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Abstract: We define the generalized odd log-logistic normal regression with a dispersion systematic component. We obtain a linear

representation, some of its properties, and maximum likelihood estimates. Furthermore, we carry out several simulations for different

schemes to evaluate the accuracy of the estimators. The robustness of the new regression model is proved by modeling COVID-19 data.

The proposed model explains COVID-19 ICU survival times of the patients in a Brazilian hospital.
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1 Introduction

In late 2019, first identified in Wuhan, China, a disease to
that point unknown to researchers emerged, coronavirus
2019 (COVID-19) which caused a global pandemic
outbreak. Early research conducted, [1] and [2], identified
that elderly people had elevate hospitalizations and death
outcome. The main possible symptoms are described, and
it is continuous update by CDC1. According to
information updated on December 16, 2021 from
Worldometers2, for COVID-19 worldwide, over 272
million cases were reported, exceeding 5,3 millions that
passed away. In light of this, several studies addressing
aspects about the virus and the pandemic have been
published, ranging from screening for possible infected
[3], investigations into the disease in relation to
demographic characteristics and comorbidities [4], [5]
and [6], to ways of diagnosing [7] and possible treatments
[8].

The study by [9] evaluated the interventions made, to
date, by countries in combating the pandemic. The
performance of twenty nations were ranked according to
eight criteria and the scores obtained were considered in
evaluating the effort to mitigate the pandemic. Countries
such as New Zealand, Australia, South Korea, and
Norway obtained the best scores, by adopting pandemic
containment and control measures that ranged from mass
population testing to the containment of individuals in
regions with curfews and lockdown. Brazil ranked 17th,

1
https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html

2 https://www.worldometers.info/coronavirus/

which can be showed by the article [10] in which it
elaborates general statistics about the sad scenario of
COVID-19 in Brazil.

Due to the large spectrum of clinical manifestations
that the coronavirus can trigger, from asymptomatic or
momentary diseases given by the symptoms, to more
severe pictures, we still have a range of parameters that
vary according to age, sex, comorbidities, habits, among
others, that make it difficult for researchers to interpret
and identify [11]. Recently, several studies have been
published looking at both the time to recovery or death
considering variables such as gender and age. For
example, the study of 5,769 patients in Israel regarding
recovery time under the effects of age and sex assessed by
[12], in addition to the analysis of [13], which presented
studies on the variables sex, region, reasons for infection,
age on the rates of recovered cases and deaths.

Other works in the area are related to risk factors
associated with patient mortality or survival. The study by
[14] explored some characteristics of critically ill diabetes
patients in Mexico and associated to their survival times.
[15] presented a survival analysis of death predictors
associated with COVID-19, and [16] related factors that
can affect patient outcomes. For application purposes, we
use real data from hospitalization in the intensive care
unit (ICU) of a hospital in São Paulo state, Brazil. The
survival times of the patients are displayed in Figure 1
which shows an asymmetric shape of the data.

Recently, new generalized models have been
developed to expand parent distributions and produce
very flexible forms to fitting real data. The authors [17]

∗ Corresponding author e-mail: nicollas.stefan@gmail.com

c© 2023 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/170213
https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
https://www.worldometers.info/coronavirus/


310 N. Costa, G. Cordeiro: A new normal regression model with medical applications

x

D
e
n
s
it
y

0 20 40 60 80 100

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5

Density plot

Fig. 1: Histogram and empirical density of COVID-19
data.

introduced the generalized odd log-logistic-G (GOLL-G)
family which includes two well-known cases: the
generalized log-logistic family and the proportional
reversed hazard rate family. More recently, [18]
introduced two regressions for bimodal data using the odd
log-logistic family. [19] introduced the GOLL flexible
Weibull distribution, while [20] defined the GOLL
exponential distribution based on samples with complete
and censored data, and applications in reparable systems.
Based on the GOLL Maxwell distribution, [21] presented
a distribution to model data with excess zeros and a
parametric regression to estimate nonlinear effects. Its
usefulness is illustrated by an experimental design
evaluated in a sugarcane field. The GOLL Maxwell
regression was also applied to real engineering data [22].

Based on this, we define the generalized odd

log-logistic normal (GOLLN) distribution which has
some advantages (bimodal, asymmetric and data-tailed
heavy modeling) over other competing distributions. The
new distribution has the baseline normal, the
exponentiated normal (EN), and the odd log-logistic
normal (OLLN) models as particular cases. We derive a
linear representation and present useful properties. In
addition, maximum likelihood estimates (MLEs) of the
parameters are found. Overall, we note many
phenomenons or cases where there are exists associated
variables, one call explanatory and another response. For
example, in different fields, such as medical, economics,
engineering, psychology, etc, we investigate the effects of
these variables from regression models.

