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Abstract: Hermite Hadamard inequality is of immense importance due to its applications in numerical integration and in providing

lower and upper limits of the functions mean value. Hardy type inequalities are useful in technical sciences. Various authors have

worked for the improvement and generalizations of these inequalities. In this paper, we obtain certain new Hermite-Hadamard, Hermite-

Hadamard Fejer and weighted Hardy type inequalities involving (k− p) Riemann-Liouville fractional integral operator using convex

and increasing functions. Some inequalities obtained here would provide the extensions of some already known results.
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1 Introduction and Preliminaries

In the recent years, importance of fractional calculus has
increased extensively in different fields such as inequality
theory, applied mathematics, sciences and engineering.
Fractional integrals are used for the description of the
various properties of different physical processes like
seepage flow in fluid dynamic traffic model and
non-linear oscillations of earthquake. Special functions,
its generalizations and relation with fractional calculus
are extensively investigated by many researchers (see, e.g.
[1,2,3,4]).

Fractional calculus provides a powerful tool which
has been recently employed to model real life problems.
The derivatives and integrals of arbitrary order are used
by many researchers and scientists to study various types
of problems (see, e.g. [5,6,7,8,9,10,11,12]).

We will now mention some definitions and results
useful for our study.

Definition 1.1.(Convex function [13]). A function g : J →
R, where J is an interval in R is said to be convex if the

given inequality holds true for all x,y ∈ J

g(µx+(1− µ)y)≤ µg(x)+ (1− µ)g(y). (1)

When the inequality in equation (1) becomes strict
inequality for all different points in J and µ ∈ [0,1], then
the function g is called strictly convex. Also, g is concave
if (−g) is convex.

Definition 1.2.(Hermite-Hadamard inequality [14]). Let
g : J ⊆ R → R be a convex function and c,d ∈ J with
c < d, then the inequality

g

(

c+ d

2

)

≤ 1

d− c

∫ d

c
g(x)dx ≤ g(c)+ g(d)

2
, (2)

holds and is known as Hermite-Hadamard integral
inequality for convex functions.

Fejer introduced the weighted generalization of the
Hermite-Hadamard inequality:

Definition 1.3.(Hermite-Hadamard Fejer type inequality
[15]). Let g : [c,d] → R be a convex function. Then the
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inequality given below holds true

g

(

c+ d

2

)

∫ d

c
h(x)dx

≤
∫ d

c
g(x)h(x)dx

≤ g(c)+ g(d)

2

∫ d

c
h(x)dx, (3)

where h : [c,d] → R is non-negative, integrable and

symmetric to c+d
2

.

Definition 1.4.(Riemann-Liouville fractional integral
[16], [17]). The left and right sided Riemann-Liouville
fractional integral are given by

(

Jα
c+g
)

(x) =
1

Γ (α)

∫ x

c
(x− τ)α−1g(τ)dτ, x > c, (4)

(

Jα
d−g
)

(x) =
1

Γ (α)

∫ d

x
(τ − x)α−1g(τ)dτ, x < d. (5)

Katugampola ([18]) generalized the well known
Riemann-Liouville operator, later known as Katugampola
fractional integrals.

Definition 1.5.(Katugampola fractional integrals [18,
eq-3.3,3.4, pg.4]). The left and right sided Katugampola
fractional integrals are given by

(

pJα
c+g
)

(x) =
(p+ 1)1−α

Γ (α)

∫ x

c
(xp+1 − τ p+1)α−1τ pg(τ)dτ,

(6)

for x > c,

(

pJα
d−g
)

(x) =
(p+ 1)1−α

Γ (α)

∫ d

x
(τ p+1 − xp+1)α−1τ pg(τ)dτ,

(7)

for x < d.

The Pochhammer k-symbol (y)m,k is defined as (see [19,
defn.1, pg-181])

(y)m,k = y(y+ k)(y+ 2k) . . .y+(m− 1)k, (8)

where m ∈ N0,k > 0.

The k − gamma function Γk is given by (see [19, defn.3,
pg-182])

Γk(y) = lim
m→∞

m!km(mk)
y
k
−1

(y)m,k

, (9)

where k > 0,y ∈ C\ kZ−
0 ,kZ

−
0 = [kn : n ∈ Z

−
0 ].

When k = 1, equations (8) and (9) reduces to the
Pochhammer symbol (y)m (see [20, eq.1, pg-22, eq.3,
pg-23]) and the gamma function (see [20, eq.8, pg-17])
for y 6= 0,−1,−2, . . . .

(y)m =

{

∏m
r=1 (y+ r− 1),m ∈ N

1,m = 0
=

Γ (y+m)

Γ (y)
and

Γ (t) =
∫ ∞

0
e−zzt−1dz, ℜ(t)> 0.

Definition 1.6.([21, eq.8, pg-91]). The
k−Riemann-Liouville fractional integral operator kJα

c of
order α > 0 for a real valued function g(τ) is defined as

(kJα
c g)(x) =

1

kΓk(α)

∫ x

c
[x− τ]

α
k −1

g(τ)dτ, (k > 0).

