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Abstract: In this work, we compute the fine spectra of the forward difference operator ∆+
µ on ℓ1, where µ = (µk) is a positive real

sequence of non-increasing terms satisfying certain conditions. The point spectrum, the residual spectrum, the continuous spectrum,

the spectrum and some fine spectra of the operator ∆+
µ on the Banach space ℓ1 are computed which give a natural modifications of the

results obtained in [7] and [11]. In this context, some illustrative examples are also provided.
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1 Introduction

The spectrum of a bounded linear operator usually
generalizes the idea of eigenvalues associated with that
operator. Its applications are useful and more apparent in
various fields of functional analysis, numerical analysis
and operator theory. Many prominent researchers have
been continuously providing their valuable contributions
in the field of spectral theory using different operators.
For instances, the idea was initially studied by [1] for the
Cesàro operator on the sequence space c and was further
examined by [2]. Subsequently, these results were
generalized by [3] on the sequence space ℓp, 1 < p < ∞.
Then it was further investigated by [4] and [5] on the
sequence spaces c0 and bv, respectively. The theory was
developed for the backward difference operator ∆ by [6,
7] on the sequence spaces ℓp, 0 < p < 1 and c,c0. The
results were extended over the sequence spaces ℓ1 and bv

by [8]. Later on, the problem has been studied for the
generalized difference operator ∆µ by [9] on the space c0.
Recently, the theory was examined for the upper triangle
double band matrix ∆+ and the generalized forward
difference operator ∆ µ by [10] and [11] over the sequence
spaces ℓ1 and c0, respectively. The idea was further
developed for higher order difference operators ∆ 2 and
∆ r

µ , r ∈ N by [12,13] over the sequence spaces c0 and ℓ1

respectively. Also, it was extended for the operator

defined by a lambda matrix over the sequence spaces c0

and c by [14]. For more details on the spectrum of various
difference operators and their subdivisions, we may refer
to [15,16,17,18,19,20,21,22,23,24]. Note that
throughout we use the notations ℓ1, ℓp, ℓ∞,c,c0 and bv for
the spaces of all absolutely summable, p−summable,
bounded, convergent, null and bounded variation
sequences, respectively.

Let µ = (µk) be either a constant sequence (CS) or
strictly decreasing sequence (SDS) of positive real
numbers satisfying

lim
k→∞

µk = L > 0, (1)

sup
k

µk ≤ 2L. (2)

Then, the forward difference operator ∆+
µ : ℓ1 → ℓ1 was

defined by [10] as follows:

(∆+
µ x)k = µkxk − µk+1xk+1,
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where x ∈ ℓ1 and k ∈ N0. It is noted that the operator ∆+
µ

represents an upper triangle of the form

∆+
µ =













µ0 −µ1 0 0 . . .
0 µ1 −µ2 0 . . .
0 0 µ2 −µ3 . . .
0 0 0 µ3 . . .
...

...
...

...
. . .













.

Obviously, the operator ∆+
µ is the natural extension of the

difference operator ∆ of order one which was introduced
by [25]. The spectrum and fine spectrum of the difference
operator ∆+

µ on the sequence space ℓ1 have been
computed by [10]. In this note, we have demonstrated that
these results can be made more sharper and pin-pointed.
Now we mention some primary definitions and results
which are closed to our investigation.

2 Spectrum of a bounded linear operator

Let X and Y be Banach spaces and T : X → Y be a
bounded linear operator. By R(T ), we denote the range of
T , i.e.

R(T ) = {y ∈ Y : y = Tx ; x ∈ X}.

By B(X), we denote the space all bounded linear
operators on X into itself. If X is any Banach space and
T ∈ B(X) then the adjoint T ∗ of T is a bounded linear
operator on the dual X∗ of X defined by
(T ∗φ)(x) = φ(T x) for all φ ∈ X∗ and x ∈ X with
‖T‖= ‖T ∗‖.

Let X 6= {0} be a normed linear space over the
complex field and T : D(T ) → X be a linear operator,
where D(T ) denotes the domain of T . With T , for a
complex number ξ , we associate an operator
Tξ = T − ξ I, where I is the identity operator on D(T ) and

if Tξ has an inverse, we denote it by T−1
ξ

i.e.

