη λkη = λkη∆0η ûklkη + ûk,l,k,η+1∆0ηλkη .

Clearly,

k−1

∑
ρ=0

(∆ρ0ûklρ lλρ l)sρ l +
l−1

∑
η=0

(∆0η ûklkη λkη)skη

=
k−1

∑
ρ=0

[λρ l∆ρ0ûklρ l + ûk,l,ρ+1,l∆ρ0λρ l ]sρ l

+
l−1

∑
η=0

[λkη∆0η ûklkη + ûk,l,k,η+1∆0ηλkη ]skη . (21)

Next, we present the following Lemma for two
dimensional case, which is similar to the one dimensional
formula helpful in proving our main result.

Lemma 1.(see [5]) Let (vρη ) and (wρη ) be two double

sequences. Then

∆ρη(vρηwρη )

= wρη ∆ρηvρη +(∆0ηvρ+1,η)(∆ρ0wρη )

+ (∆ρ0vρ ,η+1)(∆0ηwρη )+ vρ+1,η+1∆ρηwρη . (22)

In the year 2008, Savaş [1] has proved a theorem for
generalized absolute summability factors. Subsequently,
Savaş and Rhoades [5] has proved some inclusion
theorems based on double absolute summability factor
theorems and applications. Furthermore, in 2018, Jena et

al. [6] has established a result on |A;δ |k-summability.
Also, many interesting results related to matrix
summability were provided by many researchers in [7,8,
9,10].

Motivated essentially by the above-mentioned works,
here based on |U,δ ,γ|q-summability of double infinite
lower triangular matrix, we have proved a new theorem
that generalizes the result of Jena et al. [3]. Finally, at the
concluding section we have presented some remarks in
support of our result.

2 Main Result

The purpose of the article is to generalize the result of Jena
et al. [3] for |U,δ ,γ|q-summability, where q ≥ 1.

Theorem 1.Let U be a doubly triangular matrix with non-

negative terms satisfying

∆11uk−1,l−1,ρ ,η ≥ 0, (23)
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l

∑
v=0

uklρv =
l−1

∑
v=0

uk,l−1,ρ ,v := b(k,ρ)

and
k

∑
µ=0

uklµη =
k−1

∑
µ=0

uk−1,l,µ,η := u(l,η), (24)

kluklkl = O(1), (25)

uklρη ≥ max{uk,l+1,ρ ,η ,uk+1,l,ρ ,η}, (26)

where (k ≥ ρ , l ≥ η ; ρ ,η = 0,1, ...),

k

∑
ρ=0

l

∑
η=0

uklρη = O(1), (27)

K+1

∑
k=ρ+1

L+1

∑
l=η+1

(kl)γδq|∆ρη ûklρη |

= O((ρη)γδquρηρη), (28)

K+1

∑
k=ρ+1

L+1

∑
l=η+1

(kl)γδqûk,l,ρ+1,η+1 = O

(

(ρη)γδq
)

. (29)

Also, let (χkl) be a given double sequence of positive

numbers and suppose that (skl) = O(χkl) (k, l → ∞). If

(λkl) ∈ R satisfying

∞

∑
k=1

∞

∑
l=1

(kl)γδquklkl(|λkl |χkl)
q<∞, (30)

k−1

∑
ρ=0

l−1

∑
η=0

(ρη)γδq|∆0ηλρη |χρη = O(1), (31)

∞

∑
ρ=0

∞

∑
η=0

(ρη)γδq|∆ρ0λρη |χρη<∞, (32)

k−1

∑
ρ=0

l−1

∑
η=0

(ρη)γδq|∆ρηλρη |χρη = O(1), (33)

and
k

∑
ρ=0

l

∑
η=0

(ρη)γδq(|λρη |χρη)
q = O(1), (34)

then the series ∑∑bklλkl is summable |U,δ ,γ|q
(q ≥ 1; 0 ≤ δ ≤ 1/q).