(10)

The left and right sided k−Riemann-Liouville fractional
integral operator are given by

(

kJα
c+g
)

(x) =
1

kΓk(α)

∫ x

c
[x− τ]

α
k
−1

g(τ)dτ, (11)

(

kJα
d−g
)

(x) =
1

kΓk(α)

∫ d

x
[τ − x]

α
k
−1

g(τ)dτ. (12)

Sarikaya ([22]) gave another generalization of
Riemann-Liouville fractional integral operator which is
known as (k− p) Riemann-Liouville fractional integral:

Definition 1.7.([22, eq-2.1,pg-79]). The (k− p) Riemann-
Liouville fractional integral operator

p
k Jα

c of order α > 0
for a real valued function g(τ) is defined as

(p
k Jα

c g
)

(x) =
(p+ 1)1− α

k

kΓk(α)

∫ x

c

[

xp+1 − τ p+1
]

α
k
−1

τ pg(τ)dτ,

(13)

where k > 0, p ∈ R, p 6=−1.
The left and right sided (k − p) Riemann-Liouville
fractional integral operator are given by

(p
k Jα

c+g
)

(x) =
(p+ 1)1− α

k

kΓk(α)

∫ x

c

[

xp+1 − τ p+1
]

α
k
−1

τ pg(τ)dτ,

(14)

(p
k Jα

d−g
)

(x) =
(p+ 1)1− α

k

kΓk(α)

∫ d

x

[

τ p+1 − xp+1
]

α
k
−1

τ pg(τ)dτ.

(15)

Special cases-

1.When p = 0, equations (14) and (15) reduce to
equations (11) and (12) respectively, that is, (k − p)
Riemann-Liouville fractional integral reduces to
k−Riemann-Liouville fractional integral.
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2.When k = 1, equations (14) and (15) reduce to
equations (6) and (7) respectively, that is, (k − p)
Riemann-Liouville fractional integral reduces to
Katugampola fractional integral.

3.When k = 1, p = 0, equations (14) and (15) reduce to
equations (4) and (5) respectively, that is, (k − p)
Riemann-Liouville fractional integral reduces to
Riemann-Liouville fractional integral.

Definition 1.8.([23, defn.2]). A space of continuous real
valued functions g(τ) on [c,d], denoted by Lq,p[c,d] is
given by

(

∫ d

c
|g(τ)|qτ pdτ

)
1
q

< ∞,

where 1 ≤ q < ∞, p ≥ 0. Also, Lq,0[c,d] = Lq[c,d].

We will use the following results in our work.

Theorem 1.1. ([24, Thm. 2.1]) Let (Ξ1,∆1,δ1) and
(Ξ2,∆2,δ2) be measure spaces with σ − f inite measures,
ω be the weight function on δ1, m be a non-negative
measurable kernel on δ1 × δ2. Assume that the function,

y → ω(y)m(y,τ)
M(y)

is integrable on δ1. Then for each fixed

τ ∈ δ2 define υ by

υ(τ) =

∫

δ1

ω(y)
m(y,τ)

M(y)
dδ1(y)< ∞. (16)

If Ψ : (0,∞)→R is a convex and increasing function, then
the inequality

∫

δ1

ω(y)Ψ

(∣

∣

∣

∣

h(y)

M(y)

∣

∣

∣

∣

)

dδ1(y)<

∫

δ2

υ(τ)Ψ (|g(τ)|)dδ2(τ),

(17)
holds for all measurable functions g : δ2 → R and h(y) =
∫

δ2

m(y,τ)g(τ)dδ2(τ).

We shall assume that Θ(g) denotes the the class of
functions h : δ1 → R where h(y) =

∫

δ2

m(y,τ)g(τ)dδ2(τ)

and g is a measurable function.

Theorem 1.2. ([25, Thm.1.2, pg-220]) Let gi : δ2 → R be
measurable functions, hi ∈Θ(gi), (i = 1,2) where h2(y)>
0 for every y ∈ δ1. Let ω be a weight function on δ1 and
m is a non-negative measurable kernel on δ1 ×δ2. Assume

that the function y → ω(y) g2(τ)m(y,τ)
h2(y)

is integrable on δ1.

Then for each fixed τ ∈ δ2 define ϕ by

ϕ(τ) = g2(τ)

∫

δ1

ω(y)m(y,τ)

h2(y)
dδ1(y)< ∞. (18)

If Ψ : (0,∞)→R is a convex and increasing function, then
the inequality

∫

δ1

ω(y)Ψ

(∣

∣

∣

∣

h1(y)

h2(y)

∣

∣

∣

∣

)

dδ1(y)

<

∫

δ2

ϕ(τ)Ψ

(∣

∣

∣

∣

g1(τ)

g2(τ)

∣

∣

∣

∣

)

)dδ2(τ), (19)

holds.

Theorem 1.3.([26]) Let (Ξ1,∆1,δ1) and (Ξ2,∆2,δ2) be
measure spaces with σ − f inite measures, ω be the
weight function on δ1, m be a non-negative measurable
kernel on δ1 × δ2. Assume that the function

y → ω(y)m(y,τ)
M(y) is integrable on δ1. Then for each fixed

τ ∈ δ2 define ζ by

ζ (τ) =





∫

δ1

ω(y)

[

m(y,τ)

M(y)

] s
r

dδ1(y)





r
s

< ∞. (20)

If Ψ : (0,∞)→ R is a non-negative convex function, then
the inequality





∫

δ1

ω(y) [Ψ(Akg(y))]
s
r dδ1(y)





1
s

≤





∫

δ2

ζ (τ)Ψ (g(τ))dδ2(τ)





1
r

, (21)

holds for all measurable functions g : δ2 → R.

