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Abstract: In this article, we propose two test statistics based on the partial functional mean to test the conformity of a random sample

with the Topp-Leone distribution. Characterization of the distribution based on the partial functional mean has been proven. The tests

are formed as the integrated deviation (ID) or integral square deviation(ISD) between the sample and population partial functional

means. Compared to the Kolmogorov-Smirnov (KS), Cramer-von Mises (CM), and Anderson-Darling (AD) tests, the proposed tests,

say D̂n,1and D̂n,2, generally perform better in terms of their powers. The dependence of theD̂n,1, D̂n,2,KS,CM, and AD tests on the

skewness of the alternative is clear. In fact, we have found thatD̂n,2,KS,CM, and AD tests generally have higher powers than D̂n,1

when testing against distributions with negative skewness and have lower powers when testing against distributions with positive

skewness. We also noticed that D̂n,2 outperforms the KS,CM, and AD tests when testing against negatively skewed alternatives and

D̂n,1outperforms all of these tests when testing against positively skewed alternatives. The percentiles and powers calculations were all

based on Monte Carlo simulations.
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1 Introduction

A random variable X is said to have Topp-Leone distribution of shape θ parameter and scale parameter β if its distribution
function is given by

F(x) =

[
1−
(

1− x

β

)2
]θ

,0 < x < β ,θ > 0 (1)

and, consequently, its density is

f (x) =
2θ

β

(
1− x

β

)[
1−
(

1− x

β

)2
]θ−1

,0 < x < β ,θ > 0 (2)

This family of J-shaped distributions was first introduced by Topp and Leone (T L) [1]. No further developments
in the distribution occurred until (2003) when Nadaraja and Kotz [2] drew attention to its suitability for application
in the reliability analysis. Since then, many articles have appeared in the literature addressing different probabilistic
and inferential aspects of the distribution; Van Dorp and Kotz [3] utilized the distribution to model income data. Some
reliability measures of the distribution and their stochastic orderings were studied by Ghitany et al. [4]. Kotz and Seier
[5] studied the kurtosis of the distribution. A two-sided generalization of the distribution was provided by Vicari et al.
[6]. Zghoul [7,8] studied order statistics and record values for samples from the TL distribution. Order statistics were
also considered by Genç [9], who in [10] estimated P(X > Y ) when X (strength) and Y (stress) are independent random
variables from (TL) distribution. Bayesian inference was carried-out by Sindhu et al. [11] and Bayoud [12]. New classes
of distributions based on TL were introduced by Rezaei et al. [13]. Zghoul [14] introduced plug-in estimators for the
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shape parameter of TL. Al-Zahrani [15] used the Anderson-Darling goodness of fit test to model the data with the TL
distribution. As far as we know, this is the only published article that deals in part with the goodness of fit (GOF) for the
TL distribution.

There are good reasons to consider TL distribution for lifetime analysis. First, the closed form of its cumulative
distribution function makes the distribution mathematically attractive. Second, its hazard rate function takes various
shapes including the bathtub shape, which is the shape of the hazard functions of many real lifetime data. In addition, the
distribution is defined on a bounded domain which is the domain of many reliability applications.

Our interest in this article is to test the null hypothesis that the distribution of a random sample is the TL distribution
given in (1). Up to our knowledge, no tests have been proposed for this purpose. However, some GOF tests in the literature,
could be applied to any model, particularly the empirical distribution function based tests such as the Kolmogorov Smirnov
(KS), Cramer-von Mises (CM), and Anderson Darling (AD) tests. The distributions or asymptotic distributions of GOF
tests depend not only on the hypothesized model, but also on the parameters, whether known or unknown. When the
parameters are unknown and need to be estimated from the sample, the estimation method also affects the performance of
the test. Consequently, the performance of any GOF test would be affected by one or more of these factors. For example,
the Shapiro-Wilk test, which works very well as a test for normality, has comparatively poor performance when used to test
for exponentiality. Since most test statistics, especially when distribution parameters are unknown, do not have a closed
form, quantiles and tests power calculations must be either approximated (possibly based on the asymptotic distribution)
or simulated. The latter method is generally used because it works for all sample sizes.

GOF tests are generally based on characterizations that uniquely determine the distribution. For example, the moment
generating function, when exists, uniquely determines the distribution. Test statistics can therefore be constructed by
measuring the difference between the empirical and theoretical moment generating functions of the assumed model.

