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Abstract: This paper extends the exponential-generalized truncated logarithmic (EGTL) distribution to model reverse ordered

statistics. Our procedure generalizes the exponential-logarithmic (EL) distribution to a distribution more appropriate for modelling the

mth-largest value of lifetime instead of the maximum lifetime. We give a general form of the new family of spacing distribution

appropriate for descending ordered statistics. General forms of the pdf and the failure rate function as well as their properties are

presented for some special cases. The parameters’ estimation is attained by the maximum likelihood (ML) and the expectation

maximization (EM) algorithms. The application study is illustrated based on four real data sets.
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1 Introduction

The distributions of ordered spacing statistics are of great interest in many areas of statistics, in particular, detection
of outliers, quality control, auction theory, reliability and life testing models. By spacings we refer to the distances or
gaps between two successive points on a line. For example, in the reliability analysis spacings correspond to the lifetime
between successive failures of components in a system. For industrial accidents, they refer to the intervals of time between
successive accidents occurring in a given period (for more details on spacings we refer to [1,2,3,4,5,6]). Ordered random
variables are already known for their ascending order. The concept of dual generalized ordered statistics, introduced by
Burkschat et al. [7], enables a common approach to descending ordered spacings like reverse ordered statistics and lower
record values.

Reverse order statistics have also a wide range of applications in economics such as providing diverse distributive
criteria in assessing welfare and inequalities of incomes and wealth [8,9]. The kth-reverse order statistics corresponds
to the (n− k+ 1)th-order statistics. Ordered spacings may provide information about a sequence of ordered intervals of
varying lengths. For instance, in the analysis of the intervals of time between industrial accidents, testing for change
with time is more important than studying only accident frequencies in relatively long fixed interval of times [10]. If the
expectation of accidents per unit of time is constant, then the time-intervals between successive accidents are exponentially
distributed. Exponential distribution is often used to model spacings such as system reliability at a component level,
assuming the failure rate is constant [11,12]. In recent years, several compound distributions have been introduced as
extensions of the exponential distribution, following Adamidis and Loukas [13] and Kuş [14], by using the mixture of
count data and spacing distributions. The most common count data distributions are the Poisson, binomial and negative-
binomial models arising for events randomly and independently occurred in time. They are the distributions of non-
negative counts in a number of trials with a probability of occurrence of outcomes under observation. However, in the
analysis of spacings between successive events, the count variable includes at least one observation i.e. positive counts

∗ Corresponding author e-mail: malrhmonie@kfu.edu.sa

c© 2023 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/jsap/120104


40 M. Rahmouni, A. Orabi: A Reverse Exponential-Generalized Truncated Logarithmic...

[15]. The logarithmic series density has support positive integers, which make more sense to our model since it is defined
for the positive valued count random variables. Furthermore, the logarithmic distribution is used generally to model the
number of occurrence of events in a specified period of time. For instance, Chatfield [16] noted that purchases of a given
consumer in successive intervals of time is a Poisson distribution while logarithmic series distribution should be used to
model the purchasing behavior in a single time-period. The logarithmic series distribution is a one parameter for positive
integers and has a long positive tail. It was introduced by Fisher et al. [17] to investigate the relationship between the
number of individuals and the number of species in a random sample of animal population.

The purpose of this article is to extend the two-parameter EGTL distribution for reverse order statistics, proposed by
Rahmouni and Orabi [18] to model the kth-smallest value of lifetime. Our procedure generalizes the
exponential-logarithmic distribution modelling the reliability of systems by use of the first-order concepts, where the
maximum lifetime of a system is considered. The approach comes from the idea of modelling a system reliability based
on the reliability of its components. However, the maximum lifetime, in simple series, is not often adequate to model
reliability of real systems. We assume that a system fails if a given number m of the components fails and then, we
consider any mth-largest value of lifetime instead of the maximum lifetime [18,19,20]. Let Y = (Y1,Y2, ...,YZ) a random
sample of independent and identically distributed (iid) random variable following an exponential distribution. We
generalize the distributions modelling the first or last spacings or lifetime, to a distribution more appropriate for
modelling any mth order statistic i.e. the mth-largest value of lifetime instead of the maximum lifetime X(1) = max{Yi}

Z
i=1.