Theorem 1.4.([26]) Let hi ∈ Θ(gi), i = 1,2,3 where
h2(y) > 0 for every y ∈ δ1, m be a non-negative
measurable function on δ1 × δ2, then ρ is defined by

ρ(τ) = g2(τ)

∫

δ1

ω(y)m(y,τ)

h2(y)
dδ1(y)< ∞. (22)

If Ψ : (0,∞)× (0,∞) → R is a convex and increasing
function, then the inequality

∫

δ1

ω(y)Ψ

(∣

∣

∣

∣

h1(y)

h2(y)

∣

∣

∣

∣

,

∣

∣

∣

∣

h3(y)

h2(y)

∣

∣

∣

∣

)

dδ1(y)

≤
∫

δ2

ρ(τ)Ψ

(∣

∣

∣

∣

g1(τ)

g2(τ)

∣

∣

∣

∣

,

∣

∣

∣

∣

g3(τ)

g2(τ)

∣

∣

∣

∣

)

dδ2(τ), (23)

holds true.
In our next sections we derive some

Hermite-Hadamard, Hermite-Hadamard Fejer and
weighted Hardy type inequalities using (k − p)
Riemann-Liouville fractional integral.
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2 Hermite-Hadamard type inequalities

In this section we obtain results of the Hermite-Hadamard
inequalities for (k − p) Riemann Liouville fractional
integral.

Theorem 2.1.(Generalization of Hermite Hadamard
Inequality). Let α, p > 0 and g : [cp,d p] ∈ R be a positive
function with 0 ≤ c < d. If g is a convex function on
[c,d], then the following inequality hold.

g

(

cp + d p

2

)

≤ αΓk(α)p
α
k

2(d p − cp)
α
k

[

p−1
k Jα

c+g(d p)+ p−1
k Jα

d−g(cp)
]

≤ g(cp)+ g(d p)

2
. (24)

Proof. Let τ ∈ [0,1]. Consider u,v∈ [c,d],c≥ 0, which are
defined by
up = τ pcp +(1− τ p)d p and vp = (1− τ p)cp + τ pd p. We
first prove

g

(

cp + d p

2

)

≤ αΓk(α)p
α
k

2(d p − cp)
α
k

[

p−1
k Jα

c+g(d p)+ p−1
k Jα

d−g(cp)
]

(25)
Since g is convex on [c,d], we have

g

(

up + vp

2

)

≤ g(up)+ g(vp)

2
. (26)

Substituting the values of up and vp in equation (26) we
get

2g

(

cp + d p

2

)

≤ g(τ pcp +(1− τ p)d p)+ g((1− τ p)cp + τ pd p). (27)

Multiplying both sides of equation (27) by τ
α p
k
−1 and then

integrate with respect to τ over [0,1]

2g

(

cp + d p

2

)

∫ 1

0
τ

α p
k −1dτ

≤
∫ 1

0
τ

α p
k −1g(τ pcp +(1− τ p)d p)dτ

+

∫ 1

0
τ

α p
k
−1g((1− τ p)cp + τ pd p)dτ.

=⇒ 2g

(

cp + d p

2

)

k

α p

≤
∫ d

c

(

d p − up

d p − cp

) α
k −1

g(up)
up−1

d p − cp
du

+

∫ d

c

(

vp − cp

d p − cp

) α
k
−1

g(vp)
vp−1

d p − cp
du

=
1

(d p − cp)
α
k

kΓk(α)

p1− α
k

[

p−1
k Jα

c+g(d p)+ p−1
k Jα

d−g(cp)
]

.

This proves our equation (25).
We now prove

αΓk(α)p
α
k

2(d p − cp)
α
k

[

p−1
k Jα

c+g(d p)+ p−1
k Jα

d−g(cp)
]

≤ g(cp)+ g(d p)

2
. (28)

For a convex function g we have

g(τ pcp +(1− τ p)d p)≤ τ pg(cp)+ (1− τ p)g(d p), (29)

g((1− τ p)cp + τ pd p)≤ (1− τ p)g(cp)+ τ pg(d p). (30)

Adding equations (29) and (30)

g(τ pcp +(1− τ p)d p)+ g((1− τ p)cp + τ pd p)

≤ g(cp)+ g(d p). (31)

Multiplying both sides of equation (31) by τ
α p
k −1 and then

integrate with respect to τ over [0,1]

1

(d p − cp)
α
k

kΓk(α)

p1− α
k

[

p−1
k

Jα
c+g(d p)+ p−1

k
Jα

d−g(cp)
]

≤ k

α p
[g(cp)+ g(d p)] .

On simplification we get the inequality (28).
From equations (25) and (28) we get our desired result
(24). �

Remark 2.1. The above inequality (24) in the Theorem
2.1. is also known as Endpoint Hermite-Hadamard
inequality involving (k− p) Riemann-Liouville fractional
integral operator because of the use of endpoints c and d.

Remark 2.2. The main result reduces to many known
results (see, e.g. [27,28])

1.When p = 1, the result reduces to the inequality for
k−Riemann-Liouville fractional integral:

g

(

c+ d

2

)

≤ αΓk(α)

2(d− c)
α
k

[

kJα
c+g(d)+ kJα

d−g(c)
]

≤ g(c)+ g(d)

2
.

