299

A Note on the Spectra of Forward Difference Operator on the Sequence Space ℓ_{1}

L. Nayak ${ }^{1}$, P. Baliarsingh ${ }^{2, *}$ and H. Dutta ${ }^{3}$
${ }^{1}$ Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar-751024, India
${ }^{2}$ Institute of Mathematics and Applications, Bhubaneswar-751029, India
${ }^{3}$ Department of Mathematics, Guahati University, Guwahati-781014, India

Received: 8 May. 2020, Revised: 18 Oct. 2021, Accepted: 20 Dec. 2021
Published online: 1 Mar. 2022

Abstract

In this work, we compute the fine spectra of the forward difference operator Δ_{μ}^{+}on ℓ_{1}, where $\mu=\left(\mu_{k}\right)$ is a positive real sequence of non-increasing terms satisfying certain conditions. The point spectrum, the residual spectrum, the continuous spectrum, the spectrum and some fine spectra of the operator Δ_{μ}^{+}on the Banach space ℓ_{1} are computed which give a natural modifications of the results obtained in [7] and [11]. In this context, some illustrative examples are also provided.

Keywords: Sequence spaces; Forward difference operator; Regular values, Resolvent set; Spectrum and fine spectra of an operator.

1 Introduction

The spectrum of a bounded linear operator usually generalizes the idea of eigenvalues associated with that operator. Its applications are useful and more apparent in various fields of functional analysis, numerical analysis and operator theory. Many prominent researchers have been continuously providing their valuable contributions in the field of spectral theory using different operators. For instances, the idea was initially studied by [1] for the Cesàro operator on the sequence space c and was further examined by [2]. Subsequently, these results were generalized by [3] on the sequence space $\ell_{p}, 1<p<\infty$. Then it was further investigated by [4] and [5] on the sequence spaces c_{0} and $b v$, respectively. The theory was developed for the backward difference operator Δ by [6, 7] on the sequence spaces $\ell_{p}, 0<p<1$ and c, c_{0}. The results were extended over the sequence spaces ℓ_{1} and $b v$ by [8]. Later on, the problem has been studied for the generalized difference operator Δ_{μ} by [9] on the space c_{0}. Recently, the theory was examined for the upper triangle double band matrix Δ^{+}and the generalized forward difference operator Δ^{μ} by [10] and [11] over the sequence spaces ℓ_{1} and c_{0}, respectively. The idea was further developed for higher order difference operators Δ^{2} and $\Delta_{\mu}^{r}, r \in \mathbb{N}$ by $[12,13]$ over the sequence spaces c_{0} and ℓ_{1} respectively. Also, it was extended for the operator
defined by a lambda matrix over the sequence spaces c_{0} and c by [14]. For more details on the spectrum of various difference operators and their subdivisions, we may refer to $[15,16,17,18,19,20,21,22,23,24]$. Note that throughout we use the notations $\ell_{1}, \ell_{p}, \ell_{\infty}, c, c_{0}$ and $b v$ for the spaces of all absolutely summable, p-summable, bounded, convergent, null and bounded variation sequences, respectively.

Let $\mu=\left(\mu_{k}\right)$ be either a constant sequence (CS) or strictly decreasing sequence (SDS) of positive real numbers satisfying

$$
\begin{align*}
& \lim _{k \rightarrow \infty} \mu_{k}=L>0 \\
& \sup _{l} \mu_{k} \leq 2 L \tag{2}
\end{align*}
$$

Then, the forward difference operator $\Delta_{\mu}^{+}: \ell_{1} \rightarrow \ell_{1}$ was defined by [10] as follows:

$$
\left(\Delta_{\mu}^{+} x\right)_{k}=\mu_{k} x_{k}-\mu_{k+1} x_{k+1}
$$

[^0]where $x \in \ell_{1}$ and $k \in \mathbb{N}_{0}$. It is noted that the operator Δ_{μ}^{+} represents an upper triangle of the form
\[

\Delta_{\mu}^{+}=\left($$
\begin{array}{ccccc}
\mu_{0} & -\mu_{1} & 0 & 0 & \cdots \\
0 & \mu_{1} & -\mu_{2} & 0 & \cdots \\
0 & 0 & \mu_{2} & -\mu_{3} & \cdots \\
0 & 0 & 0 & \mu_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}
$$\right)
\]

Obviously, the operator Δ_{μ}^{+}is the natural extension of the difference operator Δ of order one which was introduced by [25]. The spectrum and fine spectrum of the difference operator Δ_{μ}^{+}on the sequence space ℓ_{1} have been computed by [10]. In this note, we have demonstrated that these results can be made more sharper and pin-pointed. Now we mention some primary definitions and results which are closed to our investigation.

