
Appl. Math. Inf. Sci. 16, No. 2, 235-241 (2022) 235

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/160210

Fluorescence Spectrum of A Laser Driven Polar

Quantum Emitter Damped By Degenerate Squeezed

Vacuum With Finite Bandwidth

Nikolai N. Bogolyubov, Jr. and Andrey V. Soldatov ∗

Department of Mechanics, V.A. Steklov Mathematical Institute of the Russian Academy of Sciences, Gubkina str. 8, 119991 Moscow,

Russia

Received: 21 Nov. 2021, Revised: 2 Jan. 2022, Accepted: 14 Feb. 2022

Published online: 1 Mar. 2022

Abstract: A two-level quantum emitter with broken inversion symmetry driven by external monochromatic high-frequency

electromagnetic (e.g. laser) field and damped by squeezed vacuum reservoir with finite bandwidth was studied. The squeezed vacuum

field source is assumed to be a degenerate parametric oscillator (DPO). It was shown that low-frequency fluorescence spectrum of

the emitter can be effectively shaped by controlling the effective pump amplitude, cavity damping and phase of the squeezing of the

vacuum field source.
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1 Introduction

As a rule, theoretical and experimental studies of
resonance fluorescence, i.e. the process in which a
two-level quantum emitter of some sort is driven by the
quantum electromagnetic field at a frequency near to the
natural frequency of the emitter, have been undertaken
with assumed inversion symmetry of the quantum emitter
in question. At the same time, violation of this symmetry
is rather common in such natural systems as polar
molecules, highly excited Rydberg atoms placed in
external asymmetric electrostatic field, atoms embedded
into asymmetric crystallic environment, as well as in
artificially manufactured systems, like quantum dots. The
cause for this violation may be different for different
systems. In polar molecules its origin is due to the parity
mixing of the molecular states [1], in quantum dots it is
induced by the asymmetry of the confining potential of
the dot. Whatever the cause may be, this violation
stipulates the existence of nonzero permanent dipole
matrix elements in the ground and excited states of the
emitter as its consequence. And the interaction of this
permanent dipole moment with external driving
electromagnetic adds new features to the resonance

fluorescence phenomenon. Among them it was predicted
that a simple two-level quantum system driven by
high-frequency classical electromagnetic (EM) field can
emit EM field of much lower frequency if its dipole
operator possesses permanent non-equal diagonal matrix
elements [2]. The properties of this low-frequency
radiation were thoroughly investigated later for the case
of a two-level system driven by external EM field and
damped by a dissipative reservoir [3,4,5]. Also, it was
shown that the same system can be employed for the
amplification of the weak low-frequency EM field [4],
which property may provide opportunities for
development of useful techniques for manipulation of the
low-frequency EM radiation, especially in the terahertz
range of frequencies. The goal of the present research is
to study the low-frequency EM fluorescence radiation
phenomenon in an externally driven two-level system
with broken inversion symmetry interacting with a finite
bandwidth degenerate squeezed vacuum dissipative
reservoir, which properties can be tuned appropriately in
order to control the shape of the fluorescence radiation
spectrum. The case of interaction with a broadband
squeezed vacuum dissipative reservoir was already
studied earlier for weak driving EM field in [6,7].
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2 Model Hamiltonian

In this study we consider a two-level atom with ground
state |g〉, excited state |e〉, transition frequency ω0 and the

electric dipole moment d̂, driven by external classical
monochromatic field E(t) = Ecos(ω f t) with an
amplitude E and frequency ω f . The atom is also coupled
to a reservoir B made of a plurality of modes of quantized
electromagnetic field being in the squeezed vacuum state.
It is assumed that the frequency Lamb shift due to
interaction with the reservoir is already incorporated into
the atomic transition frequency ω0. Thus, the model
Hamiltonian reads

H = HS(t)+ h̄∑
k

ωkb+(ωk)b(ωk)

+∑
k

(

g(ωk)S
+b(ωk)+ g∗(ωk)b

+(ωk)S
−) . (1)

Here S+ = |e〉〈g| and S− = |g〉〈e| are the usual raising and

lowering atomic operators and Sz = 1
2
(|e〉〈e| − |g〉〈g|) is

the atomic population inversion operator.