2.When k = 1 the result reduces to the inequality for
Katumgampola fractional integral.

g

(

cp + d p

2

)

≤ αΓ (α)pα

2(d p − cp)α

[

p−1Jα
c+g(d p)+ p−1Jα

d−g(cp)
]

≤ g(cp)+ g(d p)

2
.
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3.When k = 1, p = 1 the result reduces to the inequality
for Riemann-Liouville fractional integral.

g

(

c+ d

2

)

≤ αΓ (α)pα

2(d− c)α

[

Jα
c+g(d)+ Jα

d−g(c)
]

≤ g(c)+ g(d)

2
.

Theorem 2.2. Let g : [cp,d p] → R be a differentiable
mapping where 0 ≤ c < d. If g′ is differentiable on
(cp,d p) then the inequality given below holds true

∣

∣

∣

∣

[

g(cp)+ g(d p)

2

]

−A

∣

∣

∣

∣

≤ (d p − cp)2

2(α
k
+ 1)(α

k
+ 2)

(

α

k
+

1

2
α
k

)

supζ∈[cp,d p]|g′′(ζ )|,

(32)

where A = αΓk(α)p
α
k

2(d p−cp)
α
k

[

p−1
k Jα

c+g(d p)+ p−1
k Jα

d−g(cp)
]

.

Proof. Consider the equation from the proof of Theorem
2.1.

1

(d p − cp)
α
k

kΓk(α)

p1− α
k

[

p−1
k Jα

c+g(d p)+ p−1
k Jα

d−g(cp)
]

=

∫ 1

0
τ

α p
k −1g(τ pcp +(1− τ p)d p)dτ

+

∫ 1

0
τ

α p
k
−1g((1− τ p)cp + τ pd p)dτ.

(33)

Using integration by part on the RHS of equation (33) we
get

RHS

= k

[

g(cp)+ g(d p)

α p

]

+
k

α
(d p − cp)

∫ 1

0
τ p( α

k +1)−1

×
[

g′(τ pcp +(1− τ p)d p)− g′((1− τ p)cp + τ pd p)
]

dτ.

Thus equation (33) becomes

k

[

g(cp)+ g(d p)

α p

]

− 1

(d p − cp)
α
k

kΓk(α)

p1− α
k

[

p−1
k Jα

c+g(d p)+ p−1
k Jα

d−g(cp)
]

=
k

α
(d p − cp)

∫ 1

0
τ p( α

k +1)−1

×
[

g′((1− τ p)cp + τ pd p)− g′(τ pcp +(1− τ p)d p)
]

dτ.
(34)

Applying mean value theorem for g′ on RHS of equation
(34) and then taking modulus on both sides of the equation,

for ζ (τ) ∈ (c,d) we get
∣

∣

∣

∣

k

[

g(cp)+g(dp)

α p

]

− A

p

∣

∣

∣

∣

≤ k

α
(dp −cp)2

∫ 1

0
τ p( α

k
+1)−1 |2τ p −1|

∣

∣g′′(ζ (τ))
∣

∣dτ

≤ k

α
(dp −cp)2supζ∈[cp,dp]|g′′(ζ )|

[

∫ 1
p√

2

0
τ p( α

k
+1)−1(1−2τ p)dτ +

∫ 1

1
p√

2

τ p( α
k
+1)−1(2τ p −1)dτ

]

=
k

α

[

(dp −cp)2

p(α
k
+1)(α

k
+2)

](

α

k
+

1

2
α
k

)

supζ∈[cp,dp]|g′′(ζ )|.

where A = 1

(d p−cp)
α
k

kΓk(α)

p
−α

k

[

p−1
k Jα

c+g(d p)+ p−1
k Jα

d−g(cp)
]

.

On simplification we get our desired inequality (32). �

Theorem 2.3. Let g : [cp,d p] → R be a differentiable
mapping where 0 ≤ c < d. If |g′| is convex on (cp

,d p)
then the inequality given below holds true

∣

∣

∣

∣

∣

[

g(cp)+g(dp)

2

]

− αΓk(α)p
α
k

2(dp − cp)
α
k

[

p−1
k Jα

c+g(dp)+ p−1
k Jα

d−g(cp)
]

∣

∣

∣

∣

∣

≤ (dp − cp)

2( α
k
+1)

[∣

∣g′(cp)
∣

∣+
∣

∣g′(dp)
∣

∣

]

.

(35)

Proof. Using equation (34) and taking modulus on both

sides
∣

∣

∣

∣

k

[

g(cp)+ g(d p)

α p

]

− A

p

∣

∣

∣

∣

≤ k

α
(d p − cp)

∫ 1

0
τ p( α

k
+1)−1

×
∣

∣

[

g′((1− τ p)cp + τ pd p)− g′(τ pcp +(1− τ p)d p)
]∣

∣dτ

≤ k

α
(d p − cp)

∫ 1

0
τ p( α

k
+1)−1

×
[∣

∣g′((1− τ p)cp + τ pd p)
∣

∣+
∣

∣g′(τ pcp +(1− τ p)d p)
∣

∣

]

dτ
(36)

where A = 1

(d p−cp)
α
k

kΓk(α)

p
−α

k

[p
k Jα

c+g(d p)+ p
k Jα

d−g(cp)
]

.

