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Abstract: Analytical solution has been obtained for one-dimensional advection-diffusion equation with constant coefficients by using

Laplace transformation. Also numerical solution has been obtained by using explicit finite difference scheme. In this paper, the initial

condition and the boundary condition at the source of pollution (x = 0) were applied to describe the exponential variation in pollutant

concentration. Impacts of different parameters controlling the pollutant dispersion have been studied separately with the help of graphs.

This publication proved mathematically the fact that the high concentration of pollutant can be reduced by releasing clean water

discharges from barrage in a river. For a real situation, our simple model can give decision support for planning restrictions to be

imposed on cultivating and urban practices. According to our information, this is the first study concerning a mathematical simulation

for remediation of pollution in a river by releasing clean water.

Keywords: Remediation of pollution, Advection-diffusion equation, Finite difference method, Laplace transformation, Solutions of
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1 Introduction

It is well known in real situations, rivers are polluted by
various kinds of pollutants coming from many sources.
Despite the fact that the Nile is Egypt’s lifeblood, it is
sadly contaminated with a variety of chemical and
biological pollutants, as well as agricultural waste. In
summer 2020, a very big quantity of clean water came to
the Naser Lake and by releasing this clean water to the
River Nile, the high polluted regions can be treated.
Mathematical models help governments and health
organizations predict the behavior of diseases, the extent
of epidemics and how pollutants will spread in the rivers
[1]. Here comes the importance of this study to know how
we can predict the propagation of the pollution
concentration at the reasonable time.

Fick’s first law is used to derive the
advection-diffusion equation, which is a parabolic partial
differential equation based on the theory of mass
conservation. Convection and diffusion are two processes
that transfer particles, energy, or physical quantities
within a physical system. The advection-diffusion

equation can be used to model a variety of phenomena
such as heat transfer, pollutant diffusion and fluid
mechanics applications [2].

The analytical and numerical solutions of the
advection-diffusion equation along with an initial
condition and two boundary conditions aid to understand
the pollutant concentration distribution behavior through
an open medium like air, rivers, lakes and porous
medium. On the basis of which therapeutic operations can
be carried out to reduce or eliminate damage [3]. Only
very few partial differential equations have the analytical
or exact solutions, anyone who wants to create and use
models based on such equations and their related
conditions must be able to obtain numerical solutions
efficiently and accurately [4]. Zoppou and Knighe [5]
provided analytical solutions for the one-dimensional
transport of a pollutant in an open channel with a steady
unpolluted lateral inflow uniformly distributed over its
entire length. Tamora and Wadham [6] solved the
advection-diffusion equation for radial flow numerically.
Romao et al. [7] presented the finite difference methods
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of 3D convection diffusion equation to examine error in
the numerical solution of this equation. Thongmoon and
Mckibbin [8] compared some numerical methods for this
equation. The numerical treatment of the mathematical
model for water pollution was studied by Agusto and
Bamingbola [9], they used the implicit centered
difference scheme in space and a forward difference
scheme in time to solve the generalized transport
equation. Changjun and Shuwen [10] used a grey
differential model to create a numerical simulation of
river water pollution. Wadi et al. [11] studied analytical
solution for one-dimensional advection-dispersion
equation of the pollution concentration. Remediation of
pollution in a river by unsteady aeration with arbitrary
initial and boundary conditions was studied by Ibrahim et
al. [12]. Manitcharoen and Pimpunchatt [13] used a
mathematical model in a one-dimensional
advection-dispersion equation that included terms of
decay and enlargement process to study the motion of
flowing pollution. Hesham et al. [14] proved
experimentally that, the impacts of high organic loads in
Rosetta branch of River Nile during the low demand
period can be mitigated by releasing clean water of
amount 30 million m3/ day from River Nile water at the
Delta barrage. They proved that this solution reduced the
concentrations of ammonia and organic nitrogen below
the limits of the local guidelines. Kusuma et al. [15]
provided a numerical solution for mathematical model of
the transport equation in a simple rectangular box
domain. Suryani et al. [16] solved the
diffusion-convection equation with variable coefficients
and for anisotropic media by using the boundary element
method. Azis et al. [17] used the boundary element
method for solving a boundary value problem of
homogeneous anisotropic media governed by
diffusion-convection equation.

