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Abstract: In this paper, we propose a new method which is a modified group lasso with least angle regression selection to 
improve the high dimensional linear model in explanatory data. In this approach, the data matrix becomes sparse; the 
column dimension increases and columns are highly correlated. We solve the problem of multicollinearity using LARS 
algorithm which reduces the bias and mean square error and improves the quality of the model. A high degree of 
multicollinearity prevents computer software packages from performing the matrix inversion required for computing the 
regression coefficients. Modified group lasso estimators are solved by the Least Angle Regression and Shrinkage algorithm 
which calculate the correlation vector, decrease the largest absolute correlation value and select best variable selection in 
linear regression. It is shown that the proposed method is better than Lasso, elastic net, ordinary least square, ridge 
regression and adaptive group lasso in various settings, particularly for large column dimension and big group sizes. Also 
modified group lasso with least angle regression selection is robust to parameter selection and has less variance inflation 
factor, less mean square error and largest determination coefficient.                                 
Keywords: categorical variable - least angle regression selection  - multicollinearity-modified group lasso - variables 
selection.  

  
 
1 Introduction 

       Multicollinearity can cause serious problems in 
estimation and prediction when present in a set of 
predictors which has high dimension [1]. 
 
 General regression models have been reviewed [5] with a 
focus on the LASSO and extensions, including the adaptive 
LASSO, elastic net, and group LASSO. The regularization 
terms which are responsible for inducing coefficient 
shrinkage and variable selection leading to improving 
performance metrics of these regression models are 
discussed. This makes these modern, computational 
regression models valuable tools for analyzing high-
dimensional problems. They investigated that elastic net 
method is the best method.  
    Traditional statistical estimation procedures, such as 
Ordinary Least Squares (OLS) that tend to perform poorly, 
have high variance prediction, and may be difficult to 
interpret because of its large variance and covariance which 
means that the estimates of the parameters tend to be less 
precise and lead to wrong inferences, so we can use 
modified group lasso to solve serious problems which are 
caused by multicollinearity [8].  
   Stepwise regression procedure has been used [8] to build 
a regression model for describing and identifying the 

factors that influence the propensity to leave the service 
provided by cellular phone companies. The regression 
theory has been introduced [9] based on specific 
assumptions concerning the set of error random variables. 
They investigated that when errors are uncorrelated and 
have a constant variance, the ordinary least squares 
estimator produces the best estimates among all linear 
estimators.  
Four variable selection methods in the context of multiple 
linear regression analysis have been compared [10] to select 
the best explanatory variables for long-term residential 
water demand forecasting model development. These 
methods were (i) stepwise selection, (ii) backward 
elimination, (iii) forward selection and principal component 
analysis (PCA). The results showed that different variable 
selection methods produced different multiple linear 
regression models with different sets of predictor variables. 
The selection methods (i)–(vi) showed some irrational 
relationships between the water demand and the predictor 
variables due to the presence of a high degree of 
correlations among the predictor variables, whereas PCA 
showed promising results in avoiding these irrational 
behaviors and minimizing multicollinearity problems. 
    An alternative algorithm for lasso estimator has been 
proposed [11] to overcome the issues in LASSO that can be 
combined with other exiting biased estimators called 
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Almost Unbiased Ridge Estimator (AURE). They examined 
the performance of the proposed algorithm using a Monte-
Carlo simulation study and real-world examples.  
   In social science studies, modified group lasso is used to 
solve the problem in categorical variables, such as race, 
gender, and nationality which are difficult to fit a linear 
model on such data, especially when some or all of the 
explanatory variables are categorical [12].  
 
  When the response variable is the only categorical 
variable, it is common to use modified group lasso to 
overcome the defects of ordinary least squares. However, 
when the covariates are also categorical, corresponding 
variables are coded using dummy variables into our design 
matrix [12]. 
 
       In such situations, modified group lasso is often 
beneficial to use an alternative method and shrink the 
estimator towards zero vector, which has an effect on 
introducing some bias so as to decrease the prediction 
variance, with the net result of reducing the mean squared 
error of prediction. There is nothing better than modified 
group lasso (penalized estimators) which has objective 
functions with the addition of a penalty which is based on 
the parameter [12]. 
 
