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Abstract: In this paper, we theoretically establish some new characterization results by left and right truncated moments, 
order statistics and upper record values, along with applications to some real life-time data, of a size-biased (weighted) 
distribution.  
Keywords: Characterizations, Эрланга distribution, Order statistics, Record values, Size-Biased (weighted) distribution, 
truncated moments. 
 

1 Introduction 

The problems of characterizations of both discrete and continuous probability distributions have been addressed by many 
authors. According to Nagaraja [2], “A characterization is a certain distributional or statistical property of a statistic or 
statistics that uniquely determines the associated stochastic model”.  On the other hand, Koudou and Ley [3] points out that, 
“In probability and statistics, a characterization theorem occurs when a given distribution is the only one which satisfies a 
certain property. Besides their evident mathematical interest per se, characterization theorems also deepen our 
understanding of the distributions under investigation and sometimes open unexpected paths to innovations which might 
have been uncovered otherwise”.  Thus, it is very important to characterize a particular probability distribution subject to 
certain conditions before applying it to some real world data. For various methods of characterizations of probability 
distributions, we refer to Koudou and Ley [3],  Nagaraja [2], Galambos and Kotz [4], Kotz and Shanbhag [5], Ahsanullah 
and Shakil [6,7], Ahsanullah et al. [8,9,10], and Ahsanullah [11].  
 
After a thorough and careful analysis of various scientific research papers on the Эрланга distribution, we observed that, 
for a non-negative continuous random variable , the Эрланга distribution (or, simply, Э distribution) first appeared in 
Chinese language in a paper by Lv et al. [1]. According to Lv et al. [1], Эрланга distribution has also been cited in some 
Russian literature. Now, the Эрланга distribution is well-known as the Ailamujia distribution in the English literature. 
Since then, many authors have investigated the Эрланга distribution, its properties and applications in modeling real 
lifetime data as an alternative to the exponential distribution. Recently, various weighted model versions of the Эрланга 
distribution have been developed and studied by many authors by taking different choices of the weight functions.   
 
Besides the applications of the probability distributions to real lifetime data sets, the importance of the characterizations of 
probability distributions cannot be underemphasized. It appears from literature that, despite several studies on the weighted 
Эрланга distribution, its properties and applications in modeling real lifetime data in recent years, no attention has been 
paid to its characterizations. In this paper, we theoretically establish some new characterizations of a weighted version of 
the Эрланга distribution, namely, a size-biased (weighted) Эрланга distribution introduced by Rather et al. [12]. Our 
proposed characterizations of the Rather et al. [12]’s size-biased (weighted) Эрланга distribution are based on left and right 
truncated moments, order statistics and record values. Moreover, the goodness of fit test of the Rather et al. [12]’s size-
biased (weighted) Эрланга distribution model will be further examined by considering another real-world data  
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example, namely, the data on a sample of 40 male cholesterol levels (as reported in Triola [13]) to justify and show its 
significant applications in more real life practical situations. 
 
The organization of the paper is as follows: In Section 2, we provide the proposed size-biased (weighted) Эрланга 
distribution, and its several distributional properties, such as the moments, Shannon entropy, reliability analysis and 
computations of percentage points. In Section 3, the estimation of the parameters and the application of the size-biased 
(weighted) Эрланга distribution to some real life-time data are presented. The proposed characterization results of the size-
biased (weighted) Эрланга distribution are presented in Section 4. Some concluding remarks are outlined in Section 5.  
 
2 Size-Biased (Weighted) Эрланга Distribution 
 
In this section, we will first define the Эрланга distribution introduced by Lv et al. [1]. Then, we shall discuss the size-
biased (weighted) Эрланга distribution introduced by Rather et al. [12]. For the sake of completeness, we will provide 
some of its essential basic distributional properties which will be used in establishing our characterization results by left 
and right truncated moments, order statistics and record values. For more properties of the size biased Эрланга distribution 
and its applications to real lifetime data, the interested readers are referred to the paper of Rather et al. [12], and references 
therein.  
 