Further, we provide a regression model based on the
new distribution and some global influence measures, and
a detailed residual analysis.

The paper is structured as follows. Section 2
introduces the GOLLN distribution. Section 3 presents a
linear representation, and some of its mathematical
properties. Some simulations in Section 4 examine the

accuracy of the MLEs. A new GOLLN regression with a
dispersion systematic structure is constructed in Section
5. Section 6 provides diagnostic measures and simulated
envelopes for the new regression. Some simulations in
Section 7 also reveal the efficiency of the parameter
estimates. A COVID-19 data set in Section 8 confirms
that the new model performs better than some other
models. Some valuable findings are also presented.
Section 9 ends with some comments.

2 The GOLLN definition

The cumulative distribution function (cdf) and probability
density function (pdf) of the normal with mean µ ∈ R and
dispersion σ > 0 are (for y ∈ R)

G(y) = Φ (z) =
1

2

[

1 + erf

(

z√
2

)]

(1)

and

g(y) =
1√
2πσ

e−
(y−µ)2

2σ2 =
1

σ
φ (z) , (2)

respectively, where erf(·) is the error function, z = z(y) =
(y − µ)/σ, and φ(·) and Φ(·) are the pdf and cdf of the
standard normal, respectively.

Consider a baseline cdf G(x; ξ) with unknown
parameter vector ξ. [23] characterized the cdf of the
OLL-G family as

F (x) =
G(x; ξ)α

G(x; ξ)α + [1−G(x; ξ)]α
, x ∈ R, (3)

where α > 0. Based on the transformer-transformer (T-X)
generator [24], [17] defined the cdf of the GOLL-G family
by

F (x) =
G(x; ξ)αθ

G(x; ξ)αθ + [1−G(x; ξ)θ ]α
, (4)

where α > 0 and θ > 0.

Hence, Equation (4) contains three sub-models
reported in Table 1.

Table 1: Some special models.

α θ Reduced model

- 1 Generalized log-logistic family [23]

1 - Proportional reversed hazard rate family [25]

1 1 Baseline

Let X ∼ GOLL-G(α, θ, ξ) be a random variable (rv)
with cdf (4). Differentiating Equation (4), the pdf of X
reduces to

f(x) =
αθg(x; ξ)G(x; ξ)αθ−1[1−G(x; ξ)θ]α−1

{G(x; ξ)αθ + [1−G(x; ξ)θ ]α}2 , (5)
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where g(x; ξ) is the parent pdf. Due to great flexibility,
the density function (5) is widely used in many areas. If
the baseline distribution has closed-form, the generated
distribution can be more mathematically tractable.

The hazard rate function (hrf) of X is

h(x) =
αθg(x; ξ)G(x, ξ)αθ−1

[1−G(x, ξ)θ ]{G(x, ξ)αθ + [1−G(x, ξ)θ ]α} . (6)

The four-parameter GOLLN cdf follows by
substituting (1) into Equation (4)

F (x) =
Φ(z)αθ

Φ(z)αθ + [1− Φ(z)θ]
α . (7)

By inserting (2) into Equation (5), the corresponding
pdf is

f(x) =
αθφ(z)Φ(z)αθ−1[1− Φ(z)θ]α−1

σ{Φ(z)αθ + [1− Φ(z)θ]α}2 . (8)

Substituting (1) and (2) into Equation (6), the hrf
follows as

h(x) =
αθφ(z)Φ(z)αθ−1

σ[1 − Φ(z)θ] {Φ(z)αθ + [1− Φ(z)θ]α} . (9)

The GOLLN model (denoted from now on by X)
contains three special distributions:

(i) for θ = 1, OLLN distribution, see [26];
(ii) for α = 1, EN distribution;

(iii) for θ = σ = 1, normal distribution.

Figures 2 and 3 display the pdf and hrf ofX . Note that
one of the main features of the GOLLN distribution is that
its hrf can have many shapes (bathtub, unimodal, among
others).
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Fig. 2: GOLLN pdf. (a) Selected values for θ, fixed
α, µ, σ. (b) Selected values for α and θ, fixed µ, σ

By inverting (7), the quantile function (qf) of X , say
x = Q(u) = F−1(u), is

x = Q(u) = QN





[

(

u
ū

)1/α

1 +
(

u
ū

)1/α

]1/θ


 , (10)
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Fig. 3: GOLLN hrf. (a) Selected values for θ, fixedα, µ, σ.
(b) Selected values for θ, fixed α, µ, σ.

where ū = 1 − u, and QN (u) = µ + σΦ−1(u) is the
normal qf.

