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Abstract: This work considers Ornstein-Uhlenbeck operator whose role in sensitivity analysis involving Malliavin calculus is of

immense importance in different fields including financial mathematics. There is need to consider Ornstein-Uhlenbeck operator for

uncorrelated random variables since certain phenomenon involve uncorrelated Gaussian random variables. Thus, we derive the operator

for uncorrelated multivariate Gaussian random variables suitable for phenomenon involving multivariate random variables.
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1 Introduction

A lot of research has been done concerning the
Ornstein-Uhlenbeck operator, whose applications are in
many fields, namely, geometry, functional calculus,
financial mathematics, analysis, etc. Chang and Feng [1]
studied the Ornstein-Uhlenbeck operator with quadratic
potentials. Otten [2] applied the operator as a basis for
proving exponential decay of rotating waves in
time-dependent reaction diffusion systems. Cai and
Zhang [3] discussed coordinated drift estimation of a
mixed fractional Ornstein-Uhlenbeck process. Harris [4]
applied abstract holomorphic functional calculus theory
and showed that the operator has a bounded functional
calculus with an optimal angle. He highlighted its
applications in the number generator of quantum field
theory, the analogue of the Laplacian in the Malliavin
calculus, the generator of the transition semigroup linked
with mean-reverting stochastic process. Casarino et al. [5]
discussed orthogonality of general eigenspaces of an
Ornstein-Uhlenbeck operator. Chen and Liu [6] derived
certain characteristics of complex-valued Wiener-Itô
multiple integrals and complex Ornstein-Uhlenbeck
operators and semigroups. Bally et al. [7] gave a
numerical algorithm for sensitivity computation in a Lévy
market using the Ornstein-Uhlenbeck operator as a
differential operator. Bavouzet and Messaoud [8],
Bavouzet et al. [9], Bally & Clement [10] and Udoye et

al. [11] used the tool of the Ornstein-Uhlenbeck operator
on jump-type market model. Metafune et al. [12] obtained
the spectrum of a probably degenerate Ornstein-
Uhlenbeck operator in R

n for L
p
µ spaces where µ is an

invariant measure and 1 ≤ p < ∞.
Some phenomenon involve multivariate Gaussian

random variables that are uncorrelated. Thus, applying
Ornstein-Uhlenbeck operator in such scenario will not
yield adequate model if uncorrelation nature of the
random variables are not considered. Hence, we focus on
the Ornstein-Uhlenbeck operator for uncorrelated
multivariate Gaussian random variables.

The rest of the paper is arranged as follows: Section
2 gives the Mathematical foundation for the work, results
are presented in Section 3, then conclusion is drawn.

2 Mathematical Foundation

Let (Ω ,F ,P) be a probability space. For p ≥ 1 and
n ≥ 1, f ∈Cp(Rn) where Cp(Rn) is the space of functions
f : Rn → R that are p times continuously differentiable.
Let X1, ...,Xn be a sequence of random variables and S(n,p)
be the set of simple functionals such that

F̂ = f (X1, ...,Xn) ∈ S(n,p). P(n,p) is the space of simple

processes Ui = ui(X1, ...,Xn) of length n, where
ui ∈Cp(Rn), i = 1, ...,n.

The Ornstein-Uhlenbeck operator L : S(n,2) → S(n,0) on F̂
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is defined as

LF̂ =−
n

∑
i=1

[(∂ 2
ii f )(X1, ...,Xn)+φi(∂i f )(X1, ...,Xn)],

where

φi(xi) = ∂xi
ln[g(x)] =

g′i(x)

g(x)
, g(x) 6= 0;1 ≤ i ≤ n

otherwise, φi(x) = 0, where gi denotes the density function
of the random variables Xi, i = 1, ...,n.

