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Abstract: In this paper, we study the properties and various results of the generalized Laplace Equation, using a previously defined

and studied generalized derivative. We discuss the solution of this mathematical problem with conditions of the Dirichlet type and

Neumann type. The results obtained are illustrated using various examples, by modeling the solutions under two variations: that of the

kernel used and the order involved.
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1 Introduction

Probably one of the mathematical areas with the greatest
expansion in the last hundred years, is that of Differential
Equations in Partial Derivatives, due to its multiplicity of
applications and the multiple theoretical relationships
with various mathematical areas (using various operators
and on different functional spaces). Over time, the
number of researchers and the productions obtained have
been increasing, you can consult in [1,2,3,4] different
aspects of this increase and its overlaps with the
development of Mathematics itself.

Fractional and generalized calculus is today as
important as classical calculus. In the last 40 years, these
work directions have become a center of interest for
various mathematicians, due to their wide applications. In
particular, that has led to different definitions of
differential and integral operators, and its multiple links
that have not yet been studied (see [5,6,7,8] for
additional details and various formulations).

In [9] a generalized fractional derivative was defined
in the following way.

Definition 1. Given a function f : [0,+∞)→R. Then the

N-derivative of f of order α is defined by

Nα
F f (t) = lim

ε→0

f (t + εF(t,α))− f (t)

ε
(1)

for all t > 0, α ∈ (0,1) being F(α, t) an absolutely

continuous function.

If f is α−differentiable in some (0,α), and

lim
t→0+

Nα
F f (t) exists, then define Nα

F f (0) = lim
t→0+

Nα
F f (t),

note that if f is differentiable, then Nα
F f (t) = F(t,α) f ′(t)

where f ′(t) is the ordinary derivative.

Remark. In the same article it is proved one of the most
required properties of a derivative operator is the Chain
Rule, to calculate the derivative of compound functions,
which does not exist in the case of classical fractional
derivatives Nα

Φ ( f ◦ g)(t) = Nα
Φ f (g(t)) = f (́g(t))Nα

Φ g(t) .

This generalized derivative operator contains many of
the known local operators (for example, the conformable
derivative and the non-conformable of [10,11])) and has
shown its usefulness in various applications, as it can be
consulted, for example, in [12,13,14,15,16,17,18,19].

The following result is very easy to obtain.

Theorem 1. Let a > 0 and f : [a,b] → R be a given

function, if f is N-derivable in t0 ≥ 0, then f is

continuous in t0.

Now, we give the definition of a general fractional
integral (cf. [20]). Throughout the work we will consider
that the integral operator kernel T defined below is an
absolutely continuous function.

Definition 2. Let I be an interval I ⊆ R, a, t ∈ I and α ∈
R. The integral operator Jα

T,a, is defined for every locally
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integrable function f on I as

Jα
T,a( f )(t) =

∫ t

a

f (s)

T (s,α)
ds, t > a (2)

In the same study, the following properties are
fundamental, and relate the previous integral operator
with the generalized derivative.

Proposition 1. Let I be an interval I ⊆R, a ∈ I, 0 <α ≤
1 and f a α-differentiable function on I such that f ′ is a

locally integrable function on I. Then, we have for all t ∈ I

Jα
F,a

(

Nα
F ( f )

)

(t) = f (t)− f (a).

Proposition 2. Let I be an interval I ⊆R, a ∈ I and α ∈
(0,1].

Nα
F

(

Jα
F,a( f )

)

(t) = f (t),

for every continuous function f on I and a, t ∈ I.

Remark. In [21] it is defined the integral operator Jα
F,a for

the choice of the function F given by F(t,α) = t1−α , and
[21, Theorem 3.1] shows

T α Jα
t1−α,a

( f )(t) = f (t),

for every continuous function f on I, a, t ∈ I and
α ∈ (0,1]. Hence, Proposition 2 extends to any F this
important equality.

The following result summarizes some elementary
properties of the integral operator Jα

T,a.

Theorem 2. Let I be an interval I ⊆ R, a,b ∈ I and α ∈
R. Suppose that f ,g are locally integrable functions on I,

and k1,k2 ∈ R. Then we have

(1) Jα
T,a

(

k1 f + k2g
)

(t) = k1Jα
T,a f (t)+ k2Jα

T,ag(t),

(2) if f ≥ g, then Jα
T,a f (t) ≥ Jα

T,ag(t) for every t ∈ I

with t ≥ a,

(3)
∣

∣

∣
Jα

T,a f (t)
∣

∣

∣
≤ Jα

T,a | f | (t) for every t ∈ I with t ≥ a.