Equation (10) is practical for simulations. Hence,X =
Q(U) has the GOLLN distribution if U ∼ U(0, 1).

3 Properties of the GOLLN model

We determine a linear representation for the GOLLN
density in terms of EN densities, whose properties in [27]
can be used to find its mathematical properties.

The structural properties of the GOLL-G family can
be obtained from those of the exponentiated-G (Exp-G)
class, see [17]. Formally, for more than fifty baselines G,
several authors studied the characteristics of the Exp-G
class, e.g., [28] for Exp-Log-Normal, [29] for
Exp-Gamma, and [30] for Exp-Gumbel, among others.

So, the pdf (8) can follow from equations in [17] as

f(x) =
∞
∑

k=0

bk hk+1(x), (11)

where hk+1 = (k + 1)σ−1 φ (z) Φk (z) is the EN density
with power parameter (k + 1) (for k ≥ 0), and

bk =
αθ

k + 1

∞
∑

i,j=0

∞
∑

l=k

(−1)j+k+l

(−2

i

)(

l

k

)

×
(−(i+ 1)α

j

)(

(i + 1)αθ + jθ − 1

l

)

.

Equation (11) is the main result of this section. Thus,
using well-established properties for the EN distribution in
[27], we derive the GOLLN mathematical properties more
simply and accurately.

3.1 Moments

If Z = (X − µ)/σ, then the rv Z has the
GOLLN(α, θ, 0, 1) distribution. The moments of X can
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be easily found from the moments of Z by
E(Xn) = E[(µ + σZ)n] =

∑n
r=0

(

n
r

)

µn−rσr E(Zr).
Like so, the standard representation for the GOLLN
distribution is preferred used.

The nth moment (µ′
n ) of Z is calculated from [27]

µ′
n = E(Zn) =

∞
∑

k,i=0

(k + 1)(2π)i/2 bk cn,i

i
∑

r=0

(−1)r2−r
(

i
r

)

(k + i+ 1− r)
,

(12)
where the coefficients cn,i (for i = 1, 2, . . .) are obtained
from the recurrence equation

cn,i = (ia0)
−1

∑i
m=1[m(n + 1) − i] am cn,i−m, ai = 0

for i = 0, 2, 4, . . . and ai = b(i−1)/2 for i = 1, 3, . . .,
cn,0 = an0 , and bl is determined recursively from

bl+1 =
1

2(2l+ 3)

l
∑

s=0

(2s+ 1)(2l − 2s+ 1) bl bl−s

(s+ 1)(2s+ 1)
.

A second representation for µ′
n follows from [27] as

µ′
n =

∞
∑

k=0

(k + 1) bk τn,r, (13)

where τn,r = E[ZnΦk(z)] is the (n, r)th probability
weighted moment (PWM) (for n and r integers)
represented by the Lauricella type A function as

τn,r = 2n/2π−(r+1/2)
r

∑

p=0
(n+r−p) even

2−p πp

(

r

p

)

Γ

(

n+ r − p+ 1

2

)

×

F
(r−p)
A

(

n+ r − p+ 1

2
;
1

2
, . . . ,

1

2
;
3

2
, . . . ,

3

2
;−1, . . . ,−1

)

,

(14)
for n+ r − p even and τn,r vanishes for n+ r − p odd.

3.2 Generating function

The generating function (gf) of Z , i.e.,
M(−t) = E(e−tZ), can be expressed with auxiliary
properties in [27] from (11) as

M(−t) = 1√
2π

∞
∑

k,j=0

(k + 1) bk ck,j Jj(t), (15)

where Jj(t) = (−1)j
√
2π ∂j

∂tj (e
t2/2).

4 Estimation

Consider observed values x1, · · · , xn from the
GOLLN(α, θ, µ, σ) distribution. The log-likelihood

function for ψ = (α, θ, µ, σ)⊤ is defined as

l(ψ) =n log(αθ) − n log(σ) +
n
∑

i=1

log [φ (zi)] +

(αθ − 1)

n
∑

i=1

log [Φ (zi)] +

(α− 1)

n
∑

i=1

log
{[

1− Φ (zi)
θ
]}

−

2

n
∑

i=1

log
{

Φ (zi)
αθ

+
[

1− Φ (zi)
θ
]α}

,

(16)

where zi = (xi − µ)/σ.

The MLE ψ̂ can be found by maximizing (16) in R

software (optim funtion). First, we fitted the reduced
model for α = θ = 1 to get initial values for baseline
parameters.

By differentiating (16) for each parameter, we can

determine four nonlinear equations for ψ̂. However, they
cannot be solved analytically but any Newton-Raphson
type algorithm or the numerical BGFS procedure in R

software can solve them numerically.