Let the reverse (descending) order statistics X(1) > X(2) > ... > X(Z). The joint probability density is determined by

compounding a truncated at m logarithmic series distribution and the probability density function (pdf) of the (z−m)th

order statistic (m = 0,2, ...,z). We include in the sample only (z−m) individuals who have experienced the event.
The rest of the paper is structured as follows. In section 2, we present the new family of spacing distribution and the

pdf for some special cases. The moment generating function, the survival and hazard rate functions are discussed in this
section. The estimation of parameters for this new family of distributions will be discussed in section 3. The estimation of
the parameters is attained by ML and EM algorithms. The application study is illustrated based on four real data sets in
the last section.

2 Properties of the distribution

2.1 Distribution

Let Y = (Y1,Y2, ...,YZ) be iid exponential random variable with scale parameter θ > 0 and pdf given by: f (y) = θe−θy ,
for y > 0, where Z is a discrete random variable following a logarithmic series distribution with parameter 0 < p < 1 and
a probability mass function P(Z = z) of a Log(p)-distributed random variable given by:

P(Z = z) =
1

− ln(1− p)

pz

z
;z ∈ {1,2,3, . . .} (1)

If the discrete random variable Z follows a truncated at m logarithmic distribution with parameter p, then the
probability function Pm(Z = z) will be given by the following equation:

Pm(Z = z) =
1

A(p,m)

pz

z
;m = 0,1,2, . . . ,z and z = m+ 1,m+ 2, . . . (2)

where,

A(p,m) =

{
− ln(1− p) if m = 0

− ln(1− p)−∑m
j=1

p j

j
if m = 1,2, ...,z

The probability density function distribution (pdf) for the proposed Rev-EGTL distribution is:

gm(x/p,θ ,m) =
θ pm+1e−θ(m+1)x

A(p,m)[1− p(1− e−θx)]m+1
; x ∈ [0,∞) (3)

Where 0 < p < 1 and θ are the shape and the scale parameters, respectively. This distribution is more appropriate for
modelling any (z−m)th order statistic (zth, (z− 1)th or any (z−m)th lifetime). The maximum lifetime distribution is a
special case for m = 0. It is the exponential-logarithmic (EL) distribution for modelling the last value X(z) = max{Yi}

Z
i=1:

g0(x/p,θ ) =
pθe−θx

− ln(1− p)[1− p(1− e−θx)]
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This pdf decreases strictly in x and tends to 0 as x → ∞. The modal value of the EL distribution at x = 0 is given by
θ pm+1

A(p,m) . The function is concave upward on [0,∞). The graphs of the density resemble those of exponential and Pareto II

distributions (see, Figure 1).

lim
x→0

gm(x/p,θ ,m) =
θ pm+1

A(p,m)

lim
x→∞

gm(x/p,θ ,m) = 0

Proof.:

Suppose Y(1),Y(2), ...,Y(Z) be the order statistics of Z observations and X = Y(k) is the kth order statistics. Then, the pdf
of X given Z is given by:

gk(x/z,θ ) =
θΓ (z+ 1)

Γ (k)Γ (z− k+ 1)
e−θ(z−k+1)x(1− e−θx)k ; θ ,x > 0 (4)

Let m = z− k for the mth reverse order statistics (the mth-largest value of lifetime). Therefore, from equations (2) and
(4) the joint probability density of X and Z is given by:

gm(x,z/p,θ ) =
Γ (z)

Γ (z−m)Γ (m+ 1)

θ pze−θ(m+1)x(1− e−θx)z−m−1

A(p,m)
(5)

Then, the marginal pdf of X is given by:

gm(x/p,θ ,m) =
θ (pe−θx)m+1

A(p,m)[1− p(1− e−θx)]m+1
; x ∈ [0,∞) (6)

Also, the cumulative distribution function (cdf) of X corresponding to the pdf in equation (3) is given by:

Gm(x/p,θ ,m) =
∫ x

0
gm(t/p,θ ,m)∂ t

Gm(x/p,θ ,m) = 1−
A(pw,m)

A(p,m)
(7)

where,

w =
e−θx

1− p(1− e−θx)

2.2 Moment generating function and rth moment

Suppose X has the pdf in equation (3), then the moment generating function is given by:

E(etx) =
1

A(p,m)

∞

∑
s=0

Cm+s
s pm+s+1β (s+ 1,m−

t

θ
+ 1) (8)

where,

β (i, j) =

∫ 1

0
t i−1(1− t) j−1∂ t

The rth moment is given by:

E(X r) =
1

A(p,m)θ r

∞

∑
s=0

i=s

∑
i=0

Cm+s
s Cs

i pm+1(m+ i+ 1)−(r+1) (9)
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Fig. 1: The pdf of the new distribution for m = 0,1,2,3

2.3 The survival and hazard functions

The survival or reliability function is the probability of being alive just before duration x. It is given by S(x) = Pr(X ≥
x) = 1− G(x) =

∫ ∞
x f (t)∂ t which is the probability that the event of interest does not occur by duration x. In other

words, reliability S(x) is the probability that a system will be successful in the interval from time 0 to time x, where the
random variable X denotes the time-to-failure or failure time [12,21,22]. The survival function, corresponding to the pdf
in equation (3), is given in equation (10) and it is presented in Table (1) for some special cases.