The objective of this study is to develop a
mathematical model for one-dimensional
advection-diffusion equation with constant coefficients by
using Laplace transformation and explicit finite difference
scheme. Also study the effect of different parameters
controlling the pollutant dispersion along the river at any
time and the effect of releasing clean water discharges
from a barrage on concentration of pollutant. A river’s
response to an exponential varying concentration of
pollutant is studied.

2 Formulation of the problem

We consider the unsteady flow in a river as being
one-dimensional characterized by a single spatial distance
x (m) measured from the source of pollution (x = 0). The
water pollution or the concentration of the pollutant
C(x, t)

(

kg m−3
)

is assumed to vary with time t (days)
along the length of the river. The equation governing
one-dimensional advective-dispersive transport can be

written as ([18] and [19])

∂C

∂ t
= D

∂ 2C

∂x2
− u

∂C

∂x
− γ C+ µ , (1)

where D is the dispersion coefficient in x direction
(

m2 day−1
)

,u is the average flow velocity in x direction

(m day −1
)

,γ is the pollutant decay rate
(

day−1
)

and µ

is the Zero-order source term
(

kg m−3 day−1
)

.
In our study, we will assume that the river is initially

contains pollutants. Hence the initial and boundary
conditions associated with equation (1) are:

C(x,0) = c0 e
−x
k , x ≥ 0, (2)

C(0, t) = c1 + c2 e−wt , t > 0, (3)

∂C

∂x
= 0, x → ∞ , t ≥ 0, (4)

where co is the initial concentration at x = 0 and
t = 0

(

kg m−3
)

,k is the initial pollutant-decay length
(m), c1 is the steady state (t → ∞) concentration
(

kg m−3
)

, c2 is a constant whose dimension is
(

kg m−3
)

and w is the unsteadiness parameter (day −1 ).

3 The analytical solution

Using the following transformation defined by [20]

C(x, t) = K(x, t) e(
ux
2D−λ t) +

µ

γ
, (5)

where λ is constant which is given by λ = u2

4D
+ γ .

Equation (5) transforms equations (1-4) into:

∂K

∂ t
= D

∂ 2K

∂x2
, (6)

K(x,0) = co e−(
u

2D+ 1
k )x −

µ

γ
e
−u
2D x , x ≥ 0, (7)

K(0, t) =

(

c1 −
µ

γ

)

eλ t + c2 e(λ−w)t , t > 0, (8)

∂K(x, t)

∂x
+

u

2D
K(x, t) = 0, x → ∞ , t ≥ 0. (9)

Applying Laplace transformation on equations (6, 8
and 9) and using equation (7) gives:

d2K(x,P)

dx2
−

P

D
K(x,P) =

−1

D

(

cO e−(
u

2D+ 1
k )x

− µ
γ e

−u
2D x

)

, (10)

K(0,P) =

(

c1 −
µ

γ

)

1

P−λ
+ c2

1

P−λ +w
, P > 0, (11)

dK(x,P)

dx
+

u

2D
K(x,P) = 0, x → ∞, P ≥ 0, (12)

c© 2022 NSP

Natural Sciences Publishing Cor.



Inf. Sci. Lett. 11, No. 1, 127-133 (2022) / www.naturalspublishing.com/Journals.asp 129

where P is the Laplace transform variable and K is Laplace
transform of K. Thus, the general solution of the ordinary
differential equation (10) subject to conditions (11 and 12),
may be written as:

K(x,P) =−
4D µ e−

ux
2D

γ
(

4DP−u2
) −

4D k2 co e−
x
k
− ux

2D

4D2 −4Dk2P+4Dku+k2u2

+e
−

√
P x√
D





4Dµ
(4DP−u2)γ

+
(

c1 −
µ
γ

)

1
P−λ

+ c2

P+w−λ
+ 4Dk2co

4D2−4Dk2P+4Dku+k2u2



 .