Эрланга Distribution: For a non-negative continuous random variable, , the probability density function (pdf) and the 
cumulative distribution function (cdf) of the Эрланга distribution are respectively given by  

                                                                                                      (1)  

and 
  .                                                                                     (2) 
As pointed out by Jayakumar and Elangovan [14], the Эрланга (Ailamujia) distribution is a versatile distribution to model 
the repair time and guarantee the distribution delay time. For detailed properties and applications of the Эрланга 
distribution, we refer to Lv et al. [1], Pan et al. [15], Long [16] and Li [17]. For the weighted Эрланга distribution and its 
applications, we refer to Jan et al. [18] and references therein.  
 

Size-Biased (Weighted) Эрланга Distribution: For a non-negative random variable, , with the probability density 
function (pdf), , the probability density function of the size biased (weighted) random variable, , is defined as 

   ,                                                                                                                                                   (3) 

where  denotes the expected value of . Recently, using the pdf (1) of the Эрланга distribution and the Eq. 
(3), a new size-biased (weighted) Эрланга distribution has been developed by Rather et al. [12], with the probability 
density function (pdf) given by 

    .                                                                                               (4)  

Clearly Eq. (4) defines a pdf since , in view of the integral 

, see Gradshteyn and Ryzhik [19], Eq. 3.381.4, p. 317, where  denotes 

the gamma function. The cumulative distribution function (cdf) corresponding to the pdf (4) is given by  

  ,                                                                                               (5) 
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where  in the Eq. (5) denotes the incomplete gamma function, see Gradshteyn and 

Ryzhik [19], Eq. 3.381.1, p. 317. Since , see Gradshteyn and Ryzhik [19], Eq. 8.356.4, p. 942, it is 

easily verified, by direct differentiation, that , which is the pdf (4) under question.  

 
2.1 Distributional Properties of the Size Biased (Weighted) Эрланга Distribution 
 
In what follows, we will provide some important distributional properties of the proposed size biased (weighted) Эрланга 
distribution for the sake of completeness and to use these in our proposed characterizations. 
 
2.1.1 Graphs of the pdf and cdf 
 
The possible shapes of the pdf (4) and cdf (5) of the size-biased (weighted) Эрланга distribution are given for some 
selected values of the parameter, , in Figures 1 – 2, respectively. The effects of the parameter, , can be easily 
seen from these graphs. For example, it is clear from these plots that the size-biased (weighted) Эрланга distribution is 
positively right skewed with longer and heavier right tails for the selected values of the parameter, . 

  
       Fig. 1: Plots of the Size-Biased Эрланга Distribution pdf (4)          Fig. 2: Plots of the Size-Biased Эрланга Distribution cdf (5)                                                                                                                                                                       
 
 
2.1.2 Moments:  Moment of the Size-Biased (Weighted) Эрланга Distribution 
 
For some integer , the  moment of the above size-biased (weighted) Эрланга distribution is given by                 

                                                                                         (6) 
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which easily follows by using the well-known integral  in the Eq. (6), where  denotes 

the gamma function, see Gradshteyn and Ryzhik [19], Eq. 3.381.4, p. 317.  
 
 
2.1.3 st Moment of the Size Biased (Weighted -) Эрланга Distribution 
 
Now, when  in the Eq. (7), the moment of the above size-biased (weighted) Эрланга distribution is given by 
 

      , .                                                                                                                                  (8) 

 
It is obvious from Eq. (8) that , i.e.  exists and is finite for .                                                                                               
 
2.1.4  Incomplete Moment of the Size-Biased (Weighted) Эрланга Distribution 
 
For some integer , the  incomplete moment of the above size-biased (weighted) Эрланга distribution is given 
by                 

   .                                                                                                (9) 

 

Now, using  in the Eq. (9), where  denotes the incomplete gamma function, see 

Gradshteyn and Ryzhik [19], Eq. 3.381.1, p. 317, we have  
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When  in the Eq. (10), the incomplete moment of the above size-biased (weighted) Эрланга distribution is given 
by 
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The Shannon entropy measure of a random variable  is a measure of variation of uncertainty and has been used in many 
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  . 

Thus, in view of the integral , see Gradshteyn and 

Ryzhik [19], Eq. 4.352.1, p. 576, the Shannon entropy of the size-biased (weighted) Эрланга distribution, with pdf (4), is 
easily given by 
 

                            

                                  ,  

from which, by using the Eq. (8) for the moment, , and simplifying, we have 

 
        

 

                                  ,                                                                             (13) 

 
where  denotes the digamma(psi)  function.  
 