T−1
ξ

= (T − ξ I)−1

and is called the resolvent operator of T . Many properties
of Tξ and T−1

ξ
depend on ξ and the spectral theory is

concerned with those properties. We are interested in the
set of all ξ ’s in the complex plane such that T−1

ξ
exists/

T−1
ξ

is bounded/ domain of T−1
ξ

is dense in X . For our

investigation, we need some basic concepts in spectral
theory which are given as some definitions and lemmas.

Definition 1.([26, p. 371]). Let X be a Banach space and

T , defined by T : X → X be a bounded linear operator. A

complex number ξ is said be a regular value of T if

(A)(T − ξ I)−1 exists;

(B)(T − ξ I)−1 is bounded;

(C)(T − ξ I)−1 is defined on a set which is dense in X.

The set ρ(T,X) consisting of such regular values, is
called the resolvent set of T .The complement set
σ(T,X) = C \ ρ(T,X) is known as the spectrum of the
operator T . Moreover, the spectrum σ(T,X) is subdivided
into three disjoint sets such as

(i)The point spectrum, denoted by σp(T,X) (i.e., {ξ ∈
C : ξ does not satisfy (A)}),

(ii)The continuous spectrum, denoted by σc(T,X) ( i.e.,
{ξ ∈ C : ξ satisfies (A) and (C) but does not (B)}),
and

(iii)The residual spectrum, denoted by σr(T,X) ( i.e.,{ξ ∈
C : ξ satisfies (A) but does not (C)}.

3 Main Results

This section deals with the determination of the
subdivisions of the spectrum such as point spectrum, the
continuous spectrum, the residual spectrum and some fine
spectra of the operator ∆+

µ on ℓ1.

Theorem 1.The difference operator ∆+
µ : ℓ1 → ℓ1 is a

bounded linear operator and satisfies

‖ ∆+
µ ‖(ℓ1,ℓ1)=

{

2L, for CS (µk)

2µ0, for SDS (µk).

Proof.To prove this we use the definition given in [27, p.
126].

Theorem 2.The point spectrum of ∆+
µ over ℓ1 is given by

σp(∆
+
µ , ℓ1) =







{

ξ ∈ C :

∣

∣

∣
1− ξ

L

∣

∣

∣
< 1

}

, for CS (µk)
{

ξ ∈ C :

∣

∣

∣
1− ξ

L

∣

∣

∣
< 1

}

∪D, for SDS (µk),

where

D =

{

ξ ∈ C : ∑
k

∣

∣

∣

∣

∣

k

∏
i=1

µi−1 − ξ

µi

∣

∣

∣

∣

∣

< ∞

}

.

In particular,

{L,µ0} ⊂ σp(∆
+
µ , ℓ1).

Proof.First, we consider that (µk) is a constant sequence,
i.e., µk = L for all k ∈ N0. Then the system of linear
equations ∆+

µ x = ξ x for x 6= 0 = (0,0,0, . . .) in ℓ1,
becomes

Lx0 −Lx1 = ξ x0

Lx1 −Lx2 = ξ x1

...

Lxn−1 −Lxn = ξ xn−1

...
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Therefore, we have

xn =
L− ξ

L
xn−1 =

(

L− ξ

L

)n

x0

Clearly, it is obtained that the sequence (xk) ∈ ℓ1, being
a solution of the above system of linear equations if and

only if

∣

∣

∣1−
ξ
L

∣

∣

∣ < 1. Also, it is observed that ξ = L is an

eigenvalue corresponding to the eigenvector (1,0,0, . . .).
Hence, {L} ⊂ σp(∆

+
µ , ℓ1).

Secondly, if (µk) is a strictly decreasing sequence.
Then the system of linear equations ∆+

µ x = ξ x for x 6= 0
in ℓ1, leads to

µ0x0 − µ1x1 = ξ x0

µ1x1 − µ2x2 = ξ x1

...

µn−1xn−1 − µnxn = ξ xn−1

...

On solving, we have

xn =
µn−1 − ξ

µn

xn−1 =
n

∏
i=1

µi−1 − ξ

µi

x0,

and

lim
n→∞

∣

∣

∣

∣

xn

xn−1

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

µn−1 − ξ

µn

∣

∣

∣

∣

=

∣

∣

∣

∣

L− ξ

L

∣

∣

∣

∣

.

This shows that the above system of linear equations has

a solution x ∈ ℓ1 if and only if

∣

∣

∣1−
ξ
L

∣

∣

∣ < 1. Also, one of

the solutions of the system of linear equations is of the
form ξ = µ0 which is an eigenvalue corresponding to the
eigenvector (1,0,0, . . . ). Therefore, {µ0} ⊂ σp(∆

+
µ , ℓ1).