(13)

Now, applying inverse of Laplace transformation on
equation (13) and using equation (5), hence the analytical
solution of advection-dispersion equation (1) associated
with the initial and boundary conditions (2-4) may be
written in terms of (x, t) as:

C(x, t) =
µ

γ
+

µ

γ
e−γ t





−1+ 1
2 erfc

[

x−ut

2
√

Dt

]

+ 1
2 e

ux
D erfc

[

x+ut

2
√

Dt

]





+
c2 e−w t

2













e

(

u−u

√

1+
4D(γ−w)

u2

)

x

2D erfc

[

x−tu

√

1+ 4D(γ−w)

u2

2
√

Dt

]

+e

(

u+u

√

1+
4D(γ−w)

u2

)

x

2D erfc

[

x+tu

√

1+ 4D(γ−w)

u2

2
√

Dt

]













+

(

c1 −
µ
γ

)

2



















e





u−u

√

1+
4γD

u2

2D



x

erfc

[

x−tu

√

1+ 4γD

u2

2
√

Dt

]

+e





u+u

√

1+
4γD

u2

2D



x

erfc

[

x+tu

√

1+ 4γD

u2

2
√

Dt

]



















+e−γ tC0







e

(

Dt

k2 +
tu−x

k

)

− 1
2 e

(

Dt

k2 +
tu−x

k

)

erfc
[

x−ut

2
√

Dt
−

√
Dt
k

]

− 1
2 e

(

Dt

k2 +
tu+x

k
+ ux

D

)

erfc
[

x+ut

2
√

Dt
+

√
Dt
k

]






,

(14)

where erfc is the complementary error function. We
confirmed that equation (14) satisfies equation (1) also it
satisfies the initial and boundary conditions (2-4).

4 Special cases

The analytical solution (equation (14)) has practical
applications in many field problems as follows:
(I) The special case for which c1 = c2 = 0 is derived from
equation (14) as:

C(x, t) =
µ

γ
+

µe−γ t

γ





−1+ 1
2

erfc
[

x−ut

2
√

Dt

]

+ 1
2
e

ux
D erfc

[

x+ut

2
√

Dt

]





−
µ

2γ























e







u−u

√

1+
4γD

u2

2D






x

erfc

[

x−tu

√

1+ 4γD

u2

2
√

Dt

]

+e







u+u

√

1+
4γD

u2

2D






x

erfc

[

x+tu

√

1+ 4γD

u2

2
√

Dt

]























+ e−γ tCo













e

(

Dt

k2 +
tu−x

k

)

− 1
2
e

(

Dt

k2 +
tu−x

k

)

erfc
[

x−ut

2
√

Dt
−

√
Dt
k

]

− 1
2
e

(

Dt

k2 +
tu+x

k
+ ux

D

)

erfc
[

x+ut

2
√

Dt
+

√
Dt
k

]













.

(15)

Equation (15) gives C(0, t) = 0, this satisfies the boundary
condition which is given by equation (3) when c1 = c2 = 0.
(II) The special case for which co = 0 and c2 = 0 is derived
from equation (14) as:

C(x, t) =
µ

γ
−

µ

γ
e−γ t

(

1−
1

2
erfc

[

x−ut

2
√

Dt

]

−
1

2
e

ux
D erfc

[

x+ut

2
√

Dt

])

+
1

2

(

c1 −
µ

γ

)

























e









u−u

√

1+
4γD̄

u2

2D









x

erfc





x−tu

√

1+
4γD

u2

2
√

Dt





+e









u+u

√

1+
4γD̄

u2

2D









x

erfc





x+tu

√

1+
4γD

u2

2
√

Dt





























.

(16)

Equation (16) is the same as that obtained by Kumar [20]
(when m = 0).
(III) The special case for which k → ∞ is derived from
equation (14) as:

C(x, t) =
µ

γ
+

(

c0 −
µ

γ

)

e−γ t





1− 1
2 erfc

[

x−ut

2
√

Dt

]

− 1
2 e

ux
D erfc

[

x+ut

2
√

Dt

]





+

(

c1 −
µ
γ

)

2



















e





u−u

√

1+
4γD

u2

2D



x

erfc

[

x−tu

√

1+ 4γD

u2

2
√

Dt

]

+e





u+u

√

1+
4γD

u2

2D



x

erfc

[

x+tu

√

1+ 4γD

u2

2
√

Dt

]



















+
c2 e−w t

2



















e





u−u

√

1+
4D(γ−w)

u2

2D



x

erfc

[

x−tu

√

1+ 4D(γ−w)

u2

2
√

Dt

]

+e





u+u

√

1+
4D(γ−w)

u2

2D



x

erfc

[

x+tu

√

1+ 4D(γ−w)

u2

2
√

Dt

]



















.