The classes of GOF tests include, among others: Chi-square-based tests, empirical distribution-based tests, correlation-
based tests, tests based on characteristic and moment- generating functions, and tests based on integral of the distribution
functions. Besides Pearson [16] Chi-Square test, known as the first GOF test, examples of articles in this class are Fisher
[17] and Rao and Robson [18]. The Kolmogorov-Smirnov (KS), Cramer- von Mises (CM) and Anderson-Darling (AD)
tests are all based on the empirical distribution function. The book by D’Agostino and Stephens [19] contains detailed
discussions of these tests. Examples of correlation-based tests are Shapiro and Wilk [20], Shapiro and Francia [21], and
Coin [22]. Henze and Nikitin [23] and Klar [24] suggested tests based on an integral of the distribution function. Tests
based on residual lifetime were proposed by Zghoul and Awad [25]. Examples of tests based on the characteristic function
or the moment generating function are Epps et al. [26], Henze [27] and Zghoul [28].

In this article, we will present tests based on so-called partial functional moments. In Section 2, we will give a
characterization of the TL distribution and propose test statistics based on this characterization. Investigation of the
proposed test distributions and simulations of some of their quantiles will be presented in Section 3. Also in this section,
quantiles of other tests will be simulated for power comparison purposes. In Section 4, we compare the performance of
the proposed tests with that of the KS, CM and AD tests in terms of powers. The results of this article are summarized in
Section 5.

2 Characterization of the TL distribution and composition of tests

We will denote the random variable X which has a Topp-Leone distribution with shape parameter θ and scale parameter
β by X ∼ T L(θ ,β ) . If β = 1, we will simply write X ∼ TL(θ ) .
Definition : Let X be a random variable with probability density function f (x) ,x ∈ (a,b) , where a could be −∞ and b

could be ∞ . Then for any function ψ(x) and real constants s and t with a ≤ s < t ≤ b , we call µ(s, t) =
∫ t

s ψ(x) f (x)dx

partial functional mean of ψ(x) provided that
∫ t

s |ψ(x)| f (x)dx < ∞.

In particular, if X is nonnegative random variable,ψ(x) = x, t = ∞ , then µ(s) ≡ ∫ ∞
s ψ(x) f (x)dx is the mean residual

lifetime of X .

We now prove a characterization of the T L distribution based on the partial functional mean.

Let ψ(x) = 1− (1− x)2 , then the density of T L(θ ) is

f (x,θ ) = θψ
′
(x) [ψ(x)]θ−1 ,0 < x < 1,θ > 0 .

Theorem 1: If g(x) is nonnegative function and θ is a positive real number, then

∫ 1

s
ψ(x)g(x)dx = µθ (s),s > 0 , (3)

Where
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µθ (s) =
θ

θ + 1

[
1− (ψ(s))θ+1

]
,

iff g(x) is the T L(θ ) density.
Proof: Assume first that g(x)is the T L(θ ) density, then

∫ 1

s
ψ(x)g(x)dx =

∫ 1

s
ψ(x)

[
θψ

′
(x)(ψ(x))θ−1

]
dx

=
∫ 1

s
θψ

′
(x)ψ(x)θ dx

=
θ

θ + 1
(ψ(x))θ+1 |1s

=
θ

θ + 1

[
1− (ψ(s))θ+1

]
= µθ (s).

To show the sufficient condition, differentiate both sides of (3) with respect to s, to get

−ψ(s)g(s) =−θψ
′
(s)(ψ(s))θ ,

which gives g(s) = θψ
′
(s)(ψ(s))θ−1,0 < s < 1 ; the TL(θ ) density.

Assume Y1, ...,Yn be a random sample from T L(θ ,β ) and X1, ...,Xn is the transformed sample with Xi =
Yi

β , i = 1, ...,n.

For now, assume that θ and β are known. To construct test statistics based on this sample using the characterization in
Theorem 1, we introduce measures of discrepancy between µθ (s) and the empirical counterpart of the left hand side of

(3), which is given by 1
n ∑n

j=1 ψ(X j)I(s,1) (X j), where IA (x) is the usual indicator function.