     Group lasso in categorical data has been used [12]. They 
showed that group lasso has beneficial properties when 
dealing with categorical data. They proposed modified 
group lasso for improvement in categorical data. It 
performs better than lasso or group lasso in various settings 
particularly for large column dimension. They introduced a 
simulation study to compare the performance of lasso, 
group lasso and modified group lasso. They investigated 
that the modified group lasso is the best method.               
 
   The LARS algorithm selects the input variable that is 
more correlated with the response variable; it calculates the 
correlation vector and the largest absolute correlation value. 
It is computationally just as fast as forward selection [13].  
It produces a full piecewise linear solution path, which is 
useful in cross-validation or similar attempts to tune the 
model. If two variables are almost equally correlated with 
the response, then their coefficients should increase at 
approximately the same rate. The algorithm thus selects the 
variable which is more stable. In many regression problems 
we are interested in finding important explanatory factors in 
predicting the response variable. The goal of ANOVA is 
often to select important main effects and interactions for 
accurate prediction, which amounts to the selection of 
groups of derived input variables. LARS algorithm is used 
to lessen the biased and mean square error. LARS 
estimators are consistent and sufficient [13]. 
 
We aim to combine modified group lasso with LARS 
algorithm to improve the quality of the model; reduce the 
biased and the mean square error; and handle 

multicollinearity in high dimension case. Thus, we obtain 
sufficient and consistent estimators. The present paper is 
organized as follows: the method which handles variables 
selection and multicollinearity in the next section; penalize 
regression methods is in section 3; the modified group lasso 
with LARS (least angle regression selection) method is 
proposed in section 4; theoretical properties are established 
in Section 5; Simulation results are reported in Section 6.  
 

2 Material and Methods 

2.1 Stepwise Method 
  This method can add variables (the forward selection) and 
can also drop variables in (backward) elimination [4]. The 
step wise is started with no input variables in the model (we 
may restart with a subset of variables and in this case, if 
there are more than or equal to three variables in the model, 
select one more significant variables  or delete (remove) 

one insignificant variable ). Selection method 

compares criterion value of all models that include the first 

and one additional . If the model with the additional 

gives the best criterion value,  isn't removed in the 
model and no other variables are added.   

2.2 Least Absolute Shrinkage and Selection 
Operator (LASSO) 

           Least absolute shrinkage and selection operator 
(LASSO) regression method is widely used in domains with 
massive datasets, such as genomics, where efficient and fast 
algorithms are essential. The LASSO is not robust to high 
correlations among predictors and will arbitrarily choose one 
and ignore the others and break down when all predictors are 
identical. The LASSO penalty expects many coefficients to be 
close to zero, and only a small subset to be large (and 
nonzero). The LASSO estimator uses norm to obtain a 
sparse solution to the following optimization problem see 
[12]. The lasso estimator is given by: 

                         

  

Where   is vector of response variable;  is 
 matrix of explanatory variables; is the number 

of coefficient;,  is the number of observation; and, .  
is tuning parameter determination from the analysis data 
dependent on cross validation and Bayesian information 
computation.                  
2.3 Adaptive Group Lasso 
         

 Adaptive group lasso increases the flexibility of the model 
(consistency and efficiency). Its estimators are asymptotic. It 
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is used when the degree of multicollinearity is medium and 
minimum. It reduces the number of covariates included in 
regression. It is used in variable selection and 
multicollinearity. It reduces the variance and the bias. 
Adaptive group lasso is used in large samples and when there 
are many explanatory variables. It can't be used in high 
dimensional [7]. Adaptive group lasso can be defined as:        

       

Where , , ,  and are defined in equation 

.  

2.4 Modified Grouped Lasso 
Modified grouped lasso is used in high dimension. 

It reduces the biased and the variance and is used in a large 
sample size. This method improves the quality of the 
model. It is used in multicollinearity and variable selection. 
It can be used in categorical data. Its estimators are not 
symbiotic see[12]. This estimator can be defined as: 

                    

             

Where , , ,  and are defined in equation 

.  