Furthermore, if we consider ∆+
µ x = ξ x, then we obtain

that xk = ∏k
i=1

(

µi−1−ξ
µi

)

x0 for all k ∈ N. If x0 = 0, then

x = 0, a contradiction, otherwise if x0 6= 0, then

∞

∑
k=0

|xk|= |x0|+ |x0|
∞

∑
k=1

k

∏
i=1

∣

∣

∣

∣

µi−1 − ξ

µi

∣

∣

∣

∣

= |x0|+ |x0| lim
s→∞

s

∑
k=1

∣

∣

∣

∣

µ0 − ξ

µk

∣

∣

∣

∣

∣

∣

∣

∣

µ1 − ξ

µ1

∣

∣

∣

∣

∣

∣

∣

∣

µ2 − ξ

µ2

∣

∣

∣

∣

. . .

×

∣

∣

∣

∣

µk−1 − ξ

µk−1

∣

∣

∣

∣

.

Now, we conclude that the above system of linear
equations has a nonzero solution if and only if ξ ∈ D.

For more clarifications, we have an example:

Example: Suppose µ = (µk) is a strictly decreasing
sequence and

µk =
(k+ 3)2

(k+ 2)2 +(k+ 3)2
for all k ∈N0.

Clearly, (µk) satisfies the conditions (1.1) and (1.2), in fact

L = lim
k→∞

µk =
1

2
,µ0 =

9

13
< 1 = 2L.

For ξ = 1, we consider ∆+
µ x = (1)x, then we obtain that

xk = ∏k
i=1

(

µi−1−1

µi

)

x0 for all k ∈ N. If x0 = 0, then x = 0

which is a contradiction, otherwise if x0 6= 0, then

∞

∑
k=0

|xk|= |x0|+ |x0|
∞

∑
k=1

k

∏
i=1

∣

∣

∣

∣

µi−1 −1

µi

∣

∣

∣

∣

= |x0|+ |x0|
∞

∑
k=1

∣

∣

∣

∣

µ0 −1

µk

∣

∣

∣

∣

∣

∣

∣

∣

µ1 −1

µ1

∣

∣

∣

∣

∣

∣

∣

∣

µ2 −1

µ2

∣

∣

∣

∣

. . .

∣

∣

∣

∣

µk−1 −1

µk−1

∣

∣

∣

∣

= |x0|+
9×4

13
|x0|

∞

∑
k=1

(

1

(k+2)2
+

1

(k+3)2

)

.

This concludes that 1 ∈ D ⊂ σp(∆
+
µ , ℓ1)..

Theorem 3.The point spectrum of the adjoint operator

[∆+
µ ]∗ over ℓ∞ is given by

σp([∆
+
µ ]∗, ℓ∗1) = σp([∆

+
µ ]∗, ℓ∞) = /0.

Proof.We may divide the proof as follows:

First, we consider that (µk) is a constant sequence, say
µk = L for all k ∈ N0. Then we have the system of linear
equations [∆+

µ ]∗ f = ξ f for 0 6= f ∈ ℓ∞, where

[∆+
µ ]∗ =













µ0 0 0 0 . . .
−µ1 µ1 0 0 . . .

0 −µ2 µ2 0 . . .
0 0 −µ3 µ3 . . .
...

...
...

...
. . .













and f =









f0

f1

f2

...









Now, consider

µ0 f0 = ξ f0

−µ1 f0 + µ1 f1 = ξ f1

−µ2 f1 + µ2 f2 = ξ f2

−µ3 f2 + µ3 f3 = ξ f3

...























(3)

Since (µk) is a constant sequence, then on solving the
above system of linear equation, it is clear that
µ0 = L = ξ and the only corresponding solution is f = 0,
a contradiction.

Secondly, suppose (µk) is a strictly decreasing
sequence. Then the system of linear equations (3)
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[∆+
µ ]∗ f = ξ f for 0 6= f ∈ ℓ∞, has a solution of the form

µ0 = ξ and

f1 =
µ1

µ1 − µ0

f0 =
µ1

µ1 − ξ
f0,

f2 =
[ µ1µ2

(µ1 − ξ )(µ2 − ξ )
] f0,

f3 =
[ µ1µ2µ3

(µ1 − ξ )(µ2 − ξ )(µ3 − ξ )

]

f0,

...

fn =
[ n

∏
i=1

µi

(µi − ξ )

]

f0,

...