4.1 Simulation study

The estimate properties are examened by the measures:
bias, mean square error (MSE), estimated average length
(AL), and coverage probability (CP). One thousand
samples of size n = 50, 55, . . . , 750 are drawn from the
GOLLN distribution using Equation (10) with true
parameters: α = 0.80, θ = 0.50, µ = 0.65, and σ = 1.25.
For each sample, the MLEs and their standard errors
(SEs) are calculated, and the biases and MSEs can be
expressed as

B̂iasǫ(n) =
1

N

N
∑

i=1

(ǫ̂i − ǫ), M̂SEǫ(n) =
1

N

N
∑

i=1

(ǫ̂i − ǫ)2,

(17)
wheareas the ALs and CPs are given by

ALǫ(n) =
3.919928

N

N
∑

i=1

sǫ̂i , (18)

CPǫ(n) =
1

N

N
∑

i=1

I(ǫ̂i − 1.95996 · sǫ̂i , ǫ̂i + 1.95996 · sǫ̂i),

(19)
for ǫ = α, θ, µ σ.

Figures 4-6 display these measures versus the sample
size n. Based on these plots, the biases approach zero
when n increases (as expected). Similar results are
highlighted for the MSEs. In addition, the ALs decrease,
and the CPs converge to the nominal level 0.95 when n
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increases. These results demonstrate the consistency of
the MLEs.
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Fig. 4: Biases versus sample size. (a) α̂. (b) θ̂. (c) µ̂. (d) σ̂.
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Fig. 5: MSEs versus sample size. (a) α̂. (b) θ̂. (c) µ̂. (d) σ̂.
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5 The GOLLN regression model

5.1 Definition

Regression models for survival analysis are commonly
used in medical sciences and engineering in different
ways. Recently, generalized regressions have been the
focus of several papers, which have become an invaluable
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source in applied statistics, both in the context of
uncensored and censored data.

For example, [19] proposed a regression based on the
GOLL flexible Weibull distribution, [21] introduced the
GOLLMaxwell regression applied to microbiology, and
[18] presented two GOLL-log-normal regressions (one
parametric and other with an additive non-parametric
part). In this section, we define a GOLLN regression
which provides interesting results for modeling censored
survival data as an affordable alternative to location-scale
regressions.

For defining a lifetime regression, we specify the
distribution of a lifetime given a vector
x = (x1, · · · , xp)⊤ of covariates, and a function of the
parameters which depend on x. We adopt the systematic
component for the dispersion σ of the density function (8)
via the log-linear link function to allow variation across
the observations (i = 1, . . . , n) such that

g(σi) = exp(x⊤ β), (20)

where g(·) is a log-linear link function (twice continuously
differentiable), and β = (β1, · · · , βp)⊤ is the parameter
vector of dimension p.

If X ∼ GOLLN(α, θ, µ, σ), the density function of
Z = (X − µ)/σ has the form

f(z) =
αθφ(z)Φ(z)αθ−1[1− Φ(z)θ]α−1

σ{Φ(z)αθ + [1− Φ(z)θ]α}2 . (21)

We define the GOLLN regression by Xi = µ+ σi Zi,
where the random componentZi has density (21), and the
dispersion parameter σi varies with the observations under
the systematic component (20).

5.2 Estimation

Consider (y1,x1), (y2,x2), . . . , (yn,xn) from unrelated
observations (sample size n). The response yi is defined
by min{ti, ci}, where ti and ci are the survival and
censored times, and let F and C denote the associated
sets, respectively.

For the parameter vector ψ = (α, θ, µ,β⊤)⊤ of the
regression model given by (20) and (21), the total
log-likelihood can be expressed as

l(ψ) =
∑

i∈F

li(ψ) +
∑

i∈C

l
(c)
i (ψ), where

li(ψ) = log[f(yi)] and l
(c)
i (ψ) = log[S(yi)], and f(yi)

and S(yi) are the pdf and survival function of Yi,

respectively. Thus, l(ψ) can be expressed as

l(ψ) =n log(αθ) −
∑

i∈F

log(σi) +
∑

i∈F

log [φ (zi)] +

(αθ − 1)
∑

i∈F

log [Φ (zi)] +

(α− 1)
∑

i∈F

log
{[

1− Φ (zi)
θ
]}

−

2
∑

i∈F

log
{

Φ (zi)
αθ

+
[

1− Φ (zi)
θ
]α}

+

∑

i∈C

log







1− Φ (zi)
αθ

Φ (zi)
αθ

+
[

1− Φ (zi)
θ
]α







,

(22)

where zi = (xi − µ)/σi is the transformed varible.

The MLE of ψ can be computed by maximizing
Equation (22) using R software (optim function). Fitting
the reduced regression with α = θ = 1 provides the
initial values for β and µ.