Theorem 3. (Integration by parts) Let f ,g : [a,b] → R

differentiable functions and α ∈ (0,1]. Then, the following

property hold

Jα
F,a(( f )(Nα

F,ag(t))) = [ f (t)g(t)]ba − Jα
F,a((g)(N

α
F,a f (t))).

(3)

Proof. See [22].

Remark. As pointed out in the same article, many
fractional integral operators can be obtained as particular
cases of the previous one, under certain choices of the F

kernel. For example, if F(t − s,α) = Γ (α)(t − s)1−α the
right Riemann-Liouville integral is obtained (similarly to
the left), further details on Fractional Calculus and
fractional integral operators linked to the generalized
integral of the previous definition, can be found in [23,24,
25,26,27,28,29,30].

Remark. We can define the function space L
p
α [a,b] as the

set of functions over [a,b] such that (Jα
T,a[ f (t)]

p(b))<+∞.

Taking into account the ideas of [31] we can define the
generalized partial derivatives as follows.

Definition 3. Given a real valued function f : Rn → R

and −→a = (a1, · · · ,an) ∈ R
n a point whose ith component

is positive. Then the generalized partial N-derivative of f
of order α with respect to the variable xi, in the point −→a =
(a1, · · · ,an) is defined by

iN
α
F f (−→a )

= lim
ε→0

f (a1, · · · ,ai + εFi(ai,α), · · · ,an)− f (a1, · · · ,ai, · · · ,an))

ε
(4)

if it exists, is denoted iN
α
F f (−→a ), and called the ith

generalized partial derivative of f of the order α ∈ (0,1]
at −→a .

Remark. If a real valued function f with n variables has
all generalized partial derivatives of the order α ∈ (0,1] at
−→a , each ai > 0, then the generalized α-gradient of f of the
order α ∈ (0,1] at −→a is

∇α
N f (−→a ) = (1Nα

F f (−→a ), · · · ,2 Nα
F f (−→a )) (5)

Remark. The higher-order N-partial derivatives of a real
valued function f with n variables, with α ∈ (0,1] at −→a ,
are similarly defined by

iN
α
F (iN

α
F f ) = (i,i)N

α+α
F f . (6)

Taking into account the above definitions, it is not
difficult to prove the following result, on the equality of
mixed partial derivatives.

Theorem 4. Under assumptions of Definiton 3, assume

that f (t1, t2) it is a function for which, mixed generalized

partial derivatives exist and are continuous,

N
α+β
F1,2,t1,t2

( f (t1, t2)) and N
β+α
F2,1,t2,t1

( f (t1, t2)) over some

domain of R2 then

(1,2)N
α+β
F ( f (t1, t2)) = (2,1)N

β+α
F ( f (t1, t2)) (7)

Using the previously defined, the following definition
is clear.

Definition 4. Let 0 < α < 1. We will say that the

function f (x) is N-differentiable, with N-differential

denoted by dF f = Nα
F f dt. If f is differentiable on

(0,+∞), then we have dF f = F(t,α) f ′(t)dt.

Laplace’s Equation is used as an indicator of
equilibrium, in applications such as conduction,
dissipation and heat transfer (see [32]). Some results
concerning the Laplace’s Equation in the framework of
local derivatives can be found in [33,34,35]. It is known
that the Fourier series is one of the most important
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methods used in engineering and physical sciences to find
the analytical solution of initial and boundary problems.
For the case of conformable derivatives, the method is
introduced in [36]. Here we generalize this method to any
local derivative, and we obtain the solution of the
generalized Laplace equation, at the end of the work
several examples are presented where the strengths of the
results obtained are shown, in particular , the known
results for the case of the conformable derivative, are
particular cases of those presented here.

2 Main Results

2.1 The generalized Fourier Series

Let F be the function of Definition 1, let’s define F(t,α) =
∫ t

0
1

F(s,α)
ds. Consider 0 < α ≤ 1 and g : [0,∞)→R be any

function. Let’s define the f function as follows f : [0,∞)→
R and f (t) = (g ◦F)(t) = g(F(t,α)).

Definition 5.A function f (t) is called generalized

α-periodical with period p if we have

f (t) = g(F(t,α)) = g(F(t,α) + F(p,α)), for all

t ∈ [0,+∞).

Remark.If F ≡ 1 in the previous definition, that is, we are
considering the derivative and the classical integral, the
above concept coincides with the classical periodic
function. If we can F(t,α) = t1−α , that is, we consider
the derivative and conformable integral of Khalil (see
[21]), then this Definition contains as a particular case,
the α-periodic function of [33,34,36]. If we consider the
function f (t) = cost, and the general kernel, it will be
α-periodic generalized, provided that F(p,α) = 2π ; if we
put the conformable kernel, it is easy to get the example
from [36].