Using convexity of |g′|
∣

∣

∣

∣

k

[

g(cp)+g(dp)

α p

]

− A

p

∣

∣

∣

∣

≤ k

α
(dp −cp)

∫ 1

0
τ p( α

k
+1)−1

[

(1− τ p)
∣

∣g′(cp)
∣

∣+ τ p
∣

∣g′(dp)
∣

∣+ τ p
∣

∣g′(cp)
∣

∣+(1− τ p)
∣

∣g′(dp)
∣

∣

]

=
k

α
(dp −cp)

1

p(α
k
+1)

[∣

∣g′(cp)
∣

∣+
∣

∣g′(dp)
∣

∣

]

.

On simplification we get our desired inequality (35). �

Remark 2.3. Under certain conditions p = 1, k = 1, and
p = k = 1, the above Theorems 2.2. - 2.3. reduce to the
results involving k−Riemann-Liouville, Katugampola
and Riemann-Liouville fractional integral operator
respectively.

c© 2022 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


292 A. Chandola et al.: Inequalities involving (k− p) Riemann-Liouville fractional...

3 Hermite-Hadamard Fejer type inequalities

In this section we generalize Hermite-Hadamard Fejer
type inequalities using (k − p) Riemann-Liouville
fractional integrals. Here we define
G(x) = g(x) + g(c + d − x) where g : [c,d] → R is the
given convex function. Hence G(x) is also convex. We
also consider certain properties of G(x)

1.G(x) is symmetric to c+d
2

.
2.G(c) = G(d) = g(c)+ g(d).

3.G
(

c+d
2

)

= 2g
(

c+d
2

)

.

Theorem 3.1. (Generalization of Hermite-Hadamard Fejer
type inequality). Let g : [c,d] → R be a convex function
with c < d and g ∈ L[c,d]. Then G(x) is also convex and
G ∈ L[c,d]. If h : [c,d]→R is non-negative and integrable,
then the inequality given below holds true

G

(

c+ d

2

)

[

p−1
k Jα

c+h(d)+ p−1
k Jα

d−h(c)
]

≤
[

p−1
k Jα

c+(hG)(d)+ p−1
k Jα

d−(hG)(c)
]

≤ G(c)+G(d)

2

[

p−1
k Jα

c+h(d)+ p−1
k Jα

d−h(c)
]

.

(37)

Proof. Let τ ∈ [0,1]. Consider u,v ∈ [c,d],c ≥ 0 which are
defined by u = τc+(1− τ)d and v = (1− τ)c+ τd. We
first prove

G

(

c+ d

2

)

[

p−1
k Jα

c+h(d)+ p−1
k Jα

d−h(c)
]

≤
[

p−1
k Jα

c+(hG)(d)+ p−1
k Jα

d−(hG)(c)
]

. (38)

Since g is convex on [c,d], we have

g

(

u+ v

2

)

≤ g(u)+ g(v)

2
.

=⇒ 2g

(

c+ d

2

)

≤ g(τc+(1− τ)d)+ g((1− τ)c+ τd).

=⇒ G

(

c+ d

2

)

≤ G((1− τ)c+ τd). (39)

Multiplying both sides of equation (39) by

((1− τ)c+ τd)p−1

(d p − [(1− τ)c+ τd]p)
1− α

k

h((1− τ)c+ τd). (40)

and integrating with respect to τ over [0,1], we get

G

(

c+ d

2

)

p−1
k Jα

c+h(d)≤ p−1
k Jα

c+(hG)(d). (41)

Similarly we get

G

(

c+ d

2

)

p−1
k Jα

d−h(c)≤ p−1
k Jα

d−(hG)(c). (42)

Adding equations (41) and (42) we get the inequality (38).
We now prove

[

p−1
k Jα

c+(hG)(d)+
p−1
k Jα

d−(hG)(c)
]

(43)

≤ G(c)+G(d)

2

[

p−1
k Jα

c+h(d)+ p−1
k Jα

d−h(c)
]

. (44)

Since g is convex, then for all τ ∈ [0,1] we have

g(τc+(1− τ)d)+ g((1− τ)c+ τd)≤ g(c)+ g(d).

=⇒ G((1− τ)c+ τd)≤ G(c)+G(d)

2
. (45)

Multiplying both sides of equation (45) by (40) and
integrating with respect to τ over [0,1], we have,

p−1
k Jα

c+(hG)(d)≤
(

G(c)+G(d)

2

)

p−1
k Jα

c+h(d). (46)

Similarly we get

p−1
k Jα

d−(hG)(c)≤
(

G(c)+G(d)

2

)

p−1
k Jα

d−h(c). (47)

Adding equations (46) and (47) we get the inequality
(43).
From equations (38) and (43) we get the desired
inequality (37). �

Remark 3.1. The above inequality (37) in the Theorem
3.1. is also known as Endpoint Hermite-Hadamard Fejer
type inequality involving (k − p) Riemann-Liouville
fractional integral operator because of the use of
endpoints c and d.

Lemma 3.1. Let g : [c,d] → R be a differentiable
mapping on (c,d) with 0 ≤ c < d and g′ ∈ L[c,d]. Then
G(x) is also differentiable and G′ ∈ L[c,d]. If
h : [c,d] → R is integrable, then the equality given below
holds true

G(c)+G(d)

2

[

p−1
k Jα

c+h(d)+
p−1
k Jα

d−h(c)
]

−
[

p−1
k Jα

c+(hG)(d)+ p−1
k Jα

d−(hG)(c)
]

=
p1− α

k

2kΓk(α)

×
∫ d

c

[

∫ τ

c
H(x)h(x)dx−

∫ d

τ
H(x)h(x)dx

]

G′(τ)dτ,

(48)

where α > 0, p > 0 and

H(x) =
xp−1

(d p − xp)1− α
k

+
xp−1

(xp − cp)1− α
k

. (49)
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Proof. Consider

I =
∫ d

c

[

∫ τ

c
H(x)h(x)dx−

∫ d

τ
H(x)h(x)dx

]

G′(τ)dτ

=
∫ d

c

∫ τ

c
H(x)h(x)dxG′(τ)dτ −

∫ d

c

∫ d

τ
H(x)h(x)dxG′(τ)dτ

= I1 + I2.