2 Spectrum of a bounded linear operator

Let X and Y be Banach spaces and $T: X \rightarrow Y$ be a bounded linear operator. By $\mathscr{R}(T)$, we denote the range of T, i.e.

$$
\mathscr{R}(T)=\{y \in Y: y=T x ; x \in X\}
$$

By $B(X)$, we denote the space all bounded linear operators on X into itself. If X is any Banach space and $T \in B(X)$ then the adjoint T^{*} of T is a bounded linear operator on the dual X^{*} of X defined by $\left(T^{*} \phi\right)(x)=\phi(T x)$ for all $\phi \in X^{*}$ and $x \in X$ with $\|T\|=\left\|T^{*}\right\|$.

Let $X \neq\{\boldsymbol{0}\}$ be a normed linear space over the complex field and $T: D(T) \rightarrow X$ be a linear operator, where $D(T)$ denotes the domain of T. With T, for a complex number ξ, we associate an operator $T_{\xi}=T-\xi I$, where I is the identity operator on $D(T)$ and if T_{ξ} has an inverse, we denote it by T_{ξ}^{-1} i.e.

$$
T_{\xi}^{-1}=(T-\xi I)^{-1}
$$

and is called the resolvent operator of T. Many properties of T_{ξ} and T_{ξ}^{-1} depend on ξ and the spectral theory is concerned with those properties. We are interested in the set of all ξ 's in the complex plane such that T_{ξ}^{-1} exists/ T_{ξ}^{-1} is bounded/ domain of T_{ξ}^{-1} is dense in X. For our investigation, we need some basic concepts in spectral theory which are given as some definitions and lemmas.
Definition 1.([26, p. 371]). Let X be a Banach space and T, defined by $T: X \rightarrow X$ be a bounded linear operator. A complex number ξ is said be a regular value of T if
(A) $(T-\xi I)^{-1}$ exists;
(B) $(T-\xi I)^{-1}$ is bounded;
$(C)(T-\xi I)^{-1}$ is defined on a set which is dense in X.
The set $\rho(T, X)$ consisting of such regular values, is called the resolvent set of T. The complement set $\sigma(T, X)=\mathbb{C} \backslash \rho(T, X)$ is known as the spectrum of the operator T. Moreover, the spectrum $\sigma(T, X)$ is subdivided into three disjoint sets such as
(i)The point spectrum, denoted by $\sigma_{p}(T, X)$ (i.e., $\{\xi \in$ $\mathbb{C}: \xi$ does not satisfy $(A)\})$,
(ii) The continuous spectrum, denoted by $\sigma_{c}(T, X)$ (i.e., $\{\xi \in \mathbb{C}: \xi$ satisfies (A) and (C) but does not $(B)\})$, and
(iii) The residual spectrum, denoted by $\sigma_{r}(T, X)$ (i.e., $\{\xi \in$ $\mathbb{C}: \xi$ satisfies (A) but does not $(C)\}$.

3 Main Results

This section deals with the determination of the subdivisions of the spectrum such as point spectrum, the continuous spectrum, the residual spectrum and some fine spectra of the operator Δ_{μ}^{+}on ℓ_{1}.

Theorem 1.The difference operator $\Delta_{\mu}^{+}: \ell_{1} \rightarrow \ell_{1}$ is a bounded linear operator and satisfies

$$
\left\|\Delta_{\mu}^{+}\right\|_{\left(\ell_{1}, \ell_{1}\right)}= \begin{cases}2 L, & \text { for } \operatorname{CS}\left(\mu_{k}\right) \\ 2 \mu_{0}, & \text { for } \operatorname{SDS}\left(\mu_{k}\right)\end{cases}
$$

Proof.To prove this we use the definition given in [27, p. 126].
Theorem 2.The point spectrum of Δ_{μ}^{+}over ℓ_{1} is given by

$$
\sigma_{p}\left(\Delta_{\mu}^{+}, \ell_{1}\right)=\left\{\left\{\begin{array}{ll}
\xi \in \mathbb{C}:\left|1-\frac{\xi}{L}\right|<1 \\
\xi \in \mathbb{C}:\left|1-\frac{\xi}{L}\right|<1
\end{array}\right\} \cup D, \quad \text { for } \operatorname{CS}\left(\mu_{k}\right)\right.
$$

where

$$
D=\left\{\xi \in \mathbb{C}: \sum_{k}\left|\prod_{i=1}^{k} \frac{\mu_{i-1}-\xi}{\mu_{i}}\right|<\infty\right\}
$$

In particular,

$$
\left\{L, \mu_{0}\right\} \subset \sigma_{p}\left(\Delta_{\mu}^{+}, \ell_{1}\right)
$$