The operators b(ωk) and b+(ωk) are the annihilation
and creation operators for the vacuum modes satisfying the
commutation relations

[b(ω),b+(ω ′)] = δ (ω −ω ′), (2)

[b+(ω),b+(ω ′)] = [b(ω),b(ω ′)] = 0, (3)

and the term

HS(t) = h̄ω0Sz +
h̄

2
ΩR(S

−eiω f t + S+e−iω f t)

+
h̄

2
(eiω f t + e−iω f t)

[

δaSz − δs

2
(|e〉〈e|+ |g〉〈g|)

]

(4)

contains an interaction between the driving field and the
atom in the rotating wave approximation (RWA). Here
ΩR = −Edeg/h̄ is the Rabi frequency being made real
and positive by the appropriate choice of the phase factors
of the states |e〉 and |g〉, and deg = e〈e|r̂|g〉, dge =
e〈g|r̂|e〉, dee = e〈e|r̂|e〉, dgg = e〈g|r̂|g〉 are the atomic
dipole moment operator matrix elements. As a rule, it is
assumed that dee = dgg = 0, because typical physical
systems, like atoms and molecules, possess the inversion
symmetry, and each of the states |g〉 and |e〉 is either
symmetric or antisymmetric. Contrary to this view, we
assume that the inversion symmetry of the system in
question is violated, dee 6= dgg, so that
δa = E(dgg − dee)/h̄ and δs = E(dgg + dee)/h̄. The term
proportional to δs does not influence the dynamics of the
system and can be omitted, while the term proportional to
the symmetry violation parameter δa is retained. The
squeezed vacuum reservoir source is assumed to be a
degenerate parametric oscillator (DPO). The output fields
from this oscillators are characterized by the following
correlation functions [8]

〈b+(ωk)b(ωk′)〉svac = N(ωk)δ (ωk −ωk′), (5)

〈b(ωk)b(ωk′)〉svac =−M(ωk,θ )δ (ωk +ωk′ − 2ωs), (6)

〈b(ωk)b
+(ωk′)〉svac=(N(ωk)+1)δ (ωk−ωk′), (7)

〈b+(ω ′
k)b

+(ωk)〉svac=−M∗(ωk,θ )δ (ωk′ +ωk−2ωs), (8)

where ωs is the carrier frequency of the squeezed field, θ
is the phase of squeezing, N(ω) is related to the mean
number of photons at frequency ω and M(ω ,θ ) is
characteristic of the squeezed vacuum field and describes
the correlation between the two photons created in the
down-conversion process. They satisfy the inequality

|M(ω ,θ )| ≤
√

N(ω)(N(ω)+ 1), which in the case of
ideal squeezed state produced by an optical parametric
oscillator transforms into the equality. The frequency
dependencies of N(ω) and M(ω ,θ ) for an optical
parametric oscillator below threshold for the ideal DPO
are given by [9]

N(ω) =
λ 2 − µ2

4
×

[

1

(ω −ωs)2 + µ2
− 1

(ω −ωs)2 +λ 2

]

, (9)

M(ω ,θ ) = eiθ λ 2 − µ2

4
×

[

1

(ω −ωs)2 + µ2
+

1

(ω −ωs)2 +λ 2

]

, (10)

Here the parameters λ and µ are expressed in terms of
the parametric oscillator cavity damping rate γc and the
effective pump amplitude ε of the coherent field driving
the parametric oscillator