Using integration by parts

I1 =

[

∫ τ

c
H(x)h(x)dxG(τ)

]d

c

−
∫ d

c
G(τ)H(τ)H(τ)dτ.

=⇒ I1 =
kΓk(α)

p1− α
k

[

p−1
k Jα

c+h(d)+
p−1
k Jα

d−h(c)
]

G(d)

− kΓk(α)

p1− α
k

[

p−1
k Jα

c+(hG)(d)+ p−1
k Jα

d−(hG)(c)
]

.

(50)

Similarly

I2 =
kΓk(α)

p1− α
k

[

p−1
k

Jα
c+h(d)+

p−1
k

Jα
d−h(c)

]

G(c)

− kΓk(α)

p1− α
k

[

p−1
k

Jα
c+(hG)(d)+

p−1
k

Jα
d−(hG)(c)

]

. (51)

Adding equations (50) and (51), and multiplying the

resultant on both sides by
p

1−α
k

2kΓk(α)
we get our desired result

(48). �

Theorem 3.2. Let g : [c,d] → R be a differentiable
mapping on (c,d) with 0 ≤ c < d and g′ ∈ L[c,d]. Then
G(x) is also differentiable and G′ ∈ L[c,d]. If |g′| is
convex on [c,d] and h : [c,d] → R is continuous then the
inequality given below holds true

G(c)+G(d)

2

[

p−1
k Jα

c+h(d)+ p−1
k Jα

d−h(c)
]

−
[

p−1
k Jα

c+(hG)(d)+ p−1
k Jα

d−(hG)(c)
]

≤ ||h||∞(d − c)

p
α
k αΓk(α)

[

|g′(c)|+ |g′(d)|
]

∫ 1

0
|M(t)|dt,

(52)

where α > 0, p > 0, ||h||∞ = supτ∈[c,d]|h(x)| and

M(t)= ([(1− τ)c+ τd]p − cp)
α
k −(d p − [(1− τ)c+ τd]p)

α
k .

(53)

Proof. From Lemma 3.1. we have

G(c)+G(d)

2

[

p−1
k Jα

c+h(d)+ p−1
k Jα

d−h(c)
]

−
[

p−1
k Jα

c+(hG)(d)+ p−1
k Jα

d−(hG)(c)
]

=
p1− α

k

2kΓk(α)

×
∫ d

c

[

∫ τ

c
H(x)h(x)dx−

∫ d

τ
H(x)h(x)dx

]

G′(τ)dτ

≤
p1− α

k supτ∈[c,d]|h(x)|
2kΓk(α)

×
∫ d

c

[

∫ τ

c
H(x)dx−

∫ d

τ
H(x)dx

]

|G′(τ)|dτ.

(54)

Consider |G′(τ)| and using the fact that |g′| is convex, we
have

|G′(τ)|= |g′(τ)− g′(c+ d− τ)|
≤ |g′(τ)|+ g|′(c+ d− τ)|

=

∣

∣

∣

∣

g′
(

d− τ

d− c
c+

τ − c

d− c
d

)∣

∣

∣

∣

+

∣

∣

∣

∣

g′
(

τ − c

d− c
c+

d− τ

d− c
d

)∣

∣

∣

∣

≤ d − τ

d − c
|g′(c)|+ τ − c

d − c
|g′(d)|

+
τ − c

d − c
|g′(c)|+ d− τ

d − c
|g′(d)|

= |g′(c)|+ |g′(d)|.

(55)

Now consider

∫ τ

c
H(x)dx−

∫ d

τ
H(x)dx

=

∫ τ

c

[

xp−1

(d p − xp)1− α
k

+
xp−1

(xp − cp)1− α
k

]

dx

−
∫ d

τ

[

xp−1

(d p − xp)1− α
k

+
xp−1

(xp − cp)1− α
k

]

dx

=
2k

α p

[

(τ p − cp)
α
k − (d p − τ p)

α
k

]

.

(56)
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Using equations (55) and (56) in (54) we get

G(c)+G(d)

2

[

p−1
k

Jα
c+h(d)+ p−1

k
Jα

d−h(c)
]

−
[

p−1
k

Jα
c+(hG)(d)+

p−1
k

Jα
d−(hG)(c)

]

≤ p1− α
k ||h||∞

2kΓk(α)

∫ d

c

[

2k

α p

[

(τ p −cp)
α
k − (dp − τ p)

α
k

]

]

dτ

×
(

|g′(c)|+ |g′(d)|
)

=
||h||∞

p
α
k αΓk(α)

∫ d

c

[

(τ p −cp)
α
k − (dp − τ p)

α
k

]

dτ

×
(

|g′(c)|+ |g′(d)|
)

=
||h||∞(d−c)

p
α
k αΓk(α)

∫ 1

0

(

[((1− τ)c+ τd)p −cp]
α
k − [dp − ((1− τ)c+ τd)p]

α
k

)

dτ ×
(

|g′(c)|+ |g′(d)|
)

.