Proof.First, we consider that $\left(\mu_{k}\right)$ is a constant sequence, i.e., $\mu_{k}=L$ for all $k \in \mathbb{N}_{0}$. Then the system of linear equations $\Delta_{\mu}^{+} x=\xi x$ for $x \neq \mathbf{0}=(0,0,0, \ldots)$ in ℓ_{1}, becomes

$$
\begin{aligned}
& L x_{0}-L x_{1}=\xi x_{0} \\
& L x_{1}-L x_{2}=\xi x_{1} \\
& \vdots \\
& L x_{n-1}-L x_{n}=\xi x_{n-1}
\end{aligned}
$$

Therefore, we have

$$
x_{n}=\frac{L-\xi}{L} x_{n-1}=\left(\frac{L-\xi}{L}\right)^{n} x_{0}
$$

Clearly, it is obtained that the sequence $\left(x_{k}\right) \in \ell_{1}$, being a solution of the above system of linear equations if and only if $\left|1-\frac{\xi}{L}\right|<1$. Also, it is observed that $\xi=L$ is an eigenvalue corresponding to the eigenvector $(1,0,0, \ldots)$. Hence, $\{L\} \subset \sigma_{p}\left(\Delta_{\mu}^{+}, \ell_{1}\right)$.

Secondly, if $\left(\mu_{k}\right)$ is a strictly decreasing sequence. Then the system of linear equations $\Delta_{\mu}^{+} x=\xi_{x}$ for $x \neq \mathbf{0}$ in ℓ_{1}, leads to

$$
\begin{gathered}
\mu_{0} x_{0}-\mu_{1} x_{1}=\xi x_{0} \\
\mu_{1} x_{1}-\mu_{2} x_{2}=\xi x_{1} \\
\vdots \\
\mu_{n-1} x_{n-1}-\mu_{n} x_{n}=\xi x_{n-1}
\end{gathered}
$$

On solving, we have

$$
x_{n}=\frac{\mu_{n-1}-\xi}{\mu_{n}} x_{n-1}=\prod_{i=1}^{n} \frac{\mu_{i-1}-\xi}{\mu_{i}} x_{0},
$$

and

$$
\lim _{n \rightarrow \infty}\left|\frac{x_{n}}{x_{n-1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\mu_{n-1}-\xi}{\mu_{n}}\right|=\left|\frac{L-\xi}{L}\right| .
$$

This shows that the above system of linear equations has a solution $x \in \ell_{1}$ if and only if $\left|1-\frac{\xi}{L}\right|<1$. Also, one of the solutions of the system of linear equations is of the form $\xi=\mu_{0}$ which is an eigenvalue corresponding to the eigenvector $(1,0,0, \ldots)$. Therefore, $\left\{\mu_{0}\right\} \subset \sigma_{p}\left(\Delta_{\mu}^{+}, \ell_{1}\right)$.

Furthermore, if we consider $\Delta_{\mu}^{+} x=\xi x$, then we obtain that $x_{k}=\prod_{i=1}^{k}\left(\frac{\mu_{i-1}-\xi}{\mu_{i}}\right) x_{0}$ for all $k \in \mathbb{N}$. If $x_{0}=0$, then $x=\mathbf{0}$, a contradiction, otherwise if $x_{0} \neq 0$, then

$$
\begin{aligned}
& \sum_{k=0}^{\infty}\left|x_{k}\right|=\left|x_{0}\right|+\left|x_{0}\right| \sum_{k=1}^{\infty} \prod_{i=1}^{k}\left|\frac{\mu_{i-1}-\xi}{\mu_{i}}\right| \\
&=\left|x_{0}\right|+\left|x_{0}\right| \lim _{s \rightarrow \infty} \sum_{k=1}^{s}\left|\frac{\mu_{0}-\xi}{\mu_{k}}\right|\left|\frac{\mu_{1}-\xi}{\mu_{1}}\right|\left|\frac{\mu_{2}-\xi}{\mu_{2}}\right| \ldots \\
& \times\left|\frac{\mu_{k-1}-\xi}{\mu_{k-1}}\right|
\end{aligned}
$$

Now, we conclude that the above system of linear equations has a nonzero solution if and only if $\xi \in D$.