λ = γc + ε, µ = γc − ε, ε = Es/Ec, (11)

where Es is the amplitude of the pump coherent field and
Ec is its threshold value for parametric oscillator. In
optical parametric oscillator (OPO) the amplitude Es is
related to the power of pumping P [10,11], so the
effective pump amplitude is related to the ratio of input
pump power to the critical power, r = P/Pc, and we have
ε =

√
rγc/2. The noise spectrum and the squeezing level

of the output light from OPO is related to ε/(γc/2). When
this ratio goes to 1 and therefore r → 1, the threshold
happens in OPO. It is worth noticing that Eqs.(9,10) are
only valid sufficiently below of the threshold, i.e. when
0 < ε < γc/2, both parameters λ and µ are positive and
λ > µ , and the squeezing values are not too large. When
the parameters λ and µ are much greater than all other
relaxation rates in the problem, the frequency dependence
of N(ω) and M(ω ,θ ) can be neglected. This case is
referred to as broadband squeezed vacuum.
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3 Equations of Motion for Atomic Variables

In what follows, it is assumed that δa ≪ ΩR, so that the
interaction of the driving field with the permanent dipole
moment is much weaker than its interaction with the
transitional dipole moment while, at the same time, the
driving field is strong enough to be viewed as a dressing
field for the two-level system. The master equation for the
atomic system reduced density operator ρS(t) can be
written in the frame rotating with the driving field
frequency ω f , under the assumption that the carrier
frequency ωs of the squeezed field coincides with the
frequency ω f , as

∂ρ r f
S (t)

∂ t
=

iΓ δ [Sz,ρ r f
S (t)]− i

2
δa(e

iω f t + e−iω f t)[Sz,ρ r f
S (t)]+

1

2
Γ Ñ(2S+ρ r f

S (t)S−− S−S+ρ r f
S (t)−ρ r f

S (t)S−S+)+

1

2
Γ (Ñ + 1)(2S−ρ r f

S (t)S+− S+S−ρ r f
S (t)−ρ r f

S (t)S+S−)−

Γ M̃S+ρ
r f
S (t)S+−Γ M̃∗S−ρ

r f
S (t)S−−

1

2
iΩR[S

++ S−,ρ r f
S (t)]+

1

2
i(β [S+, [Sz,ρ

r f
S (t)]]−β ∗[S−, [Sz,ρ

r f
S (t)]]), (12)

where

ρ r f
S (t) = eiω f SztρS(t)e

−iω f Szt , (13)

Ñ = N(ω f +Ω ′)+
1

2
(1− ∆̃ 2)γn, (14)

M̃ = (|M(ω f +Ω ′,θ )|+ i∆̃δM)exp(iθ )−

1

2
(1− ∆̃ 2)(γn − iδn), (15)

δ = ∆/Γ + ∆̃δN +
1

2
(1− ∆̃ 2)δn, (16)

β = Γ Ω̃ [δN + δM exp(iθ )− i∆̃(γn − iδn)], (17)

γn = N(ω f )−N(ω f +Ω ′)−

(|M(ω f ,θ )|− |M(ω f +Ω ′,θ )|)cos(θ ), (18)

δn = (|M(ω f ,θ )|− |M(ω f +Ω ′,θ )|)sin(θ ), (19)

δN =
1

π
P

∫ ∞

−∞
dω

N(ω)

ω −ωs+Ω ′

∣

∣

∣

∣

∣

ωs=ω f

, (20)

δM =
1

π
P

∫ ∞

−∞
dω

|M(ω ,θ )|
ω −ωs+Ω ′

∣

∣

∣

∣

∣

ωs=ω f

. (21)

Here Γ is the radiative damping constant, ∆ = ω f −ω0

is the detuning of the driving field frequency ω f from the
atomic frequency ω0, and

Ω̃ = ΩR/Ω ′, ∆̃ = ∆/Ω ′, Ω ′ =
√

Ω 2
R + ∆̃ 2 (22)

.Details on the master equation derivation can be found in
[12]. The principal values of the integrals (20,21) can be
evaluated by means of the contour integration [13] as