Clearly, for ξ /∈ {µ1,µ2,µ3...} , we get fk = 0 for all k ∈N0

which implies that

σp([∆
+
µ ]∗, ℓ∞)⊆ {µ1,µ2,µ3, ...}.

Again for ξ ∈ {µ1,µ2,µ3...} we get the system of
equations (3) which has a solution f = 0, a contradiction.
Finally, for ξ = µ0,

∣

∣

∣

∣

fk

fk−1

∣

∣

∣

∣

=

∣

∣

∣

∣

µk

µk − µ0

∣

∣

∣

∣

> 1,

lim
k→∞

∣

∣

∣

∣

fk

fk−1

∣

∣

∣

∣

= lim
k→∞

∣

∣

∣

∣

µk

µk − µ0

∣

∣

∣

∣

=

∣

∣

∣

∣

L

L− µ0

∣

∣

∣

∣

> 1.

This shows that the sequence ( f0, f1, f2, . . . ) is
increasing and therefore, f /∈ ℓ∞. Hence
σp([∆

+
µ ]∗, ℓ∞) = /0.

Theorem 4.The residual spectrum of ∆+
µ over ℓ1 is given

by

σr(∆
+
µ , ℓ1) = /0.

Proof.To prove this theorem we use Theorem 11.3.7 of
[28] with the following equality

σp([∆
+
µ ]∗, ℓ∞) = σr(∆

+
µ , ℓ1) = /0.

Theorem 5.The spectrum of ∆+
µ over ℓ1 is given by

σ(∆+
µ , ℓ1) =

{

ξ ∈ C :

∣

∣

∣1−
ξ

L

∣

∣

∣≤ 1
}

∪D.

Proof.The entire proof is divided into two parts as follows:
Part 1:
In this part, w show that

σ(∆+
µ , ℓ1)⊆

{

ξ ∈ C :

∣

∣

∣1−
ξ

L

∣

∣

∣≤ 1
}

.

Or, we need to show if ξ ∈C with |1− ξ
L

∣

∣> 1 , then it

implies ξ /∈ σ(∆+
µ , ℓ1).

Suppose ξ ∈ C with |1− ξ
L
|> 1. Therefore ξ 6= L and

ξ 6= µk , for each k ∈ N0. Now (∆+
µ − ξ I) = (ank) is an

upper triangular matrix and has an inverse (∆+
µ −ξ I)−1 =

(bnk), as below













1
(µ0−ξ )

µ1

(µ0−ξ )(µ1−ξ )
µ1µ2

(µ0−ξ )(µ1−ξ )(µ2−ξ )
. . .

0 1
(µ1−ξ )

µ2

(µ1−ξ )(µ2−ξ )
. . .

0 0 1
(µ2−ξ )

. . .

...
...

...
. . .













The general form of bnk is given by

bnk =











1
(µn−ξ )

, (k = n)

∏k
i=n

µi+1

(µi−ξ )
, (k > n)

0, (k < n)

Consider

Sk =
∞

∑
n=0

|bnk|

= |b0k|+ |b1k|+ |b2k|+ ...+ |bk−1,k|+ |bkk|

=
∣

∣

∣

1

(µk − ξ )

∣

∣

∣+
∣

∣

∣

µk

(µk−1 − ξ )(µk − ξ )

∣

∣

∣

+
∣

∣

∣

µk−1µk

(µk−2 − ξ )(µk−1 − ξ )(µk − ξ )

∣

∣

∣+ · · ·+
∣

∣

∣

k

∏
i=0

µi+1

(µi − ξ )

∣

∣

∣

Now, taking limit as k → ∞,

lim
k→∞

Sk

= lim
k→∞

[

∣

∣

∣

1

(µk −ξ )

∣

∣

∣
+
∣

∣

∣

µk

(µk−1 −ξ )(µk −ξ )

∣

∣

∣

+
∣

∣

∣

µk−1µk

(µk−2 −ξ )(µk−1 −ξ )(µk −ξ )

∣

∣

∣
+ · · ·+

∣

∣

∣

k

∏
i=0

µi+1

(µi −ξ )

∣

∣

∣

]

=
∣

∣

∣

1

(L−ξ )

∣

∣

∣
+
∣

∣

∣

L

(L−ξ )(L−ξ )

∣

∣

∣

+
∣

∣

∣

L2

(L−ξ )(L−ξ )(L−ξ )

∣

∣

∣
+ · · ·+ lim

k→∞

[

∣

∣

∣

k

∏
i=0

µi+1

(µi −ξ )

∣

∣

∣

]

≤
1

|L−ξ |

[

1+

∣

∣

∣

∣

L

L−ξ

∣

∣

∣

∣

2

+

∣

∣

∣

∣

L

L−ξ

∣

∣

∣

∣

3

+ · · ·+

∣

∣

∣

∣

L

L−ξ

∣

∣

∣

∣

k

+ . . .