3 Results

To derive the Ornstein-Uhlenbeck operator for
uncorrelated random variables, let the uncorrelated
Gaussian random set be given by Z1, ...,Zn. Then,
Var(Zi) = E[(Zi −E(Zi))

2], i = 1, ...,n is the variance of

Zi. The probability density function of a multivariate
Gaussian random vector Z ∼ N (µ̄ ,Σ) is given by

g(z) =
1√

(2π)n det(Σ)
exp

{
−

1

2
(z− µ̄)T Σ−1(z− µ̄)

}

(1)
where µ̄ ∈ R

n is a vector denoting E[Z] (expectation of
Zi, i = 1, ...,n), Σ ∈ R

n×n denotes an n × n covariance
matrix, Z = [Z1,Z2, ...,Zn]

T ∈ R
n is a Gaussian random

vector, T and det(Σ) denote the transpose and the
determinant of the covariance matrix, respectively.
Theorem 3.1. Let ϖii be the diagonal entries of an
inverse covariance matrix Σ−1. The density function g of
n-dimensional uncorrelated Gaussian random variables
Z1, ...,Zn satisfies the following:

1.lng(z) = K −
1

2

[
n

∑
i=1

((zi − µi)
2ϖii

]
where

K =−
n

2
ln(2π)−

1

2
ln(det(Σ)) (2)

is a constant.
2.∂zi

lng(z1,z2, ...,zn) =−[(zi − µi)ϖii].

Proof.

1.From equation (1),

lng(z) = −
n

2
ln(2π)−

1

2
ln(det(Σ))

−
1

2
[(z− µ̄)T Σ−1(z− µ̄)]

= K −
1

2
[(z− µ̄)T Σ−1(z− µ̄)];

where K is as given in equation (2).

2.Let Σ and Σ−1 be n-dimensional covariance matrix
and inverse covariance matrix, respectively. Since the
random variables are uncorrelated,

E[(Zi − µi)(Z j − µ j)] = 0 ∀ i 6= j.

Hence,
Σ =


E(Z1 − µ1)
2 · · · E[(Z1 − µ1)(Zn − µn)]

E[(Z2 − µ2)(Z1 − µ1)] · · · E[(Z2 − µ2)(Zn − µn)]
E[(Z3 − µ3)(Z1 − µ1)] · · · E[(Z3 − µ3)(Zn − µn)]

...
...

...

E[(Zn − µn)(Z1 − µ1)] · · · E(Zn − µn)
2




=




E(Z1 − µ1)
2 0 · · · 0

0 E(Z2 − µ2)
2 · · · 0

0 0 · · · 0
...

...
...

...

0 0 · · · E(Zn − µn)
2




(z− µ̄) =




Z1 −E[Z1]
Z2 −E[Z2]
Z3 −E[Z3]

...
Zn −E[Zn]



,

Σ−1 =




ϖ11 ϖ12 · · · ϖ1n

ϖ21 ϖ22 · · · ϖ2n

ϖ31 ϖ32 · · · ϖ3n

...
...

...
...

ϖn1 ϖn2 · · · ϖnn



=




ϖ11 0 · · · 0
0 ϖ22 · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · ϖnn



.

Let i = 1, ...,n; n ∈ N.

The result is trivial for i = 1.

Assume that the result is true for i = 1,2, ...,k. We
show that it is true for i = 1, ...,k,k+ 1.

lng(z1,z2,z3, ...,zk+1) = K −
1

2

[
k+1

∑
i=1

(zi − µi)
2ϖii

]
.

(3)
∂ lng(z1, ...,zk+1)

∂ z1
=−

1

2

∂

∂ z1
((z1 − µ1)

2ϖ11

+(z2 − µ2)
2ϖ22 + · · ·+(zk+1 − µk+1)

2ϖk+1,k+1)

=−(z1 − µ1)ϖ11.

∂ lng(z1, ...,zk+1)

∂ z2
=−

1

2
(

∂

∂ z2
((z1 − µ1)

2ϖ11

+(z2 − µ2)
2ϖ22 + · · ·+(zk+1 − µk+1)

2ϖk+1,k+1)

=−(z2 − µ2)ϖ22
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...

∂ lng(z1, ...,zk+1)

∂ zk

=−
1

2

[
∂

∂ zk

((z1 − µ1)
2ϖ11

+(z2 − µ2)
2ϖ22 + · · ·+(zk+1 − µk+1)

2ϖk+1,k+1

]

=−(zk − µk)ϖkk.

Since it is true for i= 1, ...,k, respectively; there is need
to show that it is true for i = k+ 1.
From equation (3),

∂ lng(z1, ...,zk,zk+1)

∂ zk+1
=−

1

2

∂

∂ zk+1
((z1 − µ1)

2ϖ11

+(z2 − µ2)
2ϖ22 + · · ·+(zk+1 − µk+1)

2ϖk+1,k+1)

=−
1

2
[2(zk+1 − µk+1)ϖk+1,k+1]

=−(zk+1 − µk+1)ϖk+1,k+1.