For more clarifications, we have an example:

Example: Suppose $\mu=\left(\mu_{k}\right)$ is a strictly decreasing sequence and

$$
\mu_{k}=\frac{(k+3)^{2}}{(k+2)^{2}+(k+3)^{2}} \text { for all } k \in \mathbb{N}_{0}
$$

Clearly, $\left(\mu_{k}\right)$ satisfies the conditions (1.1) and (1.2), in fact

$$
L=\lim _{k \rightarrow \infty} \mu_{k}=\frac{1}{2}, \mu_{0}=\frac{9}{13}<1=2 L .
$$

For $\xi=1$, we consider $\Delta_{\mu}^{+} x=(1) x$, then we obtain that $x_{k}=\prod_{i=1}^{k}\left(\frac{\mu_{i-1}-1}{\mu_{i}}\right) x_{0}$ for all $k \in \mathbb{N}$. If $x_{0}=0$, then $x=\mathbf{0}$ which is a contradiction, otherwise if $x_{0} \neq 0$, then

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left|x_{k}\right| & =\left|x_{0}\right|+\left|x_{0}\right| \sum_{k=1}^{\infty} \prod_{i=1}^{k}\left|\frac{\mu_{i-1}-1}{\mu_{i}}\right| \\
& =\left|x_{0}\right|+\left|x_{0}\right| \sum_{k=1}^{\infty}\left|\frac{\mu_{0}-1}{\mu_{k}}\right|\left|\frac{\mu_{1}-1}{\mu_{1}}\right|\left|\frac{\mu_{2}-1}{\mu_{2}}\right| \ldots\left|\frac{\mu_{k-1}-1}{\mu_{k-1}}\right| \\
& =\left|x_{0}\right|+\frac{9 \times 4}{13}\left|x_{0}\right| \sum_{k=1}^{\infty}\left(\frac{1}{(k+2)^{2}}+\frac{1}{(k+3)^{2}}\right) .
\end{aligned}
$$

This concludes that $1 \in D \subset \sigma_{p}\left(\Delta_{\mu}^{+}, \ell_{1}\right) .$.
Theorem 3.The point spectrum of the adjoint operator $\left[\Delta_{\mu}^{+}\right]^{*}$ over ℓ_{∞} is given by

$$
\sigma_{p}\left(\left[\Delta_{\mu}^{+}\right]^{*}, \ell_{1}^{*}\right)=\sigma_{p}\left(\left[\Delta_{\mu}^{+}\right]^{*}, \ell_{\infty}\right)=\emptyset .
$$

Proof.We may divide the proof as follows:
First, we consider that $\left(\mu_{k}\right)$ is a constant sequence, say $\mu_{k}=L$ for all $k \in \mathbb{N}_{0}$. Then we have the system of linear equations $\left[\Delta_{\mu}^{+}\right]^{*} f=\xi f$ for $\mathbf{0} \neq f \in \ell_{\infty}$, where

$$
\left[\Delta_{\mu}^{+}\right]^{*}=\left(\begin{array}{ccccc}
\mu_{0} & 0 & 0 & 0 & \ldots \\
-\mu_{1} & \mu_{1} & 0 & 0 & \ldots \\
0 & -\mu_{2} & \mu_{2} & 0 & \ldots \\
0 & 0 & -\mu_{3} & \mu_{3} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \text { and } f=\left(\begin{array}{c}
f_{0} \\
f_{1} \\
f_{2} \\
\vdots
\end{array}\right)
$$

Now, consider

$$
\left.\begin{array}{c}
\mu_{0} f_{0}=\xi f_{0} \\
-\mu_{1} f_{0}+\mu_{1} f_{1}=\xi f_{1} \\
-\mu_{2} f_{1}+\mu_{2} f_{2}=\xi f_{2} \tag{3}\\
-\mu_{3} f_{2}+\mu_{3} f_{3}=\xi f_{3} \\
\vdots
\end{array}\right\}
$$

Since $\left(\mu_{k}\right)$ is a constant sequence, then on solving the above system of linear equation, it is clear that $\mu_{0}=L=\xi$ and the only corresponding solution is $f=\mathbf{0}$, a contradiction.

Secondly, suppose $\left(\mu_{k}\right)$ is a strictly decreasing sequence. Then the system of linear equations (3)
$\left[\Delta_{\mu}^{+}\right]^{*} f=\xi f$ for $\mathbf{0} \neq f \in \ell_{\infty}$, has a solution of the form $\mu_{0}=\xi$ and

$$
\begin{aligned}
f_{1}= & \frac{\mu_{1}}{\mu_{1}-\mu_{0}} f_{0}=\frac{\mu_{1}}{\mu_{1}-\xi} f_{0} \\
f_{2}= & {\left[\frac{\mu_{1} \mu_{2}}{\left(\mu_{1}-\xi\right)\left(\mu_{2}-\xi\right)}\right] f_{0} } \\
f_{3}= & {\left[\frac{\mu_{1} \mu_{2} \mu_{3}}{\left(\mu_{1}-\xi\right)\left(\mu_{2}-\xi\right)\left(\mu_{3}-\xi\right)}\right] f_{0} } \\
& \vdots \\
f_{n}= & {\left[\prod_{i=1}^{n} \frac{\mu_{i}}{\left(\mu_{i}-\xi\right)}\right] f_{0} }
\end{aligned}
$$