2.1.7 Reliability Analysis  
 
The reliability analysis is also important in modelling many phenomena in several fields of applied sciences. The hazard 
rate (or the failure rate) is defined for a non-repairable population as the instantaneous rate of failure for the survivors to 
time  during the next instant of time.  
 
Survival Function, Hazard Rate Function, and Reversed Failure Rate Function: Using the pdf (4) and the cdf (5), the 
corresponding survival (or reliability) function, , hazard rate function (or failure rate function), , and reversed 

failure rate function, , of the size-biased (weighted) Эрланга distribution are, respectively, given by 
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            .                                                                                                     

(16) 
 
The possible shapes of the hazard rate function (or the failure rate function) (15), , of the size-biased (weighted) 

Эрланга distribution are given for some selected values of the parameter, , in Figure 3 below. The effects of the 
parameter, , can be easily seen from these graphs. For example, the increasing and upside-down bathtub shape 

behaviors of the hazard rate function (or the failure rate function), , of the size-biased (weighted) Эрланга 
distribution are evident from Figure  (3). 

 
Fig. 3: Plots of the Size-Biased Эрланга Distribution hf (15). 

 
Furthermore, differentiating the Eq. (15) with respect to , we have 
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differentiating the Eq. (4)  with respect to , i.e. 
 
   .                                                                                                                   (18) 
 
To discuss the behavior of the failure rate function, , let . We observe that the nonlinear equation 

 does not have a closed form solution, but could be solved numerically using some mathematical software 

such as Maple, or Mathematica, or R. It is obvious from Eqs. (17) and (18) that  is positive provided 
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, over any interval, say, , see, for example, Barlow and Proschan [21]. Thus, using Eq. (14), the average 

failure rate function  of the size-biased (weighted) Эрланга distribution model, over the interval , is given 
by      
   

          ,                                                    

 
which in view of the expansion of logarithmic function as a power series, is seen to be positive irrespective of the values 
of the parameter, . Hence the size-biased (weighted) Эрланга distribution model is increasing failure rate on 

average (IFRA). Also, recall that a life distribution  is NBU (New Better than Used) if

, and NWU (new worse than used) if the reversed inequality holds, see, for 
example, Barlow and Proschan [21]. We note that, for the size-biased (weighted) Эрланга distribution model, since 
 

  , 

and 

  , 

 
it is easy to see that , which implies that the distribution of the size-biased (weighted) Эрланга 
distribution model has the property of New Better than Used (NBU). 
 

2.1.8 Percentiles 
  

The percentile points of a given distribution are also important to be known before any statistical applications of it. As 
such, the statisticians would be interested in knowing the median (50%), 25%, or 75% quartiles, or, in the computations of 
the 90%, 95%, or 99% confidence levels for other applications in order to assess the statistical significance of an 
observation whose distribution is known. Thus, in view of these facts, we have computed the percentage points of the 
size-biased (weighted) Эрланга distribution model with the pdf (4). The  percentile or the quantile of order , 

for any ,  of the size-biased (weighted) Эрланга distribution model with the pdf (4) is defined as a number  

such that the area under  to the left of  is . In other words,  is any solution of the equation 

, where  denotes the cdf (5). Thus, using the Maple 11 program, we have 

numerically solved the equation , and computed the percentage points  associated with 

the cdf, , of  for different sets of values of the parameter, , which are provided in the Table 1 below.  
Table 1:  Percentage Points of the Size-Biased (Weighted)  Эрланга Distribution Model ( ). 

 
 75 % 80 % 85 % 90 % 95 % 99 % 

0.5 3.92040 4.27903 4.72305 5.32232 6.29580 8.40594 
1 1.96020 2.13951 2.36153 2.66116 3.14790 4.20297 
2 0.98010 1.06976 1.18076 1.33058 1.57395 2.10149 
3 0.65340 0.71317 0.78718 0.88705 1.04930 1.40099 
4 0.49005 0.53488 0.59038 0.66529 0.78697 1.05074 
5 0.39204 0.42790 0.47231 0.53222 0.62958 0.84059 
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3 Estimation of Parameter, Simulation and Applications 
 
3.1 Estimation and Simulation: Remark 1 
For detailed studies on the estimation of the parameter  of the said size-biased (weighted) Эрланга distribution model 

(by the methods of the moments and maximum likelihood), see Rather et al. [12]. If  bean sample from a the 

said size-biased (weighted) Эрланга distribution with the parameter . According to Rather et al. [12], both the 

moment and maximum likelihood estimation of the parameter  coincide and is given by , where 

.  