6 Diagnostic and residual analysis

The residual analysis aims to investigate features that
compromise the validity of the model, i.e., analysis of
inherent characteristics in the data. When checking for
outliers, for example, several approaches are reported by
[31], [32] and [33]. Hence, we adopt diagnostic measures
based on the exclusion of observations to find out
influential observations in the proposed regression. The
systematic component based on the exclusion of
observations follows from Equation (20)

g(σl) = exp(x⊤
l β), l = 1, . . . , n, l 6= i. (23)

Henceforth, the subscript (i) denotes the observation
deleted from the dataset. Thus, l(i)(ψ) is the
log-likelihood function for ψ from (23) which is

maximized by ψ̂(i). In this context, the difference

between ψ̂(i), and ψ̂ show the influence of the ith case on
the MLE of ψ and more consideration should be paid to
this observation.

For investigating the influential observations, we
define as a first measure the generalized Cook’s distance
by

GDi = (ψ̂(i) − ψ̂)⊤[L̈(ψ̂)](ψ̂(i) − ψ̂). (24)

A second usual measure is the likelihood distance

LDi = 2{l(ψ̂)− l(ψ̂(i))}. (25)

According to [34], despite censoring time, the
deviance residuals have been commonly used to assess
the goodness-of-fit of regression models. Further, they
can be adopted for the GOLLN regression to study the
model assumptions or presence of outliers.
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It follows that, for censored data, the deviance
residuals for the GOLLN regression are given by

rDi
= sgn(r̂Mi

){−2[r̂Mi
+ δi log(δi − r̂Mi

)]}1/2, (26)

where

r̂Mi
= δi + log

{

1− α̂θ̂φ(ẑi)
α̂θ̂−1[1− φ(ẑi)

θ̂
]α̂−1

σ̂i{φ(ẑi)α̂θ̂ + [1− φ(ẑi)θ̂]α̂}2

}

(27)

are the martingale residuals, δi is the censoring indicator,
sign(·) is the signal function, and ẑi = (yi − µ̂)/σ̂i.

If the regression model has a good fit, the martingale
and deviance residuals should exhibit a random pattern
around zero. Further, [35] proposed the construction of
envelopes to support the analysis of the residuals with
normal probability (NP) plots. Confidence bands are
simulated for these envelopes, and if the model gives a
good fit, most of the points will lie randomly inside. The
construction of these confidence bands can be calculated
using the following steps:

(i)Calculate the rDi
’s for the considered model;

(ii)Using the fitted model, the response variable is
simulated (k samples);

(iii)Calculate the deviance residuals for each fitted model
to the sample (for j = 1, 2, . . . , k and i = 1, 2, . . . , n);

(iv)Sort the n residuals to have rD(i)j
’s for each group;

(v)Calculate descriptive statistics (mean, minimum and
maximum) of arrange the residuals for each i;

(vi)Plot the residuals rDi
versus the expected percentile

of the standard normal, and obtain the descriptive
statistics.

7 Simulation study

The properties of the MLEs of the GOLLN regression
model are investigated. One-thousand simulations are
done using R software. We generate survival times ti, and
observations xi from a uniform U(0,1) (for i = 1, . . . , n).
The MLEs are calculated for each replication of size n
from the GOLLN(α, θ, µ, σi) regression.

We consider three scenarios for sample sizes
n = 100, 350, 850, and censoring percentages
approximately equal to 0% (scenario 1), 10% (scenario 2)
and 30% (scenario 3). For three scenarios, the parameters
are fixed as: β0 = −2.45, β1 = 0.35, α = 0.80, θ = 0.50,
and µ = 0.65. The generation process is given below:

(i)Generate observations as xi ∼ U(0, 1);

(ii)Generate censored observations as c ∼ U(0, ν), where
ν is the proportion of censoring data;

(iii)Generate zi ∼ GOLLN(α, θ, 0, 1) from Equation (21);

(iv)Set ti = µ+ exp(β0 + β1xi)zi;

(v)Let yi = min(ti, c);

(vi)Define a vector δ (length n) that gives 1 if yi ≤ c, and
0 otherwise.

For each sample, the MLEs and SEs are found. For
the three scenarios, Tables 2-43 reveal that the AEs tend
to the true values. The biases and MSEs converge to zero
(as expected), and the ALs decrease when n increases.
Further, the CPs approach to the nominal value when n
increases.

Table 2: Simulation results for scenario 1.