Sm(x/p,θ ,m) =
A(pw,m)

A(p,m)
(10)

The hazard rate h(x), known as failure rate function, is the instantaneous rate of occurrence of the event of interest at
duration x (i.e. the rate of event occurrence per unit of time). Mathematically, it equals to the pdf of events at x, divided by
the probability of surviving to that duration without experiencing the event. Thus, we define a failure rate function as in
Bakouch et al. [23] by h(x) = g(x)/S(x). The hazard function for some special cases is given in the last column of Table
(1).

hm(x/p,θ ,m) =
θ (pw)m+1

A(pw,m)
(11)

The hazard rate function is analytically related to the time-failure probability distribution. It leads to the examination
of increasing failure rate (IFR) or decreasing failure rate (DFR) properties of life-length distributions. G is an IFR
distribution, if h(x) increases for all X such that G(X)< 1. The motivation of the new lifetime distribution is the realistic
features of the hazard rate in many real-life physical and non-physical systems, which is not monotonically increasing,
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Table 1: Survivor and hazard functions for some special cases

order statistic k S(x) h(x)

last m = 0
ln(1−pw)
ln(1−p)

−θ pw
ln(1−pw)

last-1 m = 1
ln(1−pw)+pw

ln(1−p)+p

−θ(pw)2

ln(1−pw)+pw

last-2 m = 2
ln(1−pw)+pw+ (pw)2

2

ln(1−p)+p+ p2

2

−θ(pw)3

ln(1−pw)+pw+ (pw)2

2

last-3 m = 3
ln(1−pw)+pw+ (pw)2

2
+ (pw)3

3

ln(1−p)+p+ p2

2
+ p3

3

−θ(pw)4

ln(1−pw)+pw+ (pw)2

2
+ (pw)3

3

decreasing or constant hazard rate. From Figure 2 we observe that the hazard rate function is increasing. In fact, if x → 0

then h(x/p,θ ,m) = θ pm+1

A(p,m)
and if x → ∞ then h(x/p,θ ,m)→ θ (m+ 1).

lim
x→0

h(x/p,θ ,m) =
θ pm+1

A(p,m)

lim
x→∞

h(x/p,θ ,m) = θ (m+ 1)

2.4 Random variables generation

A random variable can be generated from the cdf of X and the standard uniform distribution of U and by solving the
nonlinear equation in w:

A(p,m)(1−U) = A(pw,m)

Solve the equation in w:

X =−
1

θ
ln

w(1− p)

1− pw

We can determine the quantiles by dividing the set of observations into equal sized groups. The quantile function is
given by X = q(U). The median is computed by letting U = 0.5. At m = 0,

q(U) =−
1

θ
ln

(
[1− (1− p)1−U](1− p)

1+ p− (1− p)1−U

)

Then, the median is:

X̃ = q(
1

2
) =−

1

θ
ln

(
[1− (1− p)0.5](1− p)

1+ p− (1− p)0.5

)

3 Estimation of the parameters

3.1 Maximum Likelihood Estimation

In this section, we will determine the estimates of the parameters p and θ for our new family of distributions. Let
(X1,X2, . . . ,Xn) be a random sample with observed values (x1,x2, . . . ,xn) from this distribution with pdf in equation (3).
The log-likelihood function given the observed values, xobs = (x1,x2, . . . ,xn), is:
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Fig. 2: Hazard functions of the new distribution for m = 0,1,2,3

lnL ∝ n ln(θ ) + n(m + 1) ln(p) − θ (m + 1)
n

∑
i=1

xi − n ln
∞

∑
j=m+1

p j

j
− (m + 1)

n

∑
i=1

ln[1 − p(1 − e−θxi)] (12)

The associated gradients are given by:

∂ lnL

∂ p
=

−npm

(1− p)∑∞
j=m+1

p j

j

+
n(m+ 1)

p
+(m+ 1)

n

∑
i=1

1− e−θxi

1− p(1− e−θxi)

∂ lnL

∂θ
=

n

θ
− (m+ 1)

n

∑
i=1

xi +(m+ 1)
n

∑
i=1

θ pe−θxi

1− p(1− e−θxi)

We need the Fisher information matrix for interval estimation and tests of hypotheses on the parameters. The Fisher
information matrix related to the second derivative of the log-likelihood function is:

I (p̂, θ̂ ) =−


E

(
∂ 2 lnL
∂ p2

)
E
(

∂ 2 lnL
∂ p∂θ

)

E
(

∂ 2 lnL
∂θ∂ p

)
E
(

∂ 2 lnL
∂θ 2

)


∣∣∣∣∣∣
θ=( p̂,θ̂ )

The maximum likelihood estimates (MLEs) p̂ and θ̂ of the parameters p and θ , respectively, can be found using the
iterative EM algorithm to handle the ”incomplete data problem” [24,25]. The iterative method consists on repeatedly
updating the parameter estimates by replacing the ”missing data” with the new estimated values. The standard method
used to determine the MLEs is the Newton-Raphson algorithm. To employ this algorithm, second derivatives of the log-
likelihood are required for all iterations. However, when the amount of information in the ”missing data” is relatively large,
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EM algorithm will converge reliably but rather slowly than the Newton-Raphson method [26,27,28,29,13]. Newton-
Raphson is required for the M-step of the EM algorithm. To start the algorithm, hypothetical distribution of complete-data
is defined with the joint probability density gm(x,z/p,θ ) and drives the conditional mass function as:

p(z/x, p,θ ) =
(z− 1)!

(z−m− 1)!m!
pz−m−1(1− e−θx)z−m−1[1− p(1− e−θx)]m+1 (13)

E-step:

E(z/x, p,θ ) =
m+ 1

1− p(1− e−θx)
(14)

M-step:

p̂(r+1) =
−
(
1− p(r+1)

)
∑∞

j=m+1

(
p(r+1)

) j

j

n
(

p(r+1)
)m

n

∑
i=1

m+ 1

1− p(r)(1− e−θ (r)xi)
(15)

θ̂ (r+1) =
n

m+ 1

[
n

∑
i=1

xi −
n

∑
i=1

xi p
(r)(1− e−θ (r)xi)e−θ (r+1)xi

[
1− p(r)(1− e−θ (r)xi)

]
(1− e−θ (r+1)xi)

]−1

(16)

3.2 Bayesian estimation

Let X = (X1,X2, ...,Xn) is a sample from the distribution given in equation (3). The likelihood function is given by:

L(p,θ |x) = [A(p,m)]−nθ n pn(m+1)e−θ(m+1)∑xi

n

∏
i=1

[1− p(1− e−θxi)]−(m+1) (17)

In the Bayesian approach inferences are expressed in a posterior distribution for the parameters which is, according to
Bayes’ theorem, given in terms of the likelihood and a prior density function by:

Pm(p,θ/x1,x2, ...,xn) =
gm(x/p,θ ).πm(p,θ )

K
(18)

where, πm(p,θ ) is a prior probability distribution function and gm(x/p,θ ) is the likelihood of observations
(x1,x2, ...,xn). Note that K is the normalizing constant for the function πm(p,θ )gm(x/p,θ ) given by:

∫ ∫
πm(p,θ )gm(x/p,θ )d pdθ (19)

We suppose that the conjugate prior for the parameter p is the Beta distribution:

π1(p) =
1

B(a,b)
pa−1(1− p)b−1

and the conjugate prior for the parameter θ is the Gamma distribution given by:

π2(θ ) =
dc

Γ (c)
θ c−1e−dθ

The posterior distribution is given by:

π(p,θ |x) =
1

K[A(p,m)]n
θ n+c−1 pn(m+1)+a−1(1− p)b−1e−θ [(m+1)∑xi+d]∏[1− p(1− e−θxi)]−(m+1) (20)

Bayesian estimates of the parameters can be found numerically through the use of the Markov Chain Monte Carlo
(MCMC) method.
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Table 2: ”Waiting times of 100 bank customers” [30]

0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7 2.9 3.1 3.2 3.3 3.5

3.6 4.0 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.6 4.7 4.7 4.8 4.9 4.9