(17)

Equation (17) is the same as that given by Genuchten and
Alves [18] (problem C13 when R = 1).
(IV) The special case for which µ = 0, γ =0 and k → ∞ is
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derived from equation (14) as:

C(x, t) = c0 +
(c1 − c0)

2





erfc
[

x−ut

2
√

Dt

]

+e
ux
D erfc

[

x+ut

2
√

Dt

]





+
c2 e−w t

2















e

(

u−u

√

1− 4wD

u2

)

x

2D erfc

[

x−tu
√

1− 4wD

u2

2
√

Dt

]

+e

(

u+u

√

1− 4WD

u2

)

x

2D erfc

[

x+tu
√

1− 4wD

u2

2
√

Dt

]















.

(18)

Equation (18) is the same as that given by Genuchten and
Alves [18] ( problem A9 when R = 1).
(V) The special case for which c2 = 0 and k →∞ is derived
from equation (14) as:

C(x, t) =
µ

γ
+

(

c0 −
µ

γ

)

e−γ t





1− 1
2

erfc
[

x−ut

2
√

Dt

]

− 1
2
e

ux
D erfc

[

x+ut

2
√

Dt

]





+

(

c1 −
µ
γ

)

2























e







u−u

√

1+
4γD

u2

2D






x

erfc

[

x−tu

√

1+ 4γD

u2

2
√

Dt

]

+e







u+u

√

1+
4γD

u2

2D






x

erfc

[

x+tu

√

1+
4γD

u2

2
√

Dt

]























.

(19)

Equation (19) is the same as that given by Genuchten and
Alves [18] (problem C5 when R = 1 and 0 < t < t0 ).
(VI) The special case for which µ = 0, γ =0, c2 = 0 and
k → ∞ is derived from equation (14) as:

C(x, t) = c0 +
(c1 − c0)

2





erfc
[

x−ut

2
√

Dt

]

+e
ux
D erfc

[

x+ut

2
√

Dt

]



 . (20)

Equation (20) is the same as that given by Genuchten and
Alves [18] (problem A1 when R = 1 and 0 < t < t0 ).

5 Numerical solution

The explicit finite difference method (EFDM) is applied
to solve equation (1) associated with the initial and
boundary conditions (2-4). The central difference scheme

was used for ∂ 2C
∂x2 and ∂C

∂x
. The forward difference scheme

was used for ∂C
∂ t

. With these substitutions, equation (1)
can be written as :

Ci, j+1 = r1 Ci−1, j + r2 Ci, j + r3 Ci+1, j + µ ∆ t, (21)

where i and j refer to the discrete step lengths ∆x and ∆ t

for the coordinate x and time t, respectively, and

r1 =
D ∆ t

(∆x)2
+

u ∆ t

2(∆x)
, (22)

r2 = 1−
2D ∆ t

(∆x)2
− γ ∆ t, (23)

r3 =
D ∆ t

(∆x)2
−

u ∆ t

2(∆x)
. (24)

Equation (21) represents a formula for C(i, j + 1) at the
(i, j+ 1)th mesh point in terms of known values along the
jth time row. The truncation error for equation (21) is
O(∆ t,(∆x)2). Using a small-enough values of ∆x and ∆ t,
the truncation error can be reduced until the accuracy
achieved is within the error tolerance [21]. The initial
condition (2) can be expressed in the finite difference
form as

Ci,0 = co e
−xi

k , x ≥ 0, t = 0. (25)

The boundary conditions (3) and (4) can be written in the
finite difference form as

C0, j = c1 + c2 e−w t j , x = 0, t > 0, (26)

CN, j =CN−1, j , x → ∞, t ≥ 0, (27)

where t j = j∆ t and xi = i ∆x. N = x∞/∆x is the grid
dimension in the x direction and x∞ is the distance in the
direction x at which ∂C

∂x
→ 0 .