Definition 6.A family of functions, f1(t), f2(t), · · · , fn(t) is

said α-ortogonal generalized on [0,b], if

Jα
F,0( fi f j)(b) = 0, (8)

for all i 6= j.

Remark.If F ≡ 1 we have the classic orthogonality, and if
F(t,α) = t1−α , we obtain the α-orthogonality of [33,34,
36].

To solve the generalized Laplace equation, using the
generalized Fourier method, we must first consider the
generalized Fourier coefficients that can be calculated
using the Definition 2 of the generalized integral. The
calculation of the coefficients of the generalized Fourier
series involves the kernel F , so it is somewhat more
complex than that of the classical Fourier series. This
generalized series can be written like this:

SF f (t) =
a0

2
+

∞

∑
n=1

{an cos(nF(t,α))+ bn sin (nF(t,α))} ,

(9)

where a0, an and bn are the generalized Fourier coefficients
defined by

a0 =
1

p
Jα

F ( f )(p) =
1

p

∫ p

0

f (t)

F(t,α)
dt (10)

an =
2

p
Jα

F ( f cos(nF(t,α)))(p)

=
2

p

∫ p

0

f (t)cos(nF(t,α))

F(t,α)
dt (11)

bn =
2

p
Jα

F ( f sin(nF(t,α)))(p)

=
2

p

∫ p

0

f (t)sin(nF(t,α))

F(t,α)
dt (12)

with n = 1,2,3, .. and p = F
−1(2π ,α).

Remark.This definition of generalized series makes sense
because the set

{Sin(nF (t,α))/n ∈ N}∪{Cos(nF (t,α))/n ∈ N} (13)

is α-orthogonal.

Proof.

Jα
F (cos(nF(t,α)) .cos(mF(t,α)))(p)

=
∫ p

0

cos(nF(t,α)) .cos(mF(t,α))

F (t,α)
dt (14)

We do the change u = F(t,α), then du = dt
F(t,α)

and we

obtain

Jα
F (cos(nF(t,α)) .cos(mF(t,α))) (p)

=

∫

F(p,α)

0
cos(nu)cos(mu)du = 0 (15)

if n 6= m.

The same calculation for sin(nF(t,α)) and for
sin(nF(t,α)) with cos(nF(t,α))

Remark.If we consider the kernel F ≡ 1, we obtain the
classical coefficients of the Fourier Series and if we take
F(t,α) = t1−α , we obtain the α-fractional Fourier series
of [33,34,36].

The following result can be proved, following the
classical case.

Theorem 5.The generalized Fourier series of a

generalized periodic function, piecewise continuous,

converges pointwise to the average limit of the function at

each point of discontinuity, and to the function at each

point of continuity.
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2.2 Generalized Laplace’s Partial Differential

Equation

Now we are going to apply the generalized Fourier series
to solve the following generalized Laplace Equation (0 <
α ≤ 1):

(1,1)N
α+α
F u(t,x))+(2,2) Nα+α

F u(t,x)) = 0. (16)

As in the classical case, we will study this equation
with boundary conditions at the boundary of the
enclosure where the equation is fulfilled, which must have
a certain regularity, these conditions can be of two types:
i) Dirichlet conditions: these are conditions in the
function u(t,x).
ii) Neumann conditions: these are conditions imposed on
the generalized partial derivatives of u(t,x) of the order

(1,1)N
α+α
F u(t,x) or (2,2)N

α+α
F u(t,x).

In solving both, we will use the generalized Variables
Separation Method, which contains as particular cases the
classical case and the conformable of [33,34,36].

Case i). Let us discuss the solution of the equation (16),
on the region 0 ≤ t ≤ a, 0 ≤ x ≤ b. with the following
boundary conditions:

u(t,0) = u(t,b) = 0,0 ≤ t ≤ a, (17)

u(0,x) = 0,0 ≤ x ≤ b, (18)

u(a,x) = f (x),0 ≤ x ≤ b. (19)

Let’s find the solution in the form u(t,x) = T (t)X(x),
when substituting in the equation (16) we obtain:

(1,1)N
α+α
F T (t)X(x)+(2,2) Nα+α

F X(x)T (t) = 0. (20)

As we look for non-trivial solutions, that is, u 6= 0,
assuming that T (t) 6= 0 and X(x) 6= 0 we obtain from the
previous equation

1

T (t)
.(1,1)N

α+α
F T (t) =−

1

X(x)
.(2,2)N

α+α
F X(x). (21)

Since t and x are independent variables, from the above
we have

1

T (t)
.(1,1)N

α+α
F T (t) =−

1

X(x)
.(2,2)N

α+α
F X(x) = c (22)

for some real constant c, to be determined. This leads
us to the following generalized linear differential
equations:

1

T (t)
.(1,1)N

α+α
F T (t) = c, (23)

1

X(x)
.(2,2)N

α+α
F X(x) =−c. (24)

The following definition (see [9]) will allow us to
obtain the solution we are looking for.