2.5 Elastic Net Estimator 

The elastic net method overcomes the limitations 
of the LASSO method which uses a penalty function based 
on:- 

             

     Using this penalty function has several limitations. For 
instance, in the "large p, small n" case, the LASSO selects 
at most effective variables before it saturates. Also if there 
is a group of highly correlated variables, the LASSO tends 
to select one variable from a group and ignore the others 
[15]. To overcome these limitations, the elastic net adds a 

quadratic part to the penalty . When this step uses a 
ridge regression, its estimators are stable. This method is 
also used in high dimensional and categorical data. It 
increases the flexibility of the model and can be defined as:              

          

 

Where  ,  are defined in equation ; ,   and  

are defined in equation ; ,  is the 

variance covariance matrix of estimator ordinary least 
square.                                                                                     

 2.6 Ridge Estimator 
It is the best performing alternatives to the least 

square methods. Least square has no bias, but it has a 
bigger variance than the ridge regression estimator in the 
presence of multicollinearity. The Ridge regression 
estimator can improve the estimation of  by adding a 
small constant to the diagonal of the matrix, which will 
reduce significantly the variance influential factor in the 
matrix. Ridge regression is proven as an effective and 
efficient remedial method to deal with the general problems 
caused by multicollinearity see [2]. The ridge regression is 
defined as follows:   

                          

Where   is defined in equation ; is the identity 
matrix;  and  are defined in equation .  

3 Penalize Regression Methods  
       The standard linear model (or the ordinary least 
squares method) performs poorly in some situations. A 
large multivariate data set contains a number of variables 
superior to the number of the samples size. A better 
alternative is the penalized regression allowing creating a 
linear regression model that is penalized for having too 
many variables in the model by adding a constraint in the 
equation. This is also known 
as  shrinkage  or regularization methods. The aim of 
imposing this penalty is to reduce (i.e. shrink) the 
coefficient values towards zero. This allows the less 
contributive variables to have a coefficient close to zero or 
equal zero. Note that the shrinkage requires selecting a 
tuning parameter (lambda) that determines the amount of 
shrinkage [7]. A tuning parameter, sometimes called a 
penalty parameter, controls the strength of the penalty term 
in methods in linear regression. It is basically the amount 
of shrinkage, where data values are shrunk towards a 
central point, like the mean. Shrinkage results in simple, 
sparse models which are easier to analyze than high-
dimensional data models with large numbers of parameters. 
Tuning parameter takes the three forms: 

3.1 Tuning parameter ( ): 

Tuning parameter ( ) has previously been used as a 
model selection tool. As in model building, there are 

several candidate models to which tuning parameter is 
added, which will increase the quality of the model. By 
including more parameters in the model, the model 
becomes more complex and the estimates also tend to have 
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greater variance. Due to this problem, tuning parameter
dependent on determination on a kaiake information 
criterion (AIC) and cross validation for the selection of a 
better model which achieves a suitable trade-off between 
simplicity (fewer parameters) and goodness of fit (greater 
quality) see[7]. In the Gaussian case, tuning parameter 
takes the following forms: 

 

 

Where , 

is the usual variance estimator 

associated with              

3.2 Tuning Parameter : 

Tuning Parameter is used in linear model to remedy 
multicollinearity so as to reduce the biased and mean 
square error. This tuning is used to overcome the problems 
of linear model in liu estimator, liu estimator two type, 

principle component two parameter and  class 
estimator  [14]. Tuning parameter is fined as: 

                                                                                                       

Where is the variance of  ;  is tuning parameter  

of ridge estimator ; is eigenvector.          

                                                                     

3.3 Tuning Parameter : 

Tuning Parameter is used in linear model to remedy 
multicollinearity so as to reduce the biased and mean 
square error. The tuning is used to overcome the problems 
of linear model in ridge estimator, principle component two 

parameter and  class estimator see [2]. They 

suggested different values of tuning parameter.   is fined 
as: 

                                    

Where   is the variance of ordinary least square 

estimator and  is the estimator ordinary least square. 