6 Results and discussions

The solution obtained in equation (14) is illustrated in
figures (1-3) for the common input data
0 ≤ x ≤ 1(m), k = 1(m), c0 = 0.01

(

kg m−3
)

, c1 =

1
(

kg m−3
)

, c2 = 0.01
(

kg m−3
)

and w = 0.001( day
−1
)

. Figure (1) shows the variation of C(x, t) with time
for the values t = 0, 0.02, 0.04 and 0.06 (day), where
D = 1

(

m2 day−1
)

, u = 1
(

m day−1
)

, γ = 0.4
(

day−1
)

and µ = 0.1
(

kg m−3 day−1
)

. From figure (1), it is clear
that:
1- At any cross section x = constant, as t increases, C

increases. This is due to the fact that at any cross section
x = constant, as t increases, the accumulation of the
pollutant increases. This result agrees with that obtained
by Kumar et a1. [3], Wadi et al. [11], Kumar [20],
Andallah and Khatun [22] and finally with Yadav and
Kumar [23].
2- At t = constant, as x increases, C decreases. This result
agrees with that obtained by Andallah and Khatun [22]
and Yadav and Kumar [23].
3- The maximum value of pollutant concentration is at
x = 0, while the minimum value of pollutant
concentration is at x = 1. This result agrees with that
obtained by Yadav and Kumar [23].
4- Figure (1) and numerical studies show that the
variation of C(x, t) with the time at x = 0 is very small for
example for t = 0.02,0.04 and 0.06 (day), the
corresponding values of C(0, t) are 1.0099998,1.0099996
and 1.0099994 respectively.
Figure (2) shows the variation of C(x, t) with µ for the

values µ = 0.1,2 and 4
(

kg m−3 day−1
)

, where t = 0.02

(day), D = 1
(

m2 day−1
)

,u = 1(m day −1
)

and γ = 0.4(
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day −1
)

. From figure (2), it is clear that at any cross
section x = constant, C(x, t) increases as µ increases.
Figure (3) shows the variation of C(x, t) with D for the

values D = 1,1.5 and 2
(

m2 day−1
)

, where t = 0.02 (day),

µ = 0.1
(

kg m−3 day−1
)

,u = 1
(

m day−1
)

and γ = 0.4(

day −1
)

. From figure (3), it is clear that at any cross
section x = constant, C increases as D increases. This
result agrees with that obtained by Yadav and Kumar
[23].

Equation (15) is illustrated in figures (4) and (5) for
the common input data t = 0.5 (day), 0 ≤ x ≤
50000(m),D = 106

(

m2 day−1
)

,γ = 0.4
(

day−1
)

,µ =

0.0001
(

kg m−3 day−1
)

,k = 2000 (m) and

c0 = 0.2
(

kg m−3
)

Let the cross section area of the river
at x = 0 be A, then the flux of the water (the volume of
water crossing A every day) will be Q = A u.
Consequently increasing the value of u means increasing
the value of Q. Let the zone of clean water measured from
barrage (x = 0) in the direction of the flow be denoted by
x0. Let the maximum value of C be denoted by Cm and the
corresponding value of x associated with Cm be xm. Figure
(4) shows the variation of C(x, t) with flow velocity for
the values u = 0,3000,6000,9000,20000,
25000,30000

(

m day−1
)

. Figure (5) is surface graph
shows the variation of C(x, t) with flow velocity for the
values 0 ≤ u ≤ 40000(m day−1

)

. From figure (4), it is
clear that:
1- For values of 0 ≤ u ≤ 9000,Cm increases as u
increases while for values of 20000 ≤ u ≤ 30000,Cm is
nearly constant.
2- As x increases, there are two opposite factors
controlling the values of C. These two factors occur
simultaneously. For example for u = 3000 in the range
0 ≤ x ≤ 4000, the dominant effect on C is the
accumulation, hence in this zone as x increases, C
increases. On the other hand in the range 4000 ≤ x ≤
16000 the dominant effect on C will be advection
(advection = diffusion + convection), hence in this zone
as x increases, C decreases.
Figures (4 and 5) emphasize the fact that the zone of
clean water measured form x = 0 in the direction of the
flow (i.e. x0 ) increases as the quantity of the clean water
entering the cross section A increases.