Clearly, for $\xi \notin\left\{\mu_{1}, \mu_{2}, \mu_{3} \ldots\right\}$, we get $f_{k}=0$ for all $k \in \mathbb{N}_{0}$ which implies that

$$
\sigma_{p}\left(\left[\Delta_{\mu}^{+}\right]^{*}, \ell_{\infty}\right) \subseteq\left\{\mu_{1}, \mu_{2}, \mu_{3}, \ldots\right\}
$$

Again for $\xi \in\left\{\mu_{1}, \mu_{2}, \mu_{3} \ldots\right\}$ we get the system of equations (3) which has a solution $f=\mathbf{0}$, a contradiction. Finally, for $\xi=\mu_{0}$,

$$
\begin{aligned}
& \left|\frac{f_{k}}{f_{k-1}}\right|=\left|\frac{\mu_{k}}{\mu_{k}-\mu_{0}}\right|>1 \\
& \lim _{k \rightarrow \infty}\left|\frac{f_{k}}{f_{k-1}}\right|=\lim _{k \rightarrow \infty}\left|\frac{\mu_{k}}{\mu_{k}-\mu_{0}}\right|=\left|\frac{L}{L-\mu_{0}}\right|>1 .
\end{aligned}
$$

This shows that the sequence $\left(f_{0}, f_{1}, f_{2}, \ldots\right)$ is increasing and therefore, $f \notin \ell_{\infty}$. Hence $\sigma_{p}\left(\left[\Delta_{\mu}^{+}\right]^{*}, \ell_{\infty}\right)=\emptyset$.

Theorem 4.The residual spectrum of Δ_{μ}^{+}over ℓ_{1} is given by

$$
\sigma_{r}\left(\Delta_{\mu}^{+}, \ell_{1}\right)=\emptyset
$$

Proof.To prove this theorem we use Theorem 11.3.7 of [28] with the following equality

$$
\sigma_{p}\left(\left[\Delta_{\mu}^{+}\right]^{*}, \ell_{\infty}\right)=\sigma_{r}\left(\Delta_{\mu}^{+}, \ell_{1}\right)=\emptyset
$$

Theorem 5.The spectrum of Δ_{μ}^{+}over ℓ_{1} is given by

$$
\sigma\left(\Delta_{\mu}^{+}, \ell_{1}\right)=\left\{\xi \in \mathbb{C}:\left|1-\frac{\xi}{L}\right| \leq 1\right\} \cup D
$$

Proof. The entire proof is divided into two parts as follows:

Part 1:

In this part, w show that

$$
\sigma\left(\Delta_{\mu}^{+}, \ell_{1}\right) \subseteq\left\{\xi \in \mathbb{C}:\left|1-\frac{\xi}{L}\right| \leq 1\right\}
$$

Or, we need to show if $\xi \in \mathbb{C}$ with $\left|1-\frac{\xi}{L}\right|>1$, then it implies $\xi \notin \sigma\left(\Delta_{\mu}^{+}, \ell_{1}\right)$.

Suppose $\xi \in \mathbb{C}$ with $\left|1-\frac{\xi}{L}\right|>1$. Therefore $\xi \neq L$ and $\xi \neq \mu_{k}$, for each $k \in \mathbb{N}_{0}$. Now $\left(\Delta_{\mu}^{+}-\xi I\right)=\left(a_{n k}\right)$ is an upper triangular matrix and has an inverse $\left(\Delta_{\mu}^{+}-\xi_{I}\right)^{-1}=$ $\left(b_{n k}\right)$, as below

$$
\left(\begin{array}{cccc}
\frac{1}{\left(\mu_{0}-\xi\right)} & \frac{\mu_{1}}{\left(\mu_{0}-\xi\right)\left(\mu_{1}-\xi\right)} & \frac{\mu_{1} \mu_{2}}{\left(\mu_{0}-\xi\right)\left(\mu_{1}-\xi\right)\left(\mu_{2}-\xi\right)} & \cdots \\
0 & \frac{1}{\left(\mu_{1}-\xi\right)} & \frac{\mu_{2}}{\left(\mu_{1}-\xi\right)\left(\mu_{2}-\xi\right)} & \cdots \\
0 & 0 & \frac{1}{\left(\mu_{2}-\xi\right)} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