Proof.To prove our main result, it is enough to show that

∞

∑
k=1

∞

∑
l=1

(kl)γ(δq+q−1)|∆11ykl |<∞.

By using Lemma 1, we have

∆ρη(ûklρη λρη)

= λρη∆ρη (ûklρη)+ (∆0η ûk,l,ρ+1,η)(∆ρ0λρη)

+ (∆rho0ûk,l,ρ ,η+1)(∆0η λρη)+ ûk,l,ρ+1,η+1∆ρη λρη .
(35)

Now, using the above condition

k−1

∑
ρ=0

l−1

∑
η=0

∆ρη(ûklρηλρη)sρη

=
k−1

∑
ρ=0

l−1

∑
η=0

[λρη(∆ρη ûklρη)(∆0η ûk,l,ρ+1,η)(∆ρ0λρη)

+ (∆ρ0ûk,l,ρ ,η+1)(∆0η λρη)

+ ûk,l,ρ+1,η+1(∆ρηλρη)]sρη . (36)

Next, using (20), (21) and (36), we may write

∆11yk−1,l−1 =
9

∑
r=1

Tklr.

Now using Minkowski’s inequality, it is suffices to show,

∞

∑
k=1

∞

∑
l=1

(kl)γ(δq+q−1)|Tklr|
q := Jr<∞ (r = 1,2, · · ·,9).

For r=1, we have

J1 = O(1)
K+1

∑
k=1

L+1

∑
l=1

(kl)γ(δq+q−1)

(

k−1

∑
ρ=0

l−1

∑
η=0

|∆ρη ûklρη ||λρη |
q|χρη |

q

)

×

(

k−1

∑
ρ=0

l−1

∑
η=0

|∆ρη ûklρη |

)q−1

.

Also, from (19)

ûklρη = ∆11uk−1,l−1,ρ ,η

=
k−1

∑
µ=ρ

l−1

∑
v=η

uk−1,l−1,ρ ,η −
k

∑
µ=ρ

l−1

∑
v=η

uk,l−1,ρ ,η

−
k−1

∑
µ=ρ

l

∑
v=η

uk−1,l,ρ ,η −
k

∑
µ=ρ

l

∑
v=η

uklρη .

Again since,

uk−1,l,k,v = uk,l−1,µ,l = 0,

so, by using (15) and (24),

ûklρη

=
k−1

∑
µ=ρ

[b(k−1,µ)−
η−1

∑
v=0

uk−1,l−1,µ,v −b(k,µ)+
η−1

∑
v=0

uk,l−1,µ,v

−b(k−1,µ)+
η−1

∑
v=0

uk−1,l,µ,v +b(k,µ)−
η−1

∑
v=0

uk,l,µ,v]

=
k−1

∑
µ=ρ

l−1

∑
v=η

(−uk−1,l−1,µ,v +uk,l−1,µ,v +uk−1,l,µ,v −uk,l,µ,v)
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=
η−1

∑
v=0

k−1

∑
µ=ρ

(−uk−1,l−1,µ,v +uk,l−1,µ,v +uk−1,l,µ,v −uk,l,µ,v)

=
η−1

∑
v=0

[−u(k−1,v)+
η−1

∑
µ=0

uk−1,l−1,µ,v +u(k,v)

−
ρ−1

∑
µ=0

uk,l−1,µ,v +u(k−1,v)−
ρ

∑
µ=0

uk−1,l,µ,v −u(k,v)

+
ρ

∑
µ=0

uk,l,µ,v]

=
ρ−1

∑
µ=0

η−1

∑
v=0

∆11uk−1,l−1,µ,v ≥ 0. (37)

Next, using (15) and (37),

∆ρη ûklρη

=

(

ρ−1

∑
µ=0

η−1

∑
v=0

−
ρ

∑
µ=0

η−1

∑
v=0

−
ρ−1

∑
µ=0

η

∑
v=0

+
ρ

∑
µ=0

η

∑
v=0

)

∆11uk−1,l−1,µ,v

= ∆11uk−1,l−1,ρ ,η .