0% censoring

n ψ AE Bias MSE AL C(ψ)

100

β0 -2.5821 -0.1321 0.3281 2.0380 0.944

β1 0.3588 0.0088 0.0654 0.8946 0.919

α 0.9304 0.1304 1.0906 2.9130 0.970

θ 0.8531 0.3531 2.6830 3.5146 0.968

µ 0.6515 0.0015 0.0211 0.4524 0.902

350

β0 -2.4856 -0.0356 0.0604 0.9143 0.941

β1 0.3484 -0.0016 0.0150 0.4818 0.961

α 0.8171 0.0171 0.0558 0.8614 0.944

θ 0.5415 0.0415 0.0720 0.9967 0.949

µ 0.6533 0.0033 0.0030 0.2134 0.945

850

β0 -2.4519 -0.0019 0.0234 0.5717 0.936

β1 0.3464 -0.0036 0.0061 0.3080 0.956

α 0.8157 0.0157 0.0193 0.5297 0.944

θ 0.5180 0.0180 0.0273 0.6142 0.945

µ 0.6514 0.0014 0.0012 0.1326 0.943

Table 3: Simulation results for scenario 2.

10% censoring

n ψ AEs Biases MSEs ALs C(ψ)

100

β0 -2.5827 -0.1327 0.4106 2.2411 0.938

β1 0.3474 -0.0026 0.0618 0.9216 0.932

α 0.9924 0.1924 1.7933 3.4200 0.965

θ 0.8724 0.3724 4.5549 4.2369 0.974

µ 0.6557 0.0057 0.0267 0.5114 0.930

350

β0 -2.4907 -0.0407 0.0617 0.9831 0.959

β1 0.3493 -0.0007 0.0163 0.5021 0.952

α 0.8171 0.0171 0.0597 0.9000 0.943

θ 0.5441 0.0441 0.0839 1.0455 0.935

µ 0.6544 0.0044 0.0039 0.2259 0.942

850

β0 -2.4680 -0.0180 0.0229 0.6003 0.951

β1 0.3511 0.0011 0.0067 0.3190 0.948

α 0.7997 -0.0003 0.0192 0.5421 0.955

θ 0.5203 0.0203 0.0265 0.6379 0.954

µ 0.6501 0.0001 0.0012 0.1351 0.953

Due to the analytical difficulty in the mathematical
treatment of the GOLLN distribution, to verify the
regularity conditions, a simulation was done to check the

3 The measures are denoted in Section 4.1, where AE means

average estimate.
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Table 4: Simulation results for scenario 3.

30% censoring

n ψ AEs Biases MSEs ALs C(ψ)

100

β0 -2.5860 -0.1360 0.5443 2.7517 0.942

β1 0.3589 0.0089 0.0907 1.0283 0.896

α 1.0929 0.2929 2.3628 5.3010 0.961

θ 0.9407 0.4407 3.7158 4.4725 0.961

µ 0.6535 0.0035 0.0288 0.5636 0.932

350

β0 -2.5063 -0.0563 0.1028 1.2078 0.951

β1 0.3534 0.0034 0.0206 0.5531 0.944

α 0.8272 0.0272 0.1014 1.1043 0.949

θ 0.5671 0.0671 0.2029 1.2692 0.947

µ 0.6537 0.0037 0.0061 0.2588 0.945

850

β0 -2.4723 -0.0223 0.0342 0.7242 0.952

β1 0.3544 0.0044 0.0079 0.3534 0.953

α 0.8003 0.0003 0.0250 0.6227 0.954

θ 0.5286 0.0286 0.0368 0.7354 0.953

µ 0.6491 -0.0009 0.0014 0.1506 0.942

accuracy of the MLEs. Likewise, for each fitted scheme,
we get the deviance residuals r′Di

s to analyze the
empirical distribution (ED), and the normal probability
plots.

Figures 8-10 display the normal probability plots for
the deviance residuals. According to [36], these plots play
the role of assessing departures from the normal
assumption of the residuals. For all scenarios and n large,
the ED of the deviance residuals is in conformity with the
model assumptions. Also, Figures 11-13 reveal
convergence to the true parameter values, and a normality
shape.

8 Application

We perform an application of the proposed regression to
COVID-19 lifetime data. We fit the normal, EN, OLLN
and GOLLN distributions, and other non-nested models:
transmuted exponentiated generalized normal
(TEGNormal) [37] and [38], transmuted normal
(TNormal) [37], beta-normal (BN) [39] and
Kumaraswamy-normal (KwN) [40] distributions.

We determine the MLEs of the parameters and their
SEs. In addition, we calculate the measures: Akaike
Information Criterion (AIC), Bayesian Information
Criterion (BIC), Cramér von-Mises (W∗), Anderson
Darling (A∗) and Kolmogorov-Smirnov (KS) statistics
from the fitted models using the AdequacyModel package
[41] in R software. The best model gives smaller values of
the good-of-fit (GoF) measures.