The general form of $b_{n k}$ is given by

$$
b_{n k}= \begin{cases}\frac{1}{\left(\mu_{n}-\xi\right)}, & (k=n) \\ \prod_{i=n}^{k} \frac{\mu_{i+1}}{\left(\mu_{i}-\xi\right)}, & (k>n) \\ 0, & (k<n)\end{cases}
$$

Consider

$$
\begin{aligned}
S_{k} & =\sum_{n=0}^{\infty}\left|b_{n k}\right| \\
& =\left|b_{0 k}\right|+\left|b_{1 k}\right|+\left|b_{2 k}\right|+\ldots+\left|b_{k-1, k}\right|+\left|b_{k k}\right| \\
& =\left|\frac{1}{\left(\mu_{k}-\xi\right)}\right|+\left|\frac{\mu_{k}}{\left(\mu_{k-1}-\xi\right)\left(\mu_{k}-\xi\right)}\right| \\
& +\left|\frac{\mu_{k-1} \mu_{k}}{\left(\mu_{k-2}-\xi\right)\left(\mu_{k-1}-\xi\right)\left(\mu_{k}-\xi\right)}\right|+\cdots+\left|\prod_{i=0}^{k} \frac{\mu_{i+1}}{\left(\mu_{i}-\xi\right)}\right|
\end{aligned}
$$

Now, taking limit as $k \rightarrow \infty$,

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} S_{k} \\
&= \lim _{k \rightarrow \infty}\left[\left|\frac{1}{\left(\mu_{k}-\xi\right)}\right|+\left|\frac{\mu_{k}}{\left(\mu_{k-1}-\xi\right)\left(\mu_{k}-\xi\right)}\right|\right. \\
&\left.+\left|\frac{\mu_{k-1} \mu_{k}}{\left(\mu_{k-2}-\xi\right)\left(\mu_{k-1}-\xi\right)\left(\mu_{k}-\xi\right)}\right|+\cdots+\left|\prod_{i=0}^{k} \frac{\mu_{i+1}}{\left(\mu_{i}-\xi\right)}\right|\right] \\
&=\left|\frac{1}{(L-\xi)}\right|+\left|\frac{L}{(L-\xi)(L-\xi)}\right| \\
&+\left|\frac{L^{2}}{(L-\xi)(L-\xi)(L-\xi)}\right|+\cdots+\lim _{k \rightarrow \infty}\left[\left|\prod_{i=0}^{k} \frac{\mu_{i+1}}{\left(\mu_{i}-\xi\right)}\right|\right] \\
& \leq \frac{1}{|L-\xi|}\left[1+\left|\frac{L}{L-\xi}\right|^{2}+\left|\frac{L}{L-\xi}\right|^{3}+\cdots+\left|\frac{L}{L-\xi}\right|^{k}+\cdots\right] \\
&= \frac{1}{|L-\xi|-L}<\infty .
\end{aligned}
$$

This follows from the fact that $0<\left|\frac{L}{L-\xi}\right|<1$. As $\left(S_{k}\right)$ is a sequence of positive real numbers and $\lim _{k} S_{k}<\infty$, $\left(\Delta_{\mu}^{+}-\xi I\right)^{-1} \in B\left(\ell_{1}\right)$ with the condition that $\left|1-\frac{\xi}{L}\right|>1$, and therefore,
$\sigma\left(\Delta_{\mu}^{+}, \ell_{1}\right) \subseteq\left\{\xi \in \mathbb{C}:\left|1-\frac{\xi}{L}\right| \leq 1\right\}$.

Part 2:

To show $\left\{\xi \in \mathbb{C}:\left|1-\frac{\xi}{L}\right| \leq 1\right\} \subseteq \sigma\left(\Delta_{\mu}^{+}, \ell_{1}\right)$, we take
$\xi \neq L$ and also $\xi \neq \mu_{k}$ for each $k \in \mathbb{N}_{0}$. Suppose $\xi \in \mathbb{C}$ with the condition $\left|1-\frac{\xi}{L}\right| \leq 1$. Then $\left(\Delta_{\mu}^{+}-\xi I\right)$ is a triangle and has an inverse $\left(\Delta_{\mu}^{+}-\xi I\right)^{-1}$. But $\left(\Delta_{\mu}^{+}-\xi I\right)^{-1}$ is not bounded in ℓ_{1}. This is because for $n<k$

$$
b_{n k}=\prod_{i=n}^{k} \frac{\mu_{i+1}}{\left(\mu_{i}-\xi\right)},(n \geq 1)
$$

Finally, we have

$$
\lim _{n \rightarrow \infty} b_{n k}=\frac{1}{L-\xi}\left|\frac{L}{L-\xi}\right|^{k}>1
$$