Again, from the condition (24),

k−1

∑
ρ=0

l−1

∑
η=0

∆ρη ûklρη

=
k−1

∑
ρ=0

(b(k− 1,ρ)− b(k,ρ)− b(k− 1,ρ)+uk−1,l,ρ ,l

+ b(k,ρ)− uklρ l)

=
k−1

∑
ρ=0

(uk−1,l,ρ ,l − uklρ l)

= u(l, l)− u(l, l)+ uklkl.

Now, using the condition (25), we get

J1 = O(1)
K+1

∑
k=1

L+1

∑
l=1

(kluklkl)
γ(q−1)(kl)γδ q

×
k−1

∑
ρ=0

l−1

∑
η=0

|∆ρη ûklρη ||λρη |
qχ

q
ρη

= O(1)
K

∑
k=1

L

∑
l=1

(|λρη |χρη )
q

K+1

∑
k=ρ+1

L+1

∑
l=η+1

(kl)γδ q|∆ρη ûklρη |.

Moreover, using the condition (28) and (29), we have

J1 = O(1)
K

∑
k=1

L

∑
l=1

(ρη)γδqui ji j(|λρη |χρη)
q

= O(1).

Next, for r = 2, we have

J2 = O(1)
K+1

∑
k=1

L+1

∑
l=1

(kl)γ(δq+q−1)

[

k−1

∑
ρ=0

l−1

∑
η=0

|∆0η ûk,l,ρ+1,η ||∆ρ0λρη |χρη

]

×

[

k−1

∑
ρ=0

l−1

∑
η=0

|∆0η ûk,l,ρ+1,η ||∆ρ0λρη |χρη

]q−1

.

Using (37) and (24), we have

0 ≤ ûk,l,ρ+1,η (38)

=
ρ

∑
µ=0

η−1

∑
v=0

∆11uk−1,l−1,µ,v

≤
k−1

∑
µ=0

l−1

∑
v=0

(uk−1,l−1,µ,v − uk,l−1,µ,v− uk−1,l,µ,v + uk,l,µ,v)

=
k−1

∑
µ=0

(b(k− 1,µ)− b(k,µ)− b(k− 1,µ)+uk−1,l,µ,l

+ b(k,µ)− uklµv)

=
k−1

∑
µ=0

(uk−1,l,µ,l − uklµv)

= u(l, l)− u(l, l)+ uklkl. (39)

Again, since

|∆0η ûk,l,ρ+1,η | ≤ ûk,l,ρ+1,η + ûk,l,ρ+1,η+1,

so by using properties (25), (29) and (32), we get

J2 = O(1)
K

∑
k=1

L

∑
l=1

|∆ρ0λρη |χρη

K+1

∑
k=ρ+1

L+1

∑
l=η+1

(ρη)γδq|∆0η ûk,l,ρ+1,η |

= O(1)
K

∑
k=1

L

∑
l=1

|∆ρ0λρη |χρη

K+1

∑
k=ρ+1

L+1

∑
l=η+1

(ρη)γδq(ûk,l,ρ+1,η + ûk,l,ρ+1,η+1)

= O(1).

In the similar way, it can be proved that

J3 = O(1).

Next, for r = 4,

J4 = O(1)
K+1

∑
k=1

L+1

∑
l=1

(kl)γ(δq+q−1)

[

k−1

∑
ρ=0

l−1

∑
η=0

|ûk,l,ρ+1,η+1||∆ρηλρη |χρη

]

×

[

k−1

∑
ρ=0

l−1

∑
η=0

|ûk,l,ρ+1,η+1||∆ρηλρη |χρη

]q−1

.
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Using (24), (37) and follow the concept used in (38), we
have

0 ≤ ûk,l,ρ+1,η+1 =
ρ

∑
µ=0

η−1

∑
v=0

∆11uk−1,l−1,µ,v

= u(l, l)− u(l, l)+ uklkl.