δN = δµ − δλ , δM = δµ + δλ , (23)

where

δ d po
µ = Ω ′ λ

2 − µ2

4

1

µ(Ω ′ 2 + µ2)
, (24)

δ d po

λ = Ω ′ λ
2 − µ2

4

1

λ (Ω ′ 2 +λ 2)
. (25)

This equation is similar to the master equation obtained
earlier in [14] for a two-level non-polar emitter without
broken inversion symmetry and is derived assuming that
the system-reservoir and the system-field interactions are
weak and the reservoir correlation time is small compared
with the time t of observation. So, a closed set of equations
follows from Eq.(12):

d

dt
〈S̃−(t)〉=

−Γ

(

1

2
+ Ñ − iδ + i

δa

2Γ
(eiω f t + e−iω f t)

)

〈S̃−(t)〉+

Γ M̃〈S̃+(t)〉+ΩR〈Sz(t)〉, (26)

d

dt
〈S̃+(t)〉=

−Γ

(

1

2
+ Ñ + iδ − i

δa

2Γ
(eiω f t + e−iω f t)

)

×

〈S̃+(t)〉+Γ M̃∗〈S̃−(t)〉+ΩR〈Sz(t)〉, (27)

d

dt
〈Sz(t)〉=

−1

2
(ΩR +β ∗)〈S−(t)〉− 1

2
(ΩR +β )〈S+(t)〉−

Γ (2Ñ + 1)〈Sz(t)〉−Γ/2, (28)

where 〈S̃±(t)〉=±i〈S±(t)e∓iω f t〉 are slowly varying parts
of the atomic operators. The system of equations (26-28)
can be solved numerically by means of the technique
employed earlier in [15], where the components of the
vector X(t) = (〈S̃−(t)〉,〈S̃+(t)〉,〈Sz(t)〉) are decomposed

as Xi(t) =
+∞

∑
l=−∞

X
(l)
i (t)eilω f t , i = 1,2,3, and the slowly

varying amplitudes X
(l)
i (t) obey the system of equations

d

dt
X
(l)
1 (t) =−Γ

(

1

2
+ Ñ − iδ + il

ω f

Γ

)

X
(l)
1 (t)−
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i
δa

2
(X

(l−1)
1 (t)+X

(l+1)
1 (t))+Γ M̃X

(l)
2 (t)+ΩRX

(l)
3 (t), (29)

d

dt
X
(l)
2 (t) =−Γ

(

1

2
+ Ñ − iδ + il

ω f

Γ

)

X
(l)
2 (t)+

i
δa

2
(X

(l−1)
2 (t)+X

(l+1)
2 (t))+Γ M̃∗X

(l)
1 (t)+ΩRX

(l)
3 (t),(30)

d

dt
X
(l)
3 (t) =−Γ

2
δl,0 − (Γ (2Ñ + 1)+ ilω f )X

(l)
3 (t)−

ΩR +β ∗

2
X
(l)
1 (t)− ΩR +β

2
X
(l)
2 (t). (31)

Fluorescence spectrum

The incoherent part of the steady-state fluorescence
spectrum is given by[16]

Finc(ω) =
Γ

π
Re

∫ ∞

0
dτ lim

t→∞

[

〈S̃+(t)S̃−(t + τ)〉−

〈S̃+(t)〉〈S̃−(t + τ)〉
]

ei(ω−ω f )τ , (32)

where the coherent contribution from the incident driving
field scattered by the atom is subtracted, as usual. In
accordance with the so-called quantum regression
hypothesis [17,18], the fluctuation correlation functions
Y1(t, t + τ) = 〈S̃+(t)S̃−(t + τ)〉 − 〈S̃+(t)〉〈S̃−(t +
τ)〉,Y2(t, t + τ) = 〈S̃+(t)S̃+(t + τ)〉− 〈S̃+(t)〉〈S̃+(t + τ)〉,
Y3(t, t + τ)=〈S̃+(t)S̃z(t + τ)〉−〈S̃+(t)〉〈S̃z(t + τ)〉, satisfy
virtually the same set of equations of motion (26-28) for
the correspondent averages 〈S̃−(τ)〉, 〈S̃+(τ)〉 and 〈S̃z(τ)〉
with the only difference that the inhomogeneity −Γ /2
disappears due to the subtraction of the mean. These
correlation functions can be decomposed as