Hence we get our desired result (52). �

Remark 3.2. Under certain conditions p = 1, k = 1, and
p = k = 1, the above Theorems 3.1. - 3.2. reduce to the
results involving k−Riemann-Liouville, Katugampola
and Riemann-Liouville fractional integral operator
respectively.

4 Weighted Hardy type inequalities

In this section we obtain certain Weighted Hardy type
inequalities for (k − p) Riemann-Liouville fractional
integral.

Theorem 4.1. Let g ∈ L[c,d],α ≥ 0 and p 6=−1. Let ω be
a weight function on (c,d). Assume that the function y →
ω(y)α(p+1)(yp+1−τ p+1)

α
k
−1

τ p

(yp+1−cp+1)
α
k

is integrable on (c,d). Then

for each τ ∈ (c,d) define

υ(τ) = α(p+ 1)

∫ d

τ
ω(y)

(yp+1 − τ p+1)
α
k −1

(yp+1 − cp+1)
α
k

τ pdy < ∞.

(57)
If Ψ : (0,∞)→R is a convex and increasing function, then
the inequality

∫ d

c
ω(y)Ψ

×
(∣

∣

∣

∣

∣

α(p+ 1)

(yp+1 − cp+1)
α
k

∫ y

c
(yp+1 − τ p+1)

α
k −1τ pg(τ)dτ

∣

∣

∣

∣

∣

)

dy

≤
∫ d

c
υ(τ)Ψ (|g(τ)|)dτ, (58)

holds for all measurable functions g : (c,d)→R.

Proof. Using Theorem 1.1. with δ1 = δ2 =(c,d), dδ1(y) =
dy,dδ2(y) = dτ

m(y,τ) =

{

(p+1)
1−α

k (yp+1−τ p+1)
α
k
−1

τ p

kΓk(α) ,c ≤ τ ≤ y

0,y < τ ≤ d

(59)

M(y)

=
1

kΓk(α)

∫ d

c
(p+ 1)1− α

k (yp+1 − τ p+1)
α
k −1τ pdτ

=
1

αΓk(α)(p+ 1)
α
k

(yp+1 − cp+1)
α
k , (60)

and

Akg(y) =
α(p+ 1)

(yp+1 − cp+1)
α
k

∫ y

c
(yp+1−τ p+1)

α
k
−1τ pg(τ)dτ,

(61)
we get our desired inequality (58). �

Corollary 4.1. If in particular, we take the weight

function to be ω(y) = yp(yp+1 − cp+1)
α
k , υ(τ) is

calculated as υ(τ) = kτ p(d p+1 − τ p+1)
α
k , then the

inequality (58) becomes

∫ d

c
yp(yp+1 − cp+1)

α
k

×Ψ

(∣

∣

∣

∣

∣

α(p+ 1)

(yp+1 − cp+1)
α
k

kΓk(α)

(p+ 1)1− α
k

p
k Jα

c g(y)

∣

∣

∣

∣

∣

)

dy

≤
∫ d

c
υ(τ)Ψ (|g(τ)|)dτ. (62)

If s > 1 and function Ψ : (0,∞)→R is defined by Ψ(y) =
ys, then we can write inequality (62) as

[

αkΓk(α)(p+ 1)
α
k

]s

×
∫ d

c
yp(yp+1 − cp+1)

α
k
(1−s)

∣

∣

p
k Jα

c g(y)
∣

∣

s
dy

≤
∫ d

c
kτ p(d p+1 − τ p+1)

α
k |g(τ)|sdτ. (63)

Since y ∈ (c,d) and α
k
(1− s) < 0, LHS of equation (63)

can be written as

[

αkΓk(α)(p+ 1)
α
k

]s

×
∫ d

c
yp(yp+1 − cp+1)

α
k
(1−s)

∣

∣

p
k Jα

c g(y)
∣

∣

s
dy

≥
[

αkΓk(α)(p+ 1)
α
k

]s

cp(d p+1 − cp+1)
α
k (1−s)

×
∫ d

c

∣

∣

p
k Jα

c g(y)
∣

∣

s
dy,

(64)
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and RHS of equation (63) can be written as

∫ d

c
kτ p(d p+1 − τ p+1)

α
k |g(τ)|sdτ

≤ kd p(d p+1 − cp+1)
α
k

∫ d

c
|g(τ)|sdτ. (65)

Using inequalities (64) and (65) in (63) we get

∫ d

c

∣

∣

p

k Jα
c g(y)

∣

∣

s
dy ≤ d p

cp

[

(d p+1 − cp+1)
α
k

αΓk(α)(p+ 1)
α
k

]s
∫ d

c
|g(τ)|sdτ.

Taking 1
s

in power on both sides, we have

||pk Jα
c g(y)||s ≤Q||g||s, (66)

where Q=
(

d
c

)

p
s (d p+1−cp+1)

α
k

αΓk(α)(p+1)
α
k

.

Theorem 4.2. Let ω be a weight function on (c,d). p
k Jα

c g

is the (k − p) Riemann-Liouville fractional integral and
p
k Jα

c g2(y) > 0. Assume that the function

y → ω(y) g2(τ)(y
p+1−τ p+1)

α
k
−1

τ p

p
k

Jα
c g2(y)

is integrable on (c,d).