Numerical solution of equation (21) with the initial
and boundary conditions (25-27) using explicit finite
difference method is given in figure (6), for t = 0.02,0.04
and 0.06 (day). The input data are 0 ≤ x ≤
1(m),k = 1m,c0 = .01

(

kg m−3
)

,c1 = 1
(

kg m−3
)

,c2 =

0.01
(

kg m−3
)

and w = 0.001
(

day−1
)

,D =

1
(

m2 day−1
)

,u = 1
(

m day−1
)

,γ = 0.4
(

day−1
)

and

µ = 0.1
(

kg m−3 day−1
)

. In the numerical calculations,
the step lengths ∆x = 0.1(m) and ∆ t = 0.002 (day), have
been used to achieve the stability of the finite difference
scheme. The pollutant concentration values are shown in
the longitudinal region 0 ≤ x ≤ 1(m) in figure (6). From
figure (6), it is clear that at any cross section x = constant,

the pollutant concentration C(x, t) increases as the time (t)
increases. To test the accuracy of the numerical solution,
a comparison between the analytical solution given by
equation (14) and numerical solution given by equation
(21) is made and illustrated in figure (6). From figure (6)
it is clear that there is a very good agreement between the
analytical solution and numerical solution. So the explicit
finite difference method is effective and accurate for
solving advection-dispersion equation for point source
concentration.

Fig. 1: The variation of C(x, t) with time in equation (14) for

D= 1
(

m2 day−1
)

, u= 1
(

m day−1
)

,γ = 0.4
(

day−1
)

and µ =

0.1
(

kg m−3 day−1
)

.

Fig. 2: The variation of C(x, t) with µ in equation (14) for t =
0.02 (day), D = 1

(

m2 day−1
)

,u = 1(m day −1
)

and γ = 0.4(

day −1
)

.
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Fig. 3: The variation of C(x, t) with D in equation (14) for t =
0.02 (day), µ = 0.1

(

kg m−3 day−1
)

,u = 1
(

m day−1
)

and γ =

0.4(day−1
)

.

Fig. 4: The variation of C(x, t) with u in equation (15) for

t = 0.5 (day), 0 ≤ x ≤ 50000(m),D = 106
(

m2 day−1
)

,γ =

0.4
(

day−1
)

,µ = 0.0001
(

kg m−3 day−1
)

,k = 2000 m and c0 =

0.2
(

kg m−3
)

.

7 Conclusions

The analytical solution obtained generalize the earlier
solutions obtained by Kumar [20] (when m = 0) and that
given by Genuchten and Alves [18] ( in problems A1, A9,
C5 and C13). Numerical solution for the same problem
also obtained by using explicit finite difference scheme.
When comparing the analytical solution with the
numerical solution, we found a very good agreement
between them. Impacts of different parameters controlling
the pollutant dispersion have been studied separately with
the help of graphs. We found that at any cross section x =
constant, C(x, t) increases with the increase of either t, D

or µ . At constant time t, C(x, t) decreases as x increases.
Figures (4 and 5) emphasize the fact that we can reduce

Fig. 5: The surface graph of the variation of C(x, t)
with u in equation (15) for t = 0.5 (day), 0 ≤ x ≤
50000(m),D = 106

(

m2 day−1
)

,γ = 0.4
(

day−1
)

,µ =

0.0001
(

kg m−3 day−1
)

,k = 2000 m and c0 = 0.2
(

kg m−3
)

.

Fig. 6: The comparison between the analytical solution (equation

(14)) and the numerical solution (equation (21)) for D =
1
(

m2 day−1
)

, u = 1
(

m day−1
)

,γ = 0.4
(

day−1
)

and µ =

0.1
(

kg m−3 day−1
)

.

the high concentration of pollutant by releasing clean
water discharges from barrage in a river. For a real
situation, our simple model can give decision support for
planning restrictions to be imposed on cultivating and
urban practices.
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