Yi(t, t + τ) =
+∞

∑
l=−∞

Y
(l)
i (t,τ)eilω f (t+τ), i = 1,2,3, so that

d

dτ
Y
(l)
1 (t,τ) =−Γ

(

1

2
+ Ñ − iδ + il

ω f

Γ

)

Y
(l)
1 (t,τ)−

−i
δa

2
(Y

(l−1)
1 (t,τ)+Y

(l+1)
1 (t,τ))+

Γ M̃Y
(l)
2 (t,τ)+ΩRY

(l)
3 (t,τ), (33)

d

dτ
Y
(l)
2 (t,τ) =−Γ

(

1

2
+ Ñ − iδ + il

ω f

Γ

)

Y
(l)
2 (t,τ)+

+i
δa

2
(Y

(l−1)
2 (t,τ)+Y

(l+1)
2 (t,τ))+

Γ M̃∗Y (l)
1 (t,τ)+ΩRY

(l)
3 (t,τ), (34)

d

dτ
Y
(l)
3 (t,τ) =−(Γ (2Ñ + 1)+ ilω f )Y

(l)
3 (t,τ)−

ΩR +β ∗

2
Y
(l)
1 (t,τ)− ΩR +β

2
Y
(l)
2 (t,τ), (35)

and the Laplace transforms

Ȳ
(l)
i (t,z) =

∫ ∞

0
e−zτY

(l)
i (t,τ)dτ (36)

of the components Y
(l)
i (t,τ) will satisfy the following set

of equations:

zȲ
(l)
1 (t,z)+Γ

(

1

2
+ Ñ− iδ + il

ω f

Γ

)

Ȳ
(l)
1 (t,z)+

+i
δa

2

(

Ȳ
(l−1)
1 (t,z)+ Ȳ

(l+1)
1 (t,z)

)

−

Γ M̃Y
(l)
2 (t,z)−ΩRȲ

(l)
3 (t,z) =

1

2
δl,0 +X

(l)
3 (t)−

∞

∑
r=−∞

X
(l−r)
1 (t)X

(r)
2 (t), (37)

zȲ
(l)
2 (t,z)+Γ

(

1

2
+ Ñ− iδ + il

ω f

Γ

)

Ȳ
(l)
2 (t,z)−

−i
δa

2

(

Ȳ
(l−1)
2 (t,z)+ Ȳ

(l+1)
2 (t,z)

)

−

Γ M̃∗Y (l)
1 (t,z)−ΩRȲ

(l)
3 (t,z) =−

∞

∑
r=−∞

X
(l−r)
2 (t)X

(r)
2 (t), (38)

zȲ
(l)
3 (t,z)+ (Γ (2Ñ + 1)+ ilω f )Ȳ

(l)
3 (t,z)+

ΩR +β ∗

2
Ȳ
(l)
1 (t,z)+

ΩR +β

2
Ȳ
(l)
2 (t,z) =

=−
∞

∑
r=−∞

(

1

2
δr,0 +X

(r)
3 (t)

)

X
(l−r)
2 (t). (39)

In the steady state limit (t → ∞) only the zero-order

component Ȳ
(0)
1 (t,z) contributes to Finc(ω), and the

incoherent part of the spectrum (32) reads as

Finc(ω) =
Γ

π
Re lim

t→∞
Ȳ
(0)
1 (t,z)

∣

∣

∣

z=−i(ω−ω f )
. (40)
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4 Numerical Results