Define ϕ on (c,d) by

ϕ(τ)

=
(p+ 1)1− α

k g2(τ)

kΓk(α)

∫ d

τ
ω(y)

(yp+1 − τ p+1)
α
k
−1τ p

p
k Jα

c g2(y)
dy

< ∞. (67)

If Ψ : (0,∞)→R is a convex and increasing function, then
the inequality

∫ d

c
ω(y)Ψ

(∣

∣

∣

∣

p
k Jα

c g1(y)
p

k Jα
c g2(y)

∣

∣

∣

∣

)

dy ≤
∫ d

c
ϕ(τ)Ψ

(∣

∣

∣

∣

g1(τ)

g2(τ)

∣

∣

∣

∣

)

dτ,

(68)
holds for all measurable functions gi ∈ L1(c,d), i = 1,2.

Proof. Using Theorem 1.2. with δ1 = δ2 = (c,d),
dδ1(y) = dy,dδ2(y) = dτ , we get our desired inequality
(67). �

Theorem 4.3. Let 0< r ≤ s < ∞ and g∈ L1,p[c,d].
p
k Jα

c g is
the (k− p) Riemann-Liouville fractional integral of order
α > 0 and p 6=−1. Let ω be a weight function and assume

that y→ω(y)

(

(yp+1−τ p+1)
α
k
−1

τ p

(yp+1−cp+1)
α
k

) s
r

is integrable on (c,d).

For each fixed τ ∈ (c,d) define

ζ (τ)

=
α

k
(p+ 1)





∫ d

τ
ω(y)

(

(yp+1 − τ p+1)
α
k
−1τ p

(yp+1 − cp+1)
α
k

) s
r

dy





s
r

< ∞. (69)

If Ψ : (0,∞)→ R is a non-negative convex function, then
the inequality





∫ d

c
ω(y)

(

Ψ

(

kαΓk(α)(p+ 1)
α
k

p

k Jα
c g(y)

(yp+1 − cp+1)
α
k

)) s
r

dy





1
s

≤
[

∫ d

c
ζ (τ)Ψ (g(τ))dτ

]
1
r

, (70)

holds for all measurable functions g : [c,d]→ R.

Proof. Using Theorem 1.3. with δ1 = δ2 = (c,d),
dδ1(y) = dy,dδ2(y) = dτ ,m(y,τ),M(y) and Akg(y) are
given by (59), (60), (61) we get our desired inequality
(70). �

Theorem 4.4. Let g ∈ L1,p[c,d],
p
k Jα

c g is the (k − p)
Riemann Liouville fractional integral of order α > 0 and
p 6= −1 and

p
k Jα

c g2(y) > 0 for every y ∈ (c,d). Let ω be a
weight function on (c,d). Then

ρ(τ)

=
(p+ 1)1− α

k g2(τ)

kΓk(α)

∫ d

τ
ω(y)

(yp+1 − τ p+1)
α
k
−1τ p

p
k Jα

c g2(y)
dy

< ∞. (71)

If Ψ : (0,∞)× (0,∞) → R is a convex and increasing
function, then the inequality

∫ d

c
ω(y)Ψ

(∣

∣

∣

∣

p
k Jα

c g1(y)
p
k Jα

c g2(y)

∣

∣

∣

∣

,

∣

∣

∣

∣

p
k Jα

c g3(y)
p
k Jα

c g2(y)

∣

∣

∣

∣

)

dy (72)

≤
∫ d

c
ρ(τ)Ψ

(∣

∣

∣

∣

g1(τ)

g2(τ)

∣

∣

∣

∣

,

∣

∣

∣

∣

g3(τ)

g2(τ)

∣

∣

∣

∣

)

dτ, (73)

holds for all measurable functions gi ∈ L1(c,d), i = 1,2,3.

Proof. Using Theorem 1.4. with δ1 = δ2 = (c,d),
dδ1(y) = dy,dδ2(y) = dτ we get our desired inequality
(72). �

Remark 4.1. Under certain conditions p = 0, k = 1, and
p = 0,k = 1, the above Theorems 4.1. - 4.4. reduce to the
results involving k-Riemann-Liouville, Katugampola and
Riemann-Liouville fractional integral operator
respectively.

5 Conclusion

In our course of study, we have obtained various
Hermite-Hadamard, Hermite-Hadamard Fejer, weighted
Hardy type inequalities using (k− p) Riemann-Liouville
fractional integral operator. Under certain special
conditions these inequalities reduce to some known
inequalities involving the Riemann-Liouville,
k-Riemann-Liouville and Katugampola fractional integral
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(see, e.g. [29,30]). Various authors have worked on the
inequalities for different types of functions and fractional
operators. Rashid et al. [31] discussed Hermite-Hadamard
and Ostrowski type inequalities for n-polynomials, s-type
convex functions by employing k-fractional integral
operators and studied the quadrature rules that are helpful
in fractal theory, optimization and machine learning.
Hermite-Hadamard inequalities for the differentiable
exponentially convex and exponential quasi-convex
functions, which were applied to numerical analysis and
statistics, have also been discussed in the recent years
[32]. Inequalities for the p-th order differentiation useful
in the Banach Spaces are also obtained [33]. Further,
Gr̈uss type inequalities for the generalized k-fractional
integral operator are discussed and applied in the real
world mathematical problems [34,35]. As future scope,
these results can be extended using (k − p)
Riemann-Liouville fractional integral operator and
applications can be found in the fractal theory, machine
learning, numerical analysis, statistics and various others.
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