               

4 Combine between Modified Group Lasso 
and LARS:                                                                               

  Modified group lasso is used in high dimensional. 
It reduces the bias and variance and is used in large sample 
size. This method improves the quality of the model and it 
is used in multicollinearity and variable selection. It can be 
used in categorical data. Its estimators are not symbiotic see 
[12]. From equation (3), the modified group lasso is defined 
as: 

  Where  is  response vector,  is  
matrix of full column rank,  is the number of observation 
,  is tuning parameter determination from the analysis 
data dependent on generalized cross validation and 
Bayesian information computation and  is the vector of 
parameters. 

Algorithm  

     The modified group lasso regression method overcomes 
multicollinearity and variable selection. Modified group 
lasso is one of the independent variable shrinkage 
regression techniques. LARS is efficient algorithm for 
estimating computational modified group lasso parameters. 
Calculation of modified group lasso parameters using 
LARS can use the following steps:  

 From equation , the modified group lasso is defined as: 

,   , .  and ,
 
are defined in equation . 

Step (1) 

Standardization the response variables  where 

 

 is defined in equation ,    is defined in equation

. And the equation will be
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Where  is response variables in LARS 
algorithm, 

 
 is all values in vector, 

,
 , is every value of response variable,    

, .  and ,
  are defined as equation (3)  

Step (2):  

 Standardization and normalization of the matrix of the 
explanatory variables    

Where , , 

,  is the number of observation, every 

value of explanatory variables matrix. The equation will be: 

         

                             

 Where is defined in equation  ,
 

 is  

 matrix of full column rank in LARS algorithm,
 

, 
 
,
 

is every 

value in matrix . , and  are defined in 

equation . 
Step (3): 

We select one or more significant variables and remove one 
or more of non-significant variables from the equation: 

         

Where and   are defined in equation ; , and 

 are defined in equation . 

Step (4): 

According to [15], we compute the residual of equation 
  : 

           

Where , and   are defined in equation .                                                                  

Step (5)  

According to [6], we compute the mean square error of 
equation : 

 

Where   ,   and   are defined in equation .                                                                   

Step (6): 

According to [3], from equation and , we 
compute 

                     

Step (7): 

According to [3], we compute the mathematical form of 
Mallow’s criteria whose statistics is as follow: 

              
 

         Where  

Where and  are defined in equation ; 
are defined in equation   and 

 is a vector of coefficient of ordinary 
least square. 

Step (8): 

If , we go to step (3) . But if 
, we can obtain the best method. 

The modified group lasso with LARS algorithm is 
defined by minimizing:   

                

     Where  is  response vector;  is   
matrix of full  column rank;   is the number of 

observation;  and  are defined in equation . 

5 Theoretical properties 
Theorem (1): 

Modified group lasso with least angle regression selection 
is consistent under some assumption:- 
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1)  

 

 

 

2)  Under the condition ,  

;    

3)  is the full matrix;  is the largest value of 
eigenvalues;  

4)  is the vector containing the 
relevant factors;                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5) is the vector containing all 

the irrelevant factors thus are associated with 
modified group lasso with LARS  estimators. Suppose 

 is the estimator of modified group lasso with 
LARS. Note that the estimator of modified group lasso with 
LARS is the local minimizer of the equation 

. If the true model is known, the 

oracle estimator (consistent) can be obtained, which is 
denoted by  the standard linear model implies that 

 where is the variance 
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By using the first assumption, the result  is : 
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Theorem (2): 

      Modified group lasso with least angle regression 
selection is selection consistent under some assumptions: 

1)   

2) Under the condition , 

 

3)  , 
  
. 

We know that if the probability is tending to one, all zero 
coefficients must be estimated exactly as zero. On the other 
hand, we know that the estimates for nonzero coefficients 
must be consistent. Such consistency implies that with 
probability tending to one, all the relevant variables, 
identified with nonzero coefficients, are consistent.   

Proof:  

By using the first assumption, the result is
 . 