5.0 5.3 5.5 5.7 5.7 6.1 6.2 6.2 6.2 6.3 6.7 6.9 7.1 7.1 7.1

7.1 7.4 7.6 7.7 8.0 8.2 8.6 8.6 8.6 8.8 8.8 8.9 8.9 9.5 9.6

9.7 9.8 10.7 10.9 11.0 11.0 11.1 11.2 11.2 11.5 11.9 12.4 12.5 12.9 13.0

13.1 13.3 13.6 13.7 13.9 14.1 15.4 15.4 17.3 17.3 18.1 18.2 18.4 18.9 19.0

19.9 20.6 21.3 21.4 21.9 23.0 27.0 31.6 33.1 38.5

scriptsize

Table 3: ”Ordered Failure Times (in hours) of 107 Right Rear Brakes on D9G-66A Caterpillar Tractors” [31,32]

56 753 1153 1586 2150 2624 3826 83 763 1154 1599 2156 2675 3995 104

806 1193 1608 2160 2701 4007 116 834 1201 1723 2190 2755 4159 244 838

1253 1769 2210 2877 4300 305 862 1313 1795 2220 2879 4487 429 897 1329

1927 2248 2922 5074 452 904 1347 1957 2285 2986 5579 453 981 1454 2005

2325 3092 5623 503 1007 1464 2010 2337 3160 6869 552 1008 1490 2016 2351

3185 7739 614 1049 1491 2022 2437 3191 661 1069 1532 2037 2454 3439 673

1107 1549 2065 2546 3617 683 1125 1568 2096 2565 3685 685 1141 1574 2139

2584 3756

4 Application examples

In this section, we fit the distribution to four real data sets. The first set of data is used by Ghitany et al. [30] and represents
”the waiting times (in minutes) before service of 100 Bank customers” (Table 2).

The second set (Table 3) consists of ”107 failure times for right rear brakes on D9G-66A caterpillar tractors”,
reproduced from Barlow and Campo [31] and also used by Chang and Rao [32].

The third data set is used by Bakouch et al. [33] to fit the binomial exponential-2 (BE2) distribution lifetime model
with increasing failure rate. Data represent ”final examination marks of 48 slow space students in Mathematics in the final
examination of the Indian Institute of Technology, Kanpur in year 2003” [34]. This data set has the values in Table 4.

Table 4: Finals marks [34]

29 25 50 15 13 27 15 18 7 7 8 19 12 18 5 21

15 86 21 15 14 39 15 14 70 44 6 23 58 19 50 23

11 6 34 18 28 34 12 37 4 60 2 0 23 40 65 19 31

The fourth set of data involves 100 observations (Table 5) of ”the results from an experiment concerning the tensile
fatigue characteristics of a polyester/viscose yarn. The observations were obtained on the cycles to failure of a 100 cm
yarn sample put to test under 2.3% strain level” [27].

Table 5: Results of Model Selection Program on Yarn Data [35]

86 146 251 653 98 249 400 292 131 169 175 176 76 264 15

364 195 262 88 264 157 220 42 321 180 198 38 20 61 121

282 224 149 180 325 250 196 90 229 166 38 337 65 151 341

40 40 135 597 246 211 180 93 315 353 571 124 279 81 186

497 182 423 185 229 400 338 290 398 71 246 185 188 568 55

55 61 244 20 284 393 396 203 829 239 286 194 277 143 198

264 105 203 124 137 135 350 193 188 236

Table 6 shows the fitted parameters, calculated values of Kolmogorov-Smirnov (K-S) and their respective p-values for
the four data sets. We estimate some special cases of the distribution at 5% significant level. The K-S test shows that our
new distribution is an attractive alternative to the other ones and it generalizes them to any (z−m)th order statistics. The
new lifetime model provides good fit to the data set. The results show that p-values are significant for all the cases. Indeed,
the data exhibit increasing failure rates and the hazard rate function is increasing. We also conducted the MCMC study,
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with 5000 replications, on Maximum likelihood method to empirically see the better performance of parameter estimation
methods.

Our proposed distribution is compared with the known gamma and Weibull distributions with respective densities

f1(x,λ1,β1) = λ
β1
1 xβ1−1exp(−λ1x)Γ (β1)

−1 and f2(x,λ2,β2) = β2λ
β2
2 xβ2−1exp(−λ2x)β2 . Using Barlow and Campo’s

data set [31] (n = 107), Rahmouni & Orabi [18] showed the estimated parameters for the Gamma distribution are
(0.943;1.908) with corresponding K–S value equals to 0.0680 and p− value = 0.7343. For the Weibull distribution the
obtained parameters are (0.447;1.486) with K–S value = 0.0490 and p− value = 0.9999. Also, Using the Quesenberry
and Kent’s data set [35], the estimated results for the Gamma distribution are (1.008;2.239) with corresponding
K–S value = 0.0950 and p − value equals to 0.3118. For the Weibull distribution the obtained parameters are
(0.403;1.604) with K–S value = 0.0760 and p− value= 0.6080.