Definition 7.The generalized exponential function is

defined for every t ≥ 0 by:

EN
α (k, t) = exp(kF (t)) (25)

where k ∈ R, 0 < α < 1 and

F (t) = Jα
F,u(1)(t) =

∫ t
u dα ζ =

∫ t
u

1
F(ζ ,α)

dζ and u ∈ R
+.

Using the Chain Rule we have the simple identity
Nα

F (exp(kF (t)) = k(exp(kF(t)), which allows us to
obtain the solution of the equations (24) (with boundary
conditions u(t,0) = u(t,b) = 0) and (23) (with boundary
condition u(0,x) = 0), and write the general solution of
the equation (16) as (using a procedure similar to the
classic case):

un(t,x) =Cn sinh

[

nπF(t,α)

F(a,α)

]

sin

[

nπF(x,α)

F(b,α)

]

(26)

where Cn is a certain real constant, which depends on
n and which appeared in the solution process. Since the
equation is linear, any linear combination of solutions is
another solution; therefore, we can consider it as a formal
general solution:

u(t,x) =
∞

∑
n=1

Cn sinh

[

nπF(t,α)

F(a,α)

]

sin

[

nπF(x,α)

F(b,α)

]

. (27)

We can obtain the solution in terms of a generalized
fourier series, using u(a,x) = f (x), so we have

u(a,x) =
∞

∑
n=1

Cn sinh(nπ)sin

[

nπF(x,α)

F(b,α)

]

= f (x) (28)

=
∞

∑
n=1

Dn sin

[

nπF(x,α)

F(b,α)

]

= f (x). (29)

Finally, we can calculate the value of the coefficients
Dn =Cn sinh(nπ), if we consider the previous expression,
as a generalized Fourier Fourier, in sines, of f (x),
therefore, we have

Dn =
2

F(b,α)
Jα

F,0

(

f (x)sin

[

nπF(x,α)

F(b,α)

])

(b)

=
2

F(b,α)

∫ b

0

(

f (x)sin

[

nπF(x,α)

F(b,α)

])

dx

F(x,α)
.

Remark.If we consider the kernel F ≡ 1, the results
obtained coincide with those known from the classic case.
If we take F = t1−α , then the previous results cover those
obtained in [33,36] and [34] for the Dirichlet-type
boundary conditions.
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Case ii) We are going to discuss the solutions of the
equation (16), subject to the conditions:

1Nα
F u(t,0) = u(t,0) = 0,0 ≤ t ≤ a, (30)

1Nα
F u(t,b) = u(t,b) = 0,0 ≤ t ≤ a, (31)

2Nα
F u(0,x) = f (x),0 ≤ t ≤ b, (32)

2Nα
F u(a,x) = 0,0 ≤ t ≤ b (33)

We will use, again, the Separation of Variables
Method looking for the solution in the form
u(t,x) = T (t)X(x) which leads us to consider the
following two generalized linear differential equations:

1

T (t)
.(1,1)N

α+α
F T (t) = c, (34)

1

X(x)
.(2,2)N

α+α
F X(x) =−c. (35)

By having boundary conditions on the generalized
partial derivatives, it obviously leads us to some
variations of the solution obtained in the previous case.
So we have (following the classic case and considering
the three possible cases for c, positive, negative or zero):

un(t,x)

=Cn cos

(

nπ
F(x,α)

F(b,α)

)

×

[

exp

(

nπ
F(t,α)

F(a,α)

)

+ exp

(

−nπ
F(t,α)

F(a,α)

)

exp(2nπ)

]

.