Without loss of generality, the assumption becomes 

. Then the same argument can be used to 

show  for any which implies 

immediately that  for a better discussion. 

 is defined to be the design matrix where 

.
 

 is defined to be an 

design matrix where . It is noted that if 

, the penalty  function becomes a 

differentiable function with respect to its component see [7] 

. Therefore,  must  be  

the solution of the following normal equation: 

Where is design matrix;  is the 

design matrix;  is eigenvalues with (p_ 

dimensional); is the vector 
containing the relevant factors; 

is the vector containing all 

the irrelevant factors;    is sample size; and    is vector 
of response variables.                                    

          

Where the second term is the order 

zero when  

By using the second and third assumptions:  

The first and third terms are also of the same order because
and  according to 

theorem (1). The second note is that if , there must 

exist a  as  without the 

loss of generality. It is assumed that  then we must 

have  in addition to 

. Therefore, it is known that 

 dominates the first three terms in 

equation with probability tending to one. This simply 
means that this equation cannot be true as long as the 
sample size is sufficiently large. As a result it is concluded 

that with probability tending to one, the estimate   must 

be in apposition where  is not differentiable. Hence 

 has to be exactly zero. Thus, modified group lasso with 
LARS is selection consistency. 

6 Simulation Study 
      In this section, a simulation is carried out to examine 
the performance of LASSO, adaptive group LASSO, 
Elastic net, modified group lasso with LARS (least angle 
regression selection), ordinary least square and ridge 
regression. The mean square error (MSE), variance 
inflation factor (VIF), Mallow’s C𝑝 and determination 
coefficient (R square) are used to comparison.  The data is 
used with upper fitting by generating 11 of variables of 
sample sizes n (n = 50, 100 and 150) using normal 
distribution respectively. For the model fitting, follow the 
convention. We choose the lambda which minimizes the 
estimation error to compare the performance of each 
method. It seems that modified group lasso with LARS 
(least angle regression selection) surpasses other methods. 
Upper fitting data is generated from library (SK learn). The 
multiple linear model is fitted by using mean square error, 
variance inflation vector and determination coefficient.  
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In table (1), it is shown that ordinary least square has the 
largest mean square error and the largest value of variance 
inflation factor, but ordinary least square has determination 
coefficient bigger than determination coefficient of lasso, 
elastic net and adaptive group lasso. Ridge regression has 
mean square error less than the mean square error of lasso 
estimator, elastic net, ordinary least square and adaptive 
group lasso. Ridge regression has variance inflation factor 
less than the variance inflation factor of lasso, elastic net 
and ordinary least square. Ridge regression has 
determination coefficient bigger than determination 
coefficient of lasso, elastic net, adaptive group lasso and 
ordinary least square. That's why ridge regression is better 
than lasso, elastic net, adaptive group lasso and ordinary 
least square. On the other hand, it is noted that modified 
group lasso with LARS (least angle regression selection)  
 

 

 

 

 

 

 

 

In table (2), it is shown that ordinary least square has the 
largest mean square error and the largest value of variance 
inflation factor, but ordinary least square has determination 
coefficient bigger than determination coefficient of lasso, 
elastic net and adaptive group lasso. Ridge regression has 
mean square error less than the mean square error of lasso 
estimator, elastic net, ordinary least square and adaptive 
group lasso. Ridge regression has variance inflation factor 
less than the variance inflation factor of lasso, elastic net 
and ordinary least square. Ridge regression has 
determination coefficient bigger than determination and  

 

 

 

 

 

 

 

 
 

has mean square error less than the mean square error of 
ridge regression. Modified group lasso with LARS (least 
angle regression selection) has variance inflation factor less 
than the variance inflation factor of ridge regression. 
Modified group lasso with LARS (least angle regression 
selection) has   Mallow’s C𝑝 less than the   Mallow’s C𝑝 of 
ridge regression.  Modified group lasso with LARS (least 
angle regression selection) has determination coefficient 
bigger than the determination coefficient of ridge 
regression. Hence, modified group lasso with LARS (least 
angle regression selection) has the largest value of 
determination coefficient, the least value of mean square 
error, least value of Mallow’s C𝑝 and  least value of 
variance inflation factor. That's why the modified group 
lasso with LARS (least angle regression selection) is the 
best method.  