Table 6: The Goodness of Fit for some Special Cases

MLE MCMC

Distributions p̂ θ̂ K-S value p-value p̂ (mean) s.e. θ̂ (mean) s.e.

Ghitany et al.’s data set [30]:

last order (m=0) 0.5597 0.1149 0.1116 0.1655 0.5997 2.87×10−4 0.2001 5.13×10−4

last-1 order (m=1) 0.7658 0.0903 0.1119 0.1630 0.6012 9.63×10−4 4.63×10−4 4.62×10−4

last-2 order (m=2) 0.7682 0.0698 0.1167 0.1308 0.5999 5.53×10−4 0.2009 6.38×10−4

last-3 order (m=3) 0.8199 0.0651 0.1148 0.1427 0.5999 3.81×10−4 0.2029 5.12×10−4

last-4 order (m=4) 0.8637 0.0646 0.1113 0.1678 0.5987 9.97×10−4 0.1998 2.97×10−4

Barlow and Campo’s data set [31]:

last order (m=0) 0.9654 1.09×10−3 0.0823 0.4623 0.5995 3.33×10−4 0.1908 4.08×10−4

last-1 order (m=1) 0.9392 6.93×10−4 0.0888 0.9186 0.5990 5.13×10−4 0.1955 9.12×10−4

last-2 order (m=2) 0.9349 5.59×10−4 0.0917 0.3285 0.6010 3.78×10−4 0.1977 1.63×10−3

last-3 order (m=3) 0.9372 4.92×10−4 0.0934 0.3080 0.5988 8.94×10−4 0.1998 4.93×10−4

last-4 order (m=4) 0.9412 4.52×10−4 0.0944 0.2957 0.6008 4.09×10−4 0.1978 1.09×10−3

Gupta and Kundu’s data set [34]:

last order (m=0) 0.9289 0.0731 0.1086 0.6232 0.5999 3.55×10−4 0.1997 2.77×10−4

last-1 order (m=1) 0.9142 0.0484 0.1096 0.6106 0.6012 2.15×10−4 0.2001 3.12×10−4

last-2 order (m=2) 0.9177 0.0399 0.1112 0.5926 0.5981 3.12×10−4 0.1974 5.43×10−4

last-3 order (m=3) 0.8968 0.0319 0.1225 0.4665 0.5992 4.13×10−4 0.1997 3.28×10−4

last-4 order (m=4) 0.5314 0.0130 0.1697 0.1258 0.6098 6.13×10−4 0.1987 5.14×10−4

Quesenberry and Kent’s data set [35]:

last order (m=0) 0.9796 0.0111 0.1026 0.2430 0.5991 7.58×10−4 0.1985 6.33×10−4

last-1 order (m=1) 0.9610 7.22×10−3 0.1077 0.1961 0.6120 6.98×10−4 0.2013 7.01×10−4

last-2 order (m=2) 0.9571 5.89×10−3 0.1102 0.1759 0.5997 5.93×10−4 0.1924 6.81×10−4

last-3 order (m=3) 0.9688 5.78×10−3 0.1082 0.1921 0.6009 6.08×10−4 0.2070 5.93×10−4

last-4 order (m=4) 0.9604 4.82×10−3 0.1125 0.1586 0.5972 5.21×10−4 0.1929 6.10×10−4

5 Conclusion

In this paper, we present a reverse exponential-generalized truncated logarithmic (Rev-EGTL) distribution for ordered
spacing statistics. We extended Rahmouni & Orabi [18] EGTL distribution to the concept of dual generalized ordered
statistics, introduced by Burkschat et al. [7], that enables a common approach to the descending ordered spacings like the
reverse ordered statistics and the lower record values. Also, our procedure generalizes the EL distribution proposed by
[36]. We derive some mathematical properties and we present the plots of the pdf for some special cases. The estimation
of the parameters is attained by the maximum likelihood and the Bayesian approach, with MCMC numerical sampling.
The application study is illustrated based on six real data sets used in many applications of reliability.
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