8.1 COVID-19 data

The dataset refers to 983 COVID-19 patients in the ICU
obtained from SIVEP-Gripe4.

4
https://opendatasus.saude.gov.br/gl/dataset/bd-srag-2020
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SIVEP-Gripe was created in 2012 by the Ministry of
Health and has helped to oversee information about
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admissions of COVID-19 patients in both public and

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


318 N. Costa, G. Cordeiro: A new normal regression model with medical applications

private hospitals, as those are mandatory notifications
throughout the Brazilian territory.

The registry5 includes, for each patient, demographic
issues, self-reported symptoms, comorbidities, ICU
admission, ventilatory support, test results, hospital
admission and discharge dates, hospitalization outcome,
among several others. [42] presented a retrospective
analysis of the COVID-19 cases in Brazil, thus
illustrating demographic and descriptive characteristics to
investigate the effect of coronavirus on health care
resources employed to fight the pandemic, as well as on
in-hospital mortality.

The period analysis is defined from the 8th
epidemiological week (16th January 2020) to the 53th
epidemiological week (2nd January 2021) at the Hospital
de Base de São José do Rio Preto (state of São Paulo). All
positive RT-PCR (RT-qPCR) and SARS-CoV-2 records of
the patients admitted in the ICU of the hospital are
included in the research.

The patients survival time is specified as the number of
days admitted to ICU, while the censoring indicator refers
to the hospitalization discharge before the 53th week of the
study. We focus on the explanatory variables below:

–yi: time in ICU (days);

–δi censoring indicator (0 = censoring, 1 =
uncensoring);

–xi1 is gender (0 = male, 1 = female);

–xi2 is the age group (0 = < 65 years, 1 = ≥ 65);

–xi3 is chronic cardiovascular disease (0 = no, 1 =
yes);

–xi4 is chronic hematological disease (0 = no, 1 = yes);

–xi5 is chronic liver disease (0 = no, 1 = yes);

–xi6 is diabetes mellitus (0 = no, 1 = yes);

–xi7 is chronic neurological disease (0 = no, 1 = yes);

–xi8 is other chronic pneumatopathy (0 = no, 1 = yes);

–xi9 is immunodeficiency (0 = no, 1 = yes);

–xi10 is chronic kidney disease (0 = no, 1 = yes);

–xi11 is obesity (0 = no, 1 = yes).

Table 5 reports a descriptive summary of ICU times for
COVID-19 patients. The positive values for the skewness
and kurtosis are confirmed in Figure 1.

Table 5: Descriptive statistics for the COVID-19 patients6.

min q1 median mean q3 max sd skewness kurtosis

1.00 7.00 12.00 15.66 21.00 89.00 13.03 1.89 5.17

6 q1 and q3 are the first and thrid quantile

sd means the standard deviation

Tables 6 and 7 report the MLEs and GoF measures for
the fitted distributions to the current data, and reveal that
the GOLLN distribution is the most suitable model.

5
https://opendatasus.saude.gov.br/dataset/srag-2020/resource/9f6ba348-0033-49b1-abbe-719a0ffbeb28

Im fact, the GOLL model is competitive to the other
models. The inclusion of the extra parameters (α and θ) is
confirmed by three likelihood ratio (LR) tests in Table 8
which indicate that the extra parameters are highly
significant for modeling these data.

The histogram and plots of the three best fitted
densities for the GOLLN, BN, and KwN models in Figure
14(a) confirm that the estimated GOLLN distribution
provides the best model. Further, the estimated cdfs of
these models in Figure 14(b) reveal that the new
distribution gives the best fit.

Table 6: Findings from the fitted models to COVID-19
data.

Model µ σ α θ

GOLLN
-14.587

(0.035)

12.533

(0.010)

0.391

(0.011)

73.636

(0.310)

OLLN
13.800

(0.362)

111.713

(42.421)

10.595

(4.056)

1

(-)

EN
-39.837

(3.038)

24.266

(0.772)

1

(-)

53.697

(9.493)

Normal
15.664

(0.415)

13.026

(0.294)

1

(-)

1

(-)

Model µ σ δ λ ν

TEGNormal
0.063

(5.681)

30.031

(5.969)

0.546

(0.069)

2.333

(0.823)

14.047

(6.767)

GNormal
2.984

(0.020)

10.384

(0.012)

1.345

(0.055)

2.134

(0.104)

TNormal
20.480

(0.573)

13.542

(0.344)

0.691

(0.053)

Model µ σ δ λ

BN
-22.116

(0.027)

13.409

(0.011)

32.803

(2.109)

0.350

(0.013)

KwN
-14.981

(0.278)

12.583

(0.010)

16.434

(0.057)

0.360

(0.013)

Table 7: GoF statistics7.