As a result, it is seen that $\left(\Delta_{\mu}^{+}-\xi I\right)^{-1} \notin B\left(\ell_{1}\right)$ if $\left|1-\frac{\xi}{L}\right| \leq$ 1. Finally, we can prove that the matrix $\Delta_{\mu}^{+}-\xi I$ in not invertible under the assumption that $\xi=L$ and $\xi=\mu_{k}$ for all $k \in \mathbb{N}_{0}$. Thus
$\left\{\xi \in \mathbb{C}:\left|1-\frac{\xi}{L}\right| \leq 1\right\} \subseteq \sigma\left(\Delta_{\mu}^{+}, \ell_{1}\right)$.
Theorem 6.The continuous spectrum of Δ_{μ}^{+}over ℓ_{1} is given by

$$
\sigma_{c}\left(\Delta_{\mu}^{+}, \ell_{1}\right)=\left\{\left\{\begin{array}{ll}
\xi \in \mathbb{C}:\left|1-\frac{\xi}{L}\right|=1 \\
\xi \in \mathbb{C}:\left|1-\frac{\xi}{L}\right|=1
\end{array}\right\} \backslash D, \quad \text { for } \operatorname{Cor}\left(\mu_{k}\right)\right.
$$

Proof.The proof follows from Theorems 2, 4, and 5 by combining the fact that

$$
\sigma\left(\Delta_{\mu}^{+}, \ell_{1}\right)=\sigma_{p}\left(\Delta_{\mu}^{+}, \ell_{1}\right) \cup \sigma_{r}\left(\Delta_{\mu}^{+}, \ell_{1}\right) \cup \sigma_{c}\left(\Delta_{\mu}^{+}, \ell_{1}\right)
$$

Now, using proposed theorems and the Goldberg's classifications of the difference operator Δ_{μ}^{+}, the following results are given:

Theorem 7.(i)

$$
I I I_{1}\left(\Delta_{\mu}^{+}, \ell_{1}\right)=I I I_{2}\left(\Delta_{\mu}^{+}, \ell_{1}\right)=\emptyset
$$

(ii)

$$
I I I_{3}\left(\Delta_{\mu}^{+}, \ell_{1}\right)=\{\xi:|\xi-L|<L\} .
$$

(iii)

$$
I I_{2}\left(\Delta_{\mu}^{+}, \ell_{1}\right)=\{\xi:|\xi-L|=L\} .
$$

(iv)

$$
I_{3}\left(\Delta_{\mu}^{+}, \ell_{1}\right) \cup I I_{3}\left(\Delta_{\mu}^{+}, \ell_{1}\right) \cup I I I_{3}\left(\Delta_{\mu}^{+}, \ell_{1}\right)=\{\xi:|\xi-L| \leq L\}
$$

(v)

$$
\operatorname{III}\left(\Delta_{\mu}^{+}, \ell_{1}\right)=\{\xi:|\xi-L| \leq L\} .
$$

Proof.Proofs are obtained by using the Goldberg's classifications for bounded linear operators(see, Theorems 3.2-3.5, [28]).

4 Conclusion:

Spectra of forward difference operators have been computed in different recent works of [10] and [25]. This work has taken an attempt to unify those results and provide some new additional ideas in order to get improved and sharper estimations on them. Spectral subdivisions such as the point spectrum, the continuous spectrum, the residual spectrum and some fine spectra of the operator Δ_{μ}^{+}on ℓ_{1} have been determined. As an application, this work provides some new idea and pin-pointed estimations on fine spectra of forward difference operator of higher orders on various sequence space such as c, c_{0} and $\ell_{p},(1 \leq p<\infty)$.

Acknowledgement

The authors are grateful to the anonymous referee for their helpful suggestions that improved this paper.