So, by using properties (25), (29) and (31),

J4 = O(1)
K+1

∑
k=1

L+1

∑
l=1

(kluklkl)
γ(q−1)(kl)γδ q

[

k−1

∑
ρ=0

l−1

∑
η=0

|ûk,l,ρ+1,η+1||∆ρηλρη |χρη

]

×

[

k−1

∑
ρ=0

l−1

∑
η=0

|∆ρηλρη |χρη

]q−1

= O(1)
K+1

∑
k=1

L+1

∑
l=1

(kl)γδ q

[

k−1

∑
ρ=0

l−1

∑
η=0

|ûk,l,ρ+1,η+1||∆i jλi j|χi j

]

= O(1)
K

∑
ρ=0

L

∑
η=0

(kl)γδ q|∆ρηλρη |χρη

= O(1).

Now, for r = 5, we have

J5 = O(1)
K+1

∑
k=1

L+1

∑
l=1

(kl)γ(δ q+q−1)

(

k−1

∑
ρ=0

λρ l |∆ρ0ûklρ l |χρ l

)q

= O(1)
K+1

∑
k=1

L+1

∑
l=1

(kl)γ(δ q+q−1)

[

k−1

∑
ρ=0

|∆ρ0ûklρ l |(|λρ l|χρ l)
q

]

×

[

k−1

∑
ρ=0

|∆ρ0ûklρ l |

]q−1

.

Also, from (19),

∆ρ0ûklρ l = ∆ρ0(∆11uk−1,l−1,ρ ,l)

= ∆ρ0

(

−
k−1

∑
µ=ρ

uk−1,l,v,l +
k

∑
µ=ρ

uklµl

)

= uk−1,l,ρ ,l + uklρ l ≤ 0.

Again, by the property (25), (26) and (29),

k−1

∑
ρ=0

|∆ρ0ûklρ l |=
k−1

∑
ρ=0

(uk−1,l−1,ρ ,l − uklρ l)

= u(l, l)− u(l, l)+ uklkl.

Thus, by using property (25), (26) and (30),

J5 = O(1)
K+1

∑
k=1

L+1

∑
l=1

(kluklkl)
γ(q−1)(kl)γδq

[

k−1

∑
ρ=0

|∆ρ0ûklρ l |(|λρ l |χρ l)
q

]

= O(1)
L+1

∑
l=1

K

∑
ρ=0

(|λρ l |χρ l)
q

(

k−1

∑
ρ=0

(kl)γδq|∆ρ0ûklρ l |

)

= O(1).

Further, for r=6

J6 = O(1)
K+1

∑
k=1

L+1

∑
l=1

(kl)γ(δ q+q−1)

[

k−1

∑
ρ=0

|ûk,l,ρ+1,l ||(∆ρ0λρ l)|χρ l

]

×

[

k−1

∑
ρ=0

|ûk,l,ρ+1,l ||(∆ρ0λρ l)|χρ l

]q−1

.

We have, from (19), (24), and using the concept in (38)

ûk,l,ρ+1,l = u(l, l)− u(l, l)+ uklkl.

Clearly, using conditions (25), (29) and (32), we get

J6 = O(1)
K+1

∑
k=1

L+1

∑
l=1

(kluklkl)
γ(q−1)(kl)γδq

[

k−1

∑
ρ=0

|ûk,l,ρ+1,l ||(∆ρ0λρ l)|χρ l

]

×

[

k−1

∑
ρ=0

|(∆ρ0λρ l)|χρ l

]q−1

= O(1)
K

∑
k=1

L+1

∑
l=1

(kl)γδq|∆ρ0λρ l |χρ l

= O(1).

Furthermore, for r = 7

J7 = O(1)
K+1

∑
k=1

L+1

∑
l=1

(kl)γ(δq+q−1)

[

l−1

∑
η=0

|∆0η ûklkη |(|λkη |χkη)
q

]

×

[

l−1

∑
η=0

|∆0η ûklkη |

]q−1

.