]

=
1

|L−ξ |−L
< ∞.

This follows from the fact that 0 <
∣

∣

∣

L
L−ξ

∣

∣

∣ < 1. As (Sk)

is a sequence of positive real numbers and limk Sk < ∞,

(∆+
µ − ξ I)−1 ∈ B(ℓ1) with the condition that |1− ξ

L
| > 1,

and therefore,

σ(∆+
µ , ℓ1)⊆

{

ξ ∈C :

∣

∣

∣1−
ξ

L

∣

∣

∣≤ 1
}

.

Part 2:

To show
{

ξ ∈ C :

∣

∣

∣1−
ξ
L

∣

∣

∣ ≤ 1
}

⊆ σ(∆+
µ , ℓ1), we take
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ξ 6= L and also ξ 6= µk for each k ∈ N0. Suppose ξ ∈ C

with the condition |1− ξ
L
| ≤ 1. Then (∆+

µ −ξ I) is a triangle

and has an inverse (∆+
µ − ξ I)−1. But (∆+

µ − ξ I)−1 is not
bounded inℓ1. This is because for n < k

bnk =
k

∏
i=n

µi+1

(µi − ξ )
,(n ≥ 1).

Finally, we have

lim
n→∞

bnk =
1

L− ξ

∣

∣

∣

∣

L

L− ξ

∣

∣

∣

∣

k

> 1.

As a result, it is seen that (∆+
µ −ξ I)−1 /∈ B(ℓ1) if |1− ξ

L
| ≤

1. Finally, we can prove that the matrix ∆+
µ − ξ I in not

invertible under the assumption that ξ = L and ξ = µk for
all k ∈ N0. Thus

{

ξ ∈ C :

∣

∣

∣1−
ξ

L

∣

∣

∣≤ 1
}

⊆ σ(∆+
µ , ℓ1).

Theorem 6.The continuous spectrum of ∆+
µ over ℓ1 is

given by

σc(∆
+
µ , ℓ1) =







{

ξ ∈ C :

∣

∣

∣1−
ξ
L

∣

∣

∣= 1
}

, for CS (µk)
{

ξ ∈ C :

∣

∣

∣
1− ξ

L

∣

∣

∣
= 1

}

\D, for SDS (µk)

Proof.The proof follows from Theorems 2, 4, and 5 by
combining the fact that

σ(∆+
µ , ℓ1) = σp(∆

+
µ , ℓ1)∪σr(∆

+
µ , ℓ1)∪σc(∆

+
µ , ℓ1).

Now, using proposed theorems and the Goldberg’s
classifications of the difference operator ∆+

µ , the
following results are given:

Theorem 7.(i)

III1(∆
+
µ , ℓ1) = III2(∆

+
µ , ℓ1) = /0.

(ii)

III3(∆
+
µ , ℓ1) = {ξ : |ξ −L|< L}.

(iii)

II2(∆
+
µ , ℓ1) = {ξ : |ξ −L|= L}.

(iv)

I3(∆
+
µ , ℓ1)∪ II3(∆

+
µ , ℓ1)∪ III3(∆

+
µ , ℓ1) = {ξ : |ξ −L| ≤ L}

(v)

III(∆+
µ , ℓ1) = {ξ : |ξ −L| ≤ L}.

Proof.Proofs are obtained by using the Goldberg’s
classifications for bounded linear operators(see,
Theorems 3.2-3.5, [28]).

4 Conclusion:

Spectra of forward difference operators have been
computed in different recent works of [10] and [25]. This
work has taken an attempt to unify those results and
provide some new additional ideas in order to get
improved and sharper estimations on them. Spectral
subdivisions such as the point spectrum, the continuous
spectrum, the residual spectrum and some fine spectra of
the operator ∆+

µ on ℓ1 have been determined. As an
application, this work provides some new idea and
pin-pointed estimations on fine spectra of forward
difference operator of higher orders on various sequence
space such as c,c0 and ℓp,(1 ≤ p < ∞).
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