Conflict of Interest The authors declare that they have no conflict of interest

References

[1] R. B. Wenger, The fine spectra of Holder summability operator, Indian J. Pure Appl. Math., 6, 695-712, (1975).
[2] B. E. Rhoades, The fine spectra for weighted mean operators, Pacific J. Math., 104(1), 219-230, (1983).
[3] M. Gonzalez, The fine spectrum of the Cesàro operator in $\ell_{p},(1<p<\infty)$, Arch. Math., 44, 355-358, (1985).
[4] J. B. Reade, On the spectrum of the Cesàro operator, Bull. Lond. Math. Soc., 17, 263-267, (1985).
[5] J. T. Okutoyi, On the spectrum of C_{1} as an operator on $b v$, Commun. Fac. Sci. Univ. Ankara, Ser. A1 Math. Stat., 41, 197-207, (1992).
[6] B. Altay, F. Başar, The fine spectrum and the matrix domain of the difference operator Δ on the sequence space $\ell_{p},(0<$ $p<1$), Commun. Math. Anal., 2, 1-11, (2007).
[7] B. Altay, F. Başar, On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence space c_{0} and c, Int. J. Math. Math. Sci., 18, 3005-3013, (2005).
[8] K. Kayaduman, H. Furkan, The fine spectra of the difference operator Δ over the sequence spaces ℓ_{1} and $b v$, Int. Math. Forum, 1(24), 1153-1160, (2006).
[9] P. D. Srivastava, S. Kumar, On the fine spectrum of the generalized difference operator Δ_{V} over the sequence space c_{0}, Comm. Math. Anal., 6(1), 8-21, (2009).
[10] J. Fathi, R. Lashkaripour, On the fine specra of the generalized forward difference operator Δ^{v} over the sequence space ℓ_{1}, Thai. J. Math., 9(3), 605-617, (2011).
[11] E. Dündar, F. Başar, On the fine spectrum of the upper triangle double band matrix Δ^{+}on the sequence space c_{0}, Math. Commun., 18, 337-348, (2013).
[12] S. Dutta, P. Baliarsingh, On the fine spectra of the generalized rth difference operator Δ_{v}^{r} on the sequence space ℓ_{1}, Appl. Math. Comput., 219, 1776-1784, (2012).
[13] S. Dutta, P. Baliarsingh, On the spectrum of 2-nd order generalized difference operator Δ^{2} over the sequence space c_{0}, Bol. Soc. Paran. Mat., 31(2), 235-244, (2013).
[14] M. Yeşilkayagil, F. Başar, On the fine spectrum of the operator defined by a lambda matrix over the sequence spaces of null and convergent sequences, Abstr. Appl. Anal. 2013, doi: 10.1155/2013/687393, (2013).
[15] P. Baliarsingh, On the spectrum of fractional difference operator, Linear Multilinear Alg., 1-13, (2021).
[16] P. Baliarsingh, S. Dutta, On certain Toeplitz matrices via difference operator and their applications, Afrika Mat., 27, 781-793, (2016).
[17] P. Baliarsingh, S. Dutta, On a spectral classification of the operator Δ_{V}^{r} over the sequence space c_{0}, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 84(4), 555-561, (2014).
[18] P. Baliarsingh, M. Mursaleem, V. Rakočević, A survey on the spectra of the difference operators over the Banach space c, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 115, 1-12, (2021).
[19] P. Baliarsingh, On a generalized difference operator and its fine spectra, Iran. J. Sci. Technol Trans. Sci. Trans. A Sci., 44, 779-786, (2020).
[20] F. Başar, Summability Theory and Its Applications, Bentham Sci. Publ. Istanbul-2012, eISBN: 978-160805-252.
[21] S. Dutta, P. Baliarsingh, Some spectral aspects of the operator Δ_{v}^{r} over the sequence spaces ℓ_{p} and $b v_{p},(1 \leq p<$ $\infty)$, Chinese J. Math., 2013 doi.org/10.1155/2013/286748, (2013).
[22] H. Furkan, H. Bilgiç, K. Kayaduman, On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces ℓ_{1} and b_{v}, Hokkaido Math. J., 35, 897-908, (2006).
[23] H. Furkan, H. Bilgiç, B. Altay, On the fine spectrum of the operator $B(r, s, t)$ over c_{0} and c, Comput. Math. Appl., 53(6), 989-998, (2007).
[24] L. Nayak, Some remarks on the matrix domain and the spectra of a generalized difference operator, Iran. J. Sci. Technol Trans. Sci., 43(6), 2929-2935, (2019).
[25] H. Kızmaz, On Certain Sequence spaces, Canad. Math. Bull., 24(2), 169-176, (1981).
[26] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley and Sons Incl. New York-Chistester-Brisbane-Toronto, 1978.
[27] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies, Amsterdam, New York, Oxford, 1984.
[28] S. Goldberg, Unbounded linear operators, Dover Publications, Inc. New York, 1985.

L. Nayak is working as an Assistant Professor in Department of Mathematics at KIIT deemed to be University, Bhubaneswar, India. Her main research area includes summability theory, Fourier analysis, and approximation theory.

P. Baliarsingh is

 working as an Associate Professor in Mathematics at Institute of Mathematics and Applications, Bhubaneswar, India. His main research interests are: sequence spaces, summability theory, fractional calculus, operator theoty, etc.H. Dutta belongs to the Department of Mathematics at Gauhati University as a regular faculty member. He does research in the areas of functional analysis and mathematical modelling. He has to his credit several research papers in reputed journals and books.

[^0]: * Corresponding author e-mail: pb.math10@gmail.com