Also, from (15),

ûklkη =−
l−1

∑
v=η

uk,l−1,k,η +
l

∑
v=η

uk,l,k,η .

Again, since

∆0η ûklkη =−uk,l−1,k,η + uk,k,k,η ,

so, properties (26) and (24), yields

l−1

∑
η=0

|∆0η ûklkη |= b(k,k)− b(k,k)+ uklkl.
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Clearly, using (25), (28) and (31), we get

J7 = O(1).

Next, for r = 8

J8 = O(1)
K+1

∑
k=1

L+1

∑
l=1

(kl)γ(δq+q−1)

[

l−1

∑
η=0

ûk,l,k,η+1(∆0η λkη)χkη

]

×

[

l−1

∑
η=0

ûk,l,k,η+1(∆0ηλkη)χkη

]q−1

.

Now in the similar lines as in the proof of J6 and by using
properties (25), (29) and (31), we get

J8 = O(1).

Finally, for r=9 and from properties (24), (25), (27) and
(34), together with (20) and under the consideration of
ûklkl = uklkl , we get

J9 =
K+1

∑
k=1

L+1

∑
l=1

(kluklkl)
γ(q−1)(kl)γδquklkl(|λkl |χkl)

q

= O(1).

The proof of Theorem 1 has been completed.

3 Concluding Remarks and Observations

In this concluding section of our investigation, we present
here various remarks and observations concerning the
criterion for double triangular matrix (N, p,q) [5] and
accordingly establish a factorable double weighted mean
matrix (N, p,q,δ ) with entries,

uklρη =
pρ qη

PkQl

,

where (pk), (ql) are non-negative sequnces with p0, q0 >0,
and

Pk =
k

∑
ρ=0

pρ → ∞; Ql =
l

∑
η=0

qη → ∞.

Remark.Suppose that (N, p,q,δ ) satisfies

klpkql

PkQl

= O(1); (40)

K+1

∑
k=1

L+1

∑
l=1

(kl)δq

∣

∣

∣

∣

pkql

PkQlPk−1Ql−1

∣

∣

∣

∣

= O

(

(ρη)δq

PρηQρη

)

, (41)

let (χkl) be a given double sequence of positive
numbers and suppose that (skl) = O(χkl) (k, l → ∞). If
(λkl) ∈ R satisfying

K+1

∑
k=1

L+1

∑
l=1

(kl)δq pkql

PkQlPkQl

(|λkl |χkl)
q<∞, (42)

and condition (31) to (34) of Theorem 1, then ∑∑bklλkl is
summable |N, p,q,δ |q (q ≥ 0).

Remark.Let skl = ∑k
ρ=0 ∑l

η=0 bρη , define

Uq =

{

skl :
∞

∑
k=1

∞

∑
l=1

(kl)δq+q−1|bkl |
q ≤ ∞

}

.

A double infinite matrix (U,δ ) ∈ B(Uq), if every
sequence in Uq is summable |U,δ |q.

Remark.Let γ = 1 and U satisfy conditions (23) to (29) of
Theorem 1. Then (U,δ ) ∈ B(Uq).

Remark.In the result of this paper by taking δ = 0, the
double absolute |U |q-summability can be obtained from
Theorem 1.

Remark.If we take γ = 1 in the Theorem 1, then we get a
result of Jena et. al [3] on double absolute indexed matrix
summability.

Remark.Motivated by the recently-published results of
Das et al. [11] and Pradhan et al. (see [12] and [13]) the
interested reader’s attention is drawn toward the
possibility of investigating the basic idea of summability
of infinite series towards application areas of science like
a rectification of signals in FIR filter and IIR filter to
speed of the rate of convergence. Using these techniques,
the output of the waves can be made more balanced
because of the behaviour of the input.
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