(36)

The formal solution sought is the linear combination
of all the solutions obtained in the case c = 0, so we can
write:

u(t,x)

= K +
∞

∑
n=1

Cn cos

(

nπ
F(x,α)

F(b,α)

)

×

[

exp

(

nπ
F(t,α)

F(a,α)

)

+ exp

(

−nπ
F(t,α)

F(a,α)

)

exp(2nπ)

]

,

(37)

with K some real constant.
The values of Cn The values of Cn will be determined

with the help of the generalized Fourier Series, using the
boundary condition (32). So, we have

1Nα
F u(t,x)

=
∞

∑
n=1

Cnnπ

F(b,α)
cos

(

nπ
F(x,α)

F(b,α)

)

[

exp

(

nπ
F(t,α)

F(a,α)

)

+ exp

(

−nπ
F(t,α)

F(a,α)

)

exp(2nπ)

]

(38)

where do we get

Nα
F2

u(t,0) =
∞

∑
n=1

Cnnπ

F(b,α)
cos

(

nπ
F(x,α)

F(b,α)

)

×

[

1− exp

(

2nπ
F(a,α)

F(b,α)

)]

=
∞

∑
n=1

Dn cos

(

nπ
F(x,α)

F(b,α)

)

,

from the above, we get

Dn =
Cnnπ

F(b,α)

[

1− exp

(

2nπ
F(a,α)

F(b,α)

)]

=
2

F(b,α)
Jα

F,0

[

f (x)cos

(

nπ
F(x,α)

F(b,α)

)]

(a)

=
2

F(b,α)

∫ a

0

[

f (x)cos

(

nπ
F(x,α)

F(b,α)

)]

dx

F(x,α)
.

with

Cn =
2

nπ
[

1− exp
(

2nπ
F(a,α)
F(b,α)

)] Jα
F,0

[

f (x)cos

(

nπ
F(x,α)

F(b,α)

)]

(a)

=
2

nπ
[

1− exp
(

2nπ F(a,α)
F(b,α)

)]

∫ a

0

[

f (x)cos

(

nπ
F(x,α)

F(b,α)

)]

dx

F(x,α)
.

We must point out that, in this case, the independent term

of the generalized Fourier Series,
D0
2

, must be zero, that is,

D0 =
2

F(b,α)

∫ a
0 f (x) dx

F(x,α) = 0.

2.3 Examples

Example 1.Recall that the solution of the generalized
Laplace’s equation is

u(t,x) =
∞

∑
n=1

Cn sinh

[

nπF(t,α)

F(a,α)

]

sin

[

nπF(x,α)

F(b,α)

]

. (39)

and using the initial condition u(a,x) = f (x) we obtain
the coefficients

Cn =
2

F(b,α)sinh(nπ)
Jα

F,0

(

f (x)sin

[

nπF(x,α)

F(b,α)

])

(b)

=
2

F(b,α)sinh(nπ)

∫ b

0

(

f (x)sin

[

nπF(x,α)

F(b,α)

])

dx

F(x,α)
.

Choosing the kernel F(t,α) = t1−α then

F(t,α) =
∫ t

0
1

F(s,α)
ds = tα we obtain the coefficients

Cn =
2b−α

sinh
(

nπaα

bα

)Jα
F,0

(

f (x)sin

[

nπxα

bα

])

(b)

=
2b−α

sinh
(

nπaα

bα

)

∫ b

0

(

f (x)sin

[

nπxα

bα

])

xα−1dx
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Example 2.If we take f (x) = C a real constant, then the
coefficients of the solution are

Cn =
2

F(a,α)sinh(nπ)
Jα

F,0

(

sin

[

nπF(x,α)

F(b,α)

])

(b)

=
2F(b,α)

nπF(a,α)sinh(nπ)
×

∫ nπ

0
(sin(u))du =

2F(b,α)((−1)n − 1)

nπF(a,α)sinh(nπ)
.

Example 3.Now we choose f (x) = F(a,α) then the
coefficients are

Cn =
2

F(a,α)sinh(nπ)
Jα

F,0

(

F(x,α)sin

[

nπF(x,α)

F(b,α)

])

(b)

=
2F(b,α)

nπF(a,α)sinh(nπ)
∫ nπ

0
(usin(u))du =

2F(b,α)(−1)n

F(a,α)sinh(nπ)
.

3 Conclusions

In this paper, we have solved the generalized Laplace
Equation, subject to Dirichlet and Newman boundary
conditions. For this, we have used generalized derivative
and integral operators, previously defined. From these
notions, we have defined the generalized Fourier series
and the concrete expressions of the coefficients of said
series.

The results obtained indicate that they allow a broader
application than the classic and conformable cases, which
are covered by these. Finally, some examples are
presented to show the strength and breadth of the results
obtained, which will allow their application in future
applied research in various areas.
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[9] J. E. Nápoles, P. M. Guzmán, L. M. Lugo and A. Kashuri, The

local non conformable derivative and Mittag Leffler function,

Sigma J Eng & Nat Sci., 38 (2), 1007-1017 (2020).

[10] P. M. Guzmán, G. Langton, L. M. Lugo, J. Medina and J. E.
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