Therefore, the result is true for all i. �

Corrolary 3.2.

1.If Z1,Z2, ...,Zn is a sequence of independent Gaussian
random variables, then ϖi j = 0 for i 6= j.

Thus, lng(z1, ...,zn) = K −
1

2

n

∑
i=1

(zi − µi)
2ϖii and

∂zi
lng(z) = −(zi − µi)ϖii where K is given by

equation (2).
2.If Z1,Z2, ...,Zn is a sequence of independent and

standardized Gaussian random variables, then the
diagonal of the covariance matrix ϖii = 1 and ϖi j = 0
for i 6= j. Thus,

lng(z) = K −
1

2

n

∑
i=1

z2
i and

∂zi
lng(z1,z2, ...,zn) =−zi.

Theorem 3.3. Let (Ω ,F ,P) be a probability space.

Let F̂ = f (Z1, ...,Zn) be a functional where f : Rn → R.
Assume that Z1, ...,Zn is a sequence of uncorrelated
Gaussian random variables with absolute continuous law
gi(y)dy where gi are piecewise continuous for each
i = 1, ...,n. Then,

1.the Skorohod integral operator δ : P(n,1) → S(n,0) given
for simple process U ∈ P(n,1) satisfies

δ (U) =−
n

∑
i=1

[
∂iUi − (zi − µi)ϖiiUi

]

where ϖii is the diagonal element of the n× n inverse
covariance matrix.
Ui(ω) = ui(Z1, ...,Zn)(ω); ui : Rn →R, i ∈ N,ω ∈ Ω .

2.the Ornstein-Uhlenbeck operator L : S(n,2) → S(n,0)
satisfies

LiF̂ =−
[
∂ 2

i F̂ − (zi − µi)ϖii∂iF̂
]
.

Proof.

1.In general

δi,π(u) =−[∂i(πiui)+ (πiui)∂zi
lngi](Z1, ...,Zn).

Since Zi’s are Gaussian random variables, its density
function gi, i = 1, ...,n is everywhere differentiable on
R; its weight function πi = 1 and its derivative π ′

i = 0
(Bavouzet et al. (2009, [9])). Thus, we get

δ (U)=−
n

∑
i=1

[(πi∂iui+ui∂iπi)+(πiui)∂zi
lngi](Z1, ...,Zn)

=−
n

∑
i=1

[∂iui + ui∂zi
lngi](Z1, ...,Zn).

From Theorem 3.1,

δ (U) =−
n

∑
i=1

[
∂iui + ui∂zi

ln

{
1√

(2π)n det(Σ)

·exp

{
−

1

2
(z− µ̄)T Σ−1(z− µ̄)

}}]

=−
n

∑
i=1

[
∂iui + ui∂zi

{
K −

1

2

n

∑
i=1

(zi − µi)
2ϖii

}]

=−
n

∑
i=1

[
∂iUi − (zi − µi)ϖiiUi

]
.

Following the same method, the Ornstein-Uhlenbeck
aspect is achieved.

2.The Ornstein-Uhlenbeck operator L = Dδ : S(n,2) →
S(n,0) satisfies

LF̂ =−
n

∑
i=1

[
(∂i(∂i f ))(Z1, ...,Zn)

− (zi − µi)ϖii(∂i f )(Z1, ...,Zn)

]
. �

4 Application

The results are to be employed in sensitivity computations
using Malliavin calculus in a financial derivative whose
underlying is an interest rate with the dynamics

dr(t) = µ(t)dt +
n

∑
i=1

σ i(t)dZi(t),

where µ(t) is the drift of the interest rate, σ i(t) denote
the volatility function of the interest rate and Zi is the ith
Gaussian process. The stochastic noise is assumed to be
determined by n uncorrelated Gaussian process. The result
will also be employed in a phenomenon driven by a multi-
dimensional jump-diffusion process for future research.
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5 Conclusion

Uncorrelated random variables are very common in real
life situation. We have derived the Ornstein-Uhlenbeck
operator for such random variables. The extended
operator derived above provides a better model when
working on phenomenon with uncorrelated random
variables, including, in sensitivity analysis.
The authors are grateful to the anonymous referee for a
careful checking of the details and for helpful comments
that improved this paper.
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