Remark 2:  For details on the simulation study of ML estimators, the interested readers are also referred to Rather et al. 
[12]. 
 
3.2 Applications  
 

Rather et al. [12] applied their newly proposed size-biased (weighted) Эрланга distribution model to two different real life 
data sets, namely, “the data on the 23 ball bearings in the life tests studied by Lawless [22]” and “the data on the lifetimes 
(in days) of 40 patients suffering from blood cancer (leukemia)”, to show that it is a better fit than its sub models. In this 
section, the goodness of fit test of the said size-biased (weighted) Эрланга distribution model will be further examined by 
considering another real-world data example, namely, the data on a sample of 40 male cholesterol levels as reported in 
Triola [13], provided in the following Table 2.    
                                      

Table 2:  Male Cholesterol Levels Data. 
522, 127, 740, 49, 230, 316, 590, 466, 121, 578, 78, 265, 250, 265, 273, 272, 972, 75, 138, 139, 638, 
613, 762, 303, 690, 31, 189, 957, 339, 416, 120, 702, 1252, 288, 176, 277, 649, 113, 656, 172 

 
The mean, median and skewness of this data are 395.225, 282.5 and 0.967 respectively. We can see that the data is 
positively skewed. Maple 11 has been used for computing the data moment, estimating the parameter (by employing the 

method of moments), and chi-square test for goodness-of-fit. The data moments are computed as . The 
estimation of the parameters and chi-square goodness-of-fit test are provided in Tables 3 and 4 respectively. 

 
Table 3: Parameter Estimates for the Male Cholesterol Levels DataAssuming Different Models. 

 
Model 

Size-Biased (Weighted) 
Эрланга Distribution 
Model ( ) 
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Ailamujia) 
Distribution 
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Table 4:  Comparison Criteria (Chi-Square Test for Goodness-of-Fit) (at the Level of Significance = 0.5). 
 

Model 
 Size-Biased 

(Weighted) 
Эрланга 

Distribution 
Model ( ) 

Rayleigh 
Distribution 
Model ( )  

Exponential 
Distribution 
Model ( )  

Эрланга (or 
Ailamujia) 

Distribution 
Model ( ) 

Test Statistic 1.33398 2.63421 3.94577 6.10828 
Critical Value 5.99146 5.99146 5.99146 5.99146 

P-Value 0.51325 0.26791 0.13906 0.04716 
RANK 1 2 3 4 

 
From the chi-square goodness-of-fit test, we observed that the size-biased (weighted) Эрланга distribution model, along 
with the Rayleigh, exponential and Эрланга distributions fit the male cholesterol levels data reasonably well. However, the 
size-biased (weighted) Эрланга distribution model produces the highest p-value and the smallest test statistic, so fitted 
better than the Rayleigh, exponential and Эрланга distributions. Also, for the parameters estimated in Table 3, the size-
biased (weighted) Эрланга distribution model, along with the Rayleigh, exponential and Эрланга distributions respectively 
have been superimposed on the histogram of the male cholesterol levels data as in Figure 4. It shows that the size-biased 
(weighted) Эрланга distribution model fits the male cholesterol levels data reasonably well. 
 

 
Fig. 4: Fitting of the pdfs of the Size-Biased (Weighted) Эрланга, Rayleigh, Exponential and Эрланга Distributions to 
the Male Cholesterol Levels Data. 

 

a

b a
a
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4 Characterizations Results 
 
In what follows, in this section, we will provide our proposed characterizations of the said size biased (weighted) Эрланга 
distribution by left and right truncated moments, order statistics and record values.  
 
4.1 Characterization by Truncated Moment 
 
In this subsection, we provide two new characterization results of the above-mentioned size biased Эрланга distribution by 
truncated moments. The first characterization result (Theorem 4.1) is based on a relation between left truncated moment 
and failure rate function. The second characterization result (Theorem 4.2) is based on a relation between right truncated 
moment and reversed failure rate function. For this, we will need the following assumption and lemmas. 
 