Model AIC BIC W∗ A∗ KS

GOLLN 7425.687 7445.250 1.311 8.597
0.119

(<0.0001)

OLLN 7695.684 7710.356 4.643 27.721
0.126

(<0.0001)

EN 7552.998 7567.670 3.022 18.572
0.108

(<0.0001)

Normal 7840.381 7850.163 6.446 37.692
0.143

(<0.0001)

Model AIC BIC W∗ A∗ KS

TEGNormal 7592.503 7616.956 3.380 20.583
0.116

(<0.0001)

GNormal 7765.378 7784.940 5.474 32.393
0.143

(<0.0001)

TNormal 7762.333 7777.005 5.507 32.400
0.124

(<0.0001)

Model AIC BIC W∗ A∗ KS

BN 7462.971 7482.533 1.874 11.926
0.109

(<0.0001)

KwN 7494.852 7514.414 2.252 14.150
0.112

(<0.0001)

7 The descriptions of GoF are denoted in Section 8
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Table 8: LR tests for COVID-19 data.

Models Statistic w p-value

GOLLN vs

OLLN
271.997 < 0.0001

GOLLN vs

EN
129.311 < 0.0001

GOLLN vs

Normal
418.694 < 0.0001
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Fig. 14: (a) Estimated pdfs for three models. (b) Estimated
cdfs for three models.

Next, we consider the systematic structures below:

σi = exp(β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5

+ β6xi6 + β7xi7 + β8xi8 + β9xi9 + β10xi10 + β11xi11),

for i = 1, . . . , 983.
Table 9 contain the results (MLEs, SEs and p-value)

for the fitted GOLLN regression to the COVID-19 data.

Table 9: Results from GOLLN regression8.

Parameter MLE SE p-value

β0 2.9349 0.1136 < 0.0001

β1 0.2685 0.0736 0.0002

β2 -0.2153 0.0756 0.0045

β3 - 0.4852 0.1052 <0.0001

β4 - 0.7283 0.2653 0.0062

β5 - 0.4531 0.1845 0.0142

β6 - 0.1568 0.0706 0.0266

β7 - 0.5007 0.0926 <0.0001

β8 - 0.3482 0.1136 0.0022

β9 - 0.2545 0.1150 0.0271

β10 - 0.3313 0.0975 0.0007

β11 0.3590 0.0762 <0.0001

8 The descriptions of β are in subsection 8.1

Some conclusions are drawn from Table 9:

–All explanatory variables are significant (5% level).
So, the groups within each covariate, are not
statistically equal;

–β1 represents the variable gender with a p-value of
0.0002, and its estimate is positive. Thus, the female
patients has survival time in ICU larger than male
patients;

–β2 is the age group and its extremely significant
(p-value 0.0045). The estimate is negative, and then
patients with age ≥ 65 remain more time in ICU,
which corroborates with the research in [43];

–From β3 to β10 all covariates are significant, and has
negative estimate. Studies from [44] and [45] analyze
the association between comorbidities for the
hospitalization and understand related predictors of
ICU admission;

–Despite the estimate of β11 is positive, previus studies
([46] and [47]) indicated that obesity increases
mortality and admission in COVID-19 patients.

8.2 Model checking

To detect possible influence points in the GOLLN
regression, we illustrate in Figure 15 the GD and LD
measures. These plots reveal some possible influential
observations, but we can verify that there is a small
amount of observations, which do not impact the fitted
model.

Finally, Figure 16 show the deviance residuals with
simulated envelope. These plot display that they lie inside
the bands randomly, thus confirming a good fit of the
GOLLN regression model.
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Fig. 15: (a) GD for the fitted GOLLN regression. (b) LD
for the fitted GOLLN regression.

9 Concluding Remarks

We defined a four-parameter model called the generalized
odd log-logistic normal distribution (GOLLN). We
determined a linear combination for its density, obtained
some mathematical properties, maximum likelihood
estimates, and carried out several simulations for different
scenarios to evaluate the consistency of the estimates. We
constructed a GOLLN regression, and checked the
accuracy of the estimators by Monte Carlo simulations.
The normality assumptions were tested by evaluating the
normal probability plots and the empirical distribution of
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Fig. 16: NP plots for the rDi
’s with envelope from the

fitted GOLLN regression to COVID-19 data.

the variance residuals. A diagnostic analysis is addressed
to test global influential observations and residuals
analysis to evaluate model fit through simulated
envelopes. The usefulness of the introduced regression
was discussed by an application for modeling survival
times in a ICU of the COVID-19 patients. The proposed
model was the best to explain the current data. Further,
some helpful findings are presented to COVID-19 data.
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