 

 

 

 

 

 

 
 

coefficient of lasso, elastic net, adaptive group lasso and 
ordinary least square. That's why ridge regression is better 
than lasso, elastic net, adaptive group lasso and ordinary 
least square. On the other hand, it is noted that modified 
group lasso with LARS (least angle regression selection) 
has mean square error less than the mean square error of 
ridge regression. Modified group lasso with LARS (least 
angle regression selection) has variance inflation factor less 
than the variance inflation factor of ridge regression. 
Modified group lasso with LARS (least angle regression 
selection) has   Mallow’s C𝑝 less than the   Mallow’s C𝑝 of 
ridge regression.  Modified group lasso with LARS (least 

Table 1:  comparison by using the measurements, n=50. 

Methods  measurements VIF MSE Mallow’s C𝑝 R2 

Ridge 1.12 0.195 12.66 90.2 
Lasso 1.21 0.272 28.57 89.6 

Elastic net 1.20 0.270 19.78 89.9 
OLS 3.60 0.630 32.98 90.0 

Modified group lasso with LARS 1.10 0.190 09.63 92.8 

Adaptive group lasso 1.12 0.270 19.23 89.8 

 

Table 2: comparison by using measurements, n=100. 

Methods measurements 
 

VIF MSE    Mallow’s C𝑝 R2 

Ridge 0.982 0.182 11.65 91.8 
Lasso 1.030 0.250 26.31 90.4 

Elastic net 0.997 0.232 19.31 91.2 
OLS 2.800 0.410 31.82 91.5 

Modified group lasso with LARS 0.740 0.170 08.93 94.8 

Adaptive group lasso 0.988 0.232 19.01 90.8 
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angle regression selection) has determination coefficient 
bigger than the determination coefficient of ridge 
regression. Hence, modified group lasso with LARS (least 
angle regression selection) has the largest value of  

 

 

 

 

 

 

In table (3) , it is shown that ordinary least square has the 
largest mean square error  and the largest value of variance 
inflation factor , but ordinary least square has determination 
coefficient bigger than determination coefficient of lasso, 
elastic net and adaptive group lasso. Ridge regression has 
mean square error less than the mean square error of lasso 
estimator, elastic net, ordinary least square and adaptive 
group lasso. Ridge regression has variance inflation factor 
less than the variance inflation factor of lasso, elastic net 
and ordinary least square. Ridge regression has 
determination coefficient bigger than determination 
coefficient of lasso, elastic net, adaptive group lasso and 
ordinary least square. That's why ridge regression is better 
than lasso, elastic net, adaptive group lasso and ordinary 
least square. On the other hand, it is noted that modified 
group lasso with LARS (least angle regression selection) 
has mean square error  less than the mean square error of 
ridge regression. Modified group lasso with LARS (least 
angle regression selection) has variance inflation factor less 
than the variance inflation factor of ridge regression. 
Modified group lasso with LARS (least angle regression 
selection) has   Mallow’s C𝑝 less than the   Mallow’s C𝑝 of 

ridge regression. Modified group lasso with LARS (least 
angle regression selection) has determination coefficient 
bigger than the determination coefficient of ridge 
regression. Hence, modified group lasso with LARS (least 
angle regression selection) has the largest value of 
determination coefficient, the least value of mean square 
error, least value of Mallow’s C𝑝 and least value of 
variance inflation factor. That's why the modified group 
lasso with LARS (least angle regression selection) is the 
best method.  

7 Conclusions 
 In this paper, the modified group lasso method can be 
determined by LARS (least angle regression selection) 
algorithm. LARS (least angle regression selection) is a 
determination coefficient, the least value of mean square 

error,  least value of Mallow’s C𝑝 and least value of 
variance inflation factor. That's why the modified group 
lasso with LARS (least angle regression selection) is the 
best method.  

 

 

 

 

 

 

more sufficient algorithm which makes modified group 
lasso parameters have the least value of mean square error, 
the least variance inflation factor and the largest value R2. 
LARS (least angle regression selection) for modified group 
lasso gives us coefficient vectors which have the best 
model with the smallest Mallow’s C𝑝 value. It is aimed to 
use LARS (least angle regression selection) to reduce mean 
square error and variance inflation factors, and 
consequently to improve the accuracy of the model. 
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