Assumption 4.1 Suppose the random variable  is absolutely continuous with the cumulative distribution function 

 and the probability density function . We assume that , and 

. We also assume that  is a differentiable for all , and  exists. 
 
Lemma 4.1  If the random variable  satisfies the Assumption 4.1 with  and , and if 

, where  and  is a continuous differentiable function of  with the 

condition that  is finite for , then , where  is a constant determined by 

the condition . 
 
Proof  For proof, see Shakil, et al. [23].  
 
Lemma 4.2  If the random variable  satisfies the Assumption 4.1 with  and , and if 

, where  and  is a continuous differentiable function of  with the 

condition that  is finite for , then , where  is a constant 
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Proof  Suppose that . Then, since , we have 
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or, .                                                                                                                    (20) 

 
Since, by Lemma 4.1, we have 
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Proof  Suppose that . Then, since , we have 
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Since, by Lemma 4.2, we have 
 

   ,    see Shakil et al. [23],                                                                                      (25) 

 
so from Eqs. (24) and (25), it follows that 
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Now, integrating Eq. (26) with respect to  and simplifying, we easily have 
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where  is the normalizing constant to be determined. Thus, on integrating the above Eq. (27) with respect to  from 

 to , using the condition  and noting that , where  

denotes the gamma function, see Gradshteyn and Ryzhik [19], Eq. 3.381.4, p. 317, we obtain , and so

, which is the required pdf (4) of the random variable . This completes 
the proof of Theorem 4.2.  
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    ,         

                                                                  
where  is given by the Eq. (12), if and only if  has the pdf  
 

     

 
Proof  It is known that ; see Ahsanullah et al. [24], and David and Nagaraja [26]. 
Hence, by Theorem 4.1, the result follows. 
 
Theorem 4.4  Suppose the random variable  satisfies the Assumption 4.1 with   and , then  
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 is given by Eq. (19) and  is given by the Eq. (8), if and only if  has the pdf  

 

   

 
Proof  Since , see Ahsanullah et al. [24], and David and Nagaraja [26], the result 
follows from Theorem 4.2. 
 
4.3 Characterization by Upper Record Values 
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Proof  It is known from Ahsanullah et al. [24], and Nevzorov [28] that  . 
Then, the result follows from Theorem 4.2.  
 
4.4 Some Remarks on Characterization by Truncated Moment 
 
Since a characterization of a particular probability distribution states that it is the only distribution that satisfies some 
specified conditions, our characterization results may serve as a basis for parameter estimation, see Glänzel et al. [29] and 
Glänzel [30, 31]. Moreover, Glänzel [31] points out that the characterizations by truncated moments may also be useful in 
developing some goodness-of-fit tests of distributions by using data whether they satisfy certain properties given in the 
characterizations of distributions. These conditions are used by various authors to test goodness of fit, efficiency of a 
particular test of hypothesis and the power of a particular estimating, etc. For example, Volkova and Nikitin [32] used a 
well-known characterization result of Ahsanullah [33] to test exponentiality of a distribution. For more on the goodness-of-
fit and symmetry tests based on the characterization properties of distributions, the interested readers are referred to recent 
nice papers of Nikitin [34], Miloševic [35] and Akbari [36], and references therein 
 
5 Concluding Remarks 
 
In this paper, we have considered a size-biased (weighted) version of Lv et al. [1]’s Эрланга distribution. Some 
characteristics of the size-biased (wighted) Эрланга distribution are obtained.  The plots for the cdf, pdf and hazard 
function, and table for percentile points for selected values of the parameter have been provided. It is noticeable that the 
size-biased (wighted) Эрланга distribution is skewed to the right and bears most of the properties of skewed distributions. 
The statistical applications of the results to a problem of the male cholesterol levels data from medical science have been 
provided. It was found that the size-biased (wighted) Эрланга distribution model fits better than the Rayleigh, exponential 
and Эрланга distributions.  
  
Furthermore, based on the characteristics of the size-biased (wighted) Эрланга distribution, we have established two new 
characterization results of the size-biased (weighted) Эрланга distribution by truncated moments. The first characterization 
result is based on a relation between left truncated moment and failure rate function. The second characterization result is 
based on a relation between right truncated moment and reversed failure rate function. In addition, we have characterized 
the size-biased (weighted) Эрланга distribution by order statistics and record values.  
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