Equations (29)-(31) and (37)-(39) were solved
numerically, as usual [15], in the steady state limit
(t → ∞) by truncation of the number of the harmonic

amplitudes X
(l)
i (t) and Ȳ

(l)
i (t,z) involved, and the case of

the driving laser field frequency ω f and the carrier
frequency of the squeezed field ωs being simultaneously
in resonance with the atomic transition frequency ω0 was
studied. It was already found [3] in the case of a two-level
system with broken symmetry interacting with
non-squeezed vacuum reservoir that for δa 6= 0 a
low-frequency radiation peak centered nearly exactly at
the frequency ω = ΩR appears in the fluorescence
spectrum. The amplitude of the peak increases steadily
with the increase of the symmetry violation parameter δa

and decreases with the increase of the driving field
frequency ω f . The central frequency of the peak is
defined for the most part by the Rabi frequency ΩR and
depends weakly on the symmetry violation parameter δa,
so that it drifts very slowly toward ω = 0 along with the
increase of this parameter. Here it was found that the
interaction with the finite bandwidth squeezed vacuum
reservoir does not change these aspects of the spectral
peak behavior. At the same time, the amplitude of this
peak strongly depends on the squeezed vacuum source
DPO parameters, such as the cavity damping γc and
effective pump amplitude ε . Actually, the amplitude of
the peak decreases with the increase of the cavity
damping while the width of the peak increases, see Fig.1.
And vice versa, the amplitude of the peak increases with
the increase of the effective pump amplitude while the
width of the peak decreases, see Fig.3. At the same time,
the position of the peak is not significantly affected by
these parameters and, consequently, the DPO cavity
damping and effective pump amplitude can be employed
to control the fluorescence intensity output of the polar
emitter at the fixed frequency ΩR. The same goal of the
fluorescence intensity output control can be achieved for
fixed parameters γc and ε by varying the phase of
squeezing θ instead, see Fig.2 and Fig.4. It is also
observable that the fluorescence peak is most pronounced
for the case of the DPO at the threshold when 2ε/γc = 1.
Below the threshold the amplitude of the peak decreases
while the position of the peak is not shifted. Therefore,
the fluorescence intensity output is actually controlled by
the value of the ratio 2ε/γc, which effectively defines the
degree of the squeezing.
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Fig. 1: Fluorescence spectrum at ω = ΩR for various values

of the cavity damping γc. Γ = 1, γc = 10 : 10 : 50,ε = 5,θ =
0, ω f = ωs = ω0 = 5000,ΩR = 100,δa = 10.
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Fig. 2: Fluorescence spectrum at ω = ΩR for various values

of θ at the DPO threshold. Γ = 1,γc = 10,ε = 5, θ = 0 : π/6 :

π, ω f = ωs = ω0 = 5000,ΩR = 100,δa = 10.

5 Conclusion

In conclusion, we studied the effect of the vacuum
dissipative reservoir finite bandwidth squeezing on the
phenomenon of the low-frequency fluorescence by a
damped quantum two-level polar system with broken
inversion symmetry driven by external high-frequency
classical EM (laser) field. The source of the squeezed
vacuum was represented by the OPO being in the DPO
mode of operation. It was shown that the parameters of
the DPO, such as the effective pump amplitude, cavity
damping and phase of the squeezing, provide efficient
means for the control of the intensity and spectral width
of the fluorescence radiation output.
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Fig. 3: Fluorescence spectrum at ω = ΩR for various values

of the DPO effective pump amplitude ε . Γ = 1, γc = 10, ε =
1 : 1 : 5,θ = 0, ω f =ωs =ω0=5000,ΩR =100,δa =10.
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Fig. 4: Fluorescence spectrum at ω = ΩR for various values

of θ below the DPO threshold. Γ = 1,γc = 10,ε = 3,θ = 0 :

π/6 : π, ω f =ωs =ω0=5000,ΩR =100,δa =10.
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