Let

Dn (X ,θ ) =
1

n

n

∑
j=1

ψ(X j)I(s,1) (X j)− µθ (s), (4)

then, we will consider the following measures:

Dn,1 =

∫ 1

s
Dn (X ,θ )w(s)ds (5)

Dn,2 =

∫ 1

s
D2

n (X ,θ )w(s)ds (6)

Dn,3 =

∫ 1

s
|Dn (X ,θ )|w(s)ds (7)

where w(s) is a suitably chosen weight function. Here, Dn,1 represents total weighted deviation of the sample partial
functional mean from the population partial functional mean, Dn,2 is the total weighted square deviation, and Dn,3 is the
total weighted absolute deviation.

Because whether Dn (X ,θ ) is positive or negative depends on the sample, it seems difficult to handle Dn,3 analytically,
so it will not be considered in this article. Integrating the r.h.s. of (5), we obtain

Dn,1 =
1

n

n

∑
j=1

∫ X j

0
ψ(X j)ds−

∫ 1

0
µθ (s)ds (8)

=
1

n

n

∑
j=1

X jψ(X j)−
θ

θ + 1

(
1− 1

2
B

(
θ + 2,

1

2

))

where B(a,b) is the usual beta fuction given by

B(a,b) =

∫ 1

0
xa−1(1− x)b−1.
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In the next theorem, we derive the mean and variance of Dn,1.
Theorem 2. Let X1, ...,Xn be a random sample from T L(θ ), then E (Dn,1) = 0 and

Var(Dn,1) = σ2
θ =

1

n

[
θ

θ + 2

(
θ + 4

θ + 3
−B(θ + 3,

1

2

)
−
(

θ

θ + 1

)2(
1− 1

2
B

(
θ + 2,

1

2

))2
]

(9)

Proof: Dn,1 is a random variable centered at its mean, so it is readily seen that E (Dn,1) = 0.
To compute the variance of Dn,1, we first notice that for k >−1,

∫ 1

0
(ψ(s))k

ds =

∫ 1

0

[
1− (1− s)2

]k

ds (10)

=
1

2

∫ 1

0
uk (1− u)−1/2

du

=
1

2
B

(
k+ 1,

1

2

)
,

where u is set to
[
1− (1− s)2

]
.

Applying the variance on (8), we obtain

Var(Dn,1) =
1

n
Var(Xψ(X)) (11)

=
1

n

[
E(Xψ(X))2 −E2(Xψ(X))

]

We have

E(Xψ(X)) =

∫ 1

0
xψ(x) f (x)dx

= θ

∫ 1

0
xψ

′
(x)ψ(x)θ dx

Integrating by parts and applying the result in (10), we get

E(Xψ(X)) =
θ

θ + 1

[
1− 1

2
Beta(

1

2
,θ + 2)

]
(12)

The second moment of Xψ(X) is

E(Xψ(X))2 =

∫ 1

0
x2ψ

2
(x) f (x)dx

= θ

∫ 1

0
x2ψ

′
(x)ψ(x)θ+1dx

Integrating by parts, one has

E(Xψ(X))2 =
θ

θ + 2

[
1− 2

∫ 1

0
xψ(x)θ+2dx

]
(13)

By the definition of ψ(x), we have x = 1−
√

1−ψ(x), hence

∫ 1

0
xψ(x)θ+2dx =

∫ 1

0

(
1−
√

1−ψ(x)
)

ψ(x)θ+2dx (14)

=
∫ 1

0
ψ(x)θ+2dx−

∫ 1

0

√
1−ψ(x)ψ(x)θ+2dx

=
1

2
Beta(θ + 3,

1

2
)− 1

2(θ + 3)
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Substituting (14) into (13), we obtain

E(Xψ(X))2 =
θ

θ + 2

[
θ + 4

θ + 3
−Beta(θ + 3,

1

2
)

]
(15)

Plugging (12) and (15) in (11), equation (9) is verified.
In the above discussion, we have assumed that both parameters θ and β are known, which is not the case in most

applications. Let θ̂ and β̂ be respective estimators of θ and β , and update Dn,1 accordingly by first divide each variable

in the random sample Y1, ...,Yn , assumed to be selected from T L(θ ,β ) , by β̂ , then replace θ in (8) by θ̂ . The updated

test statistic D̂n,1 is now

D̂n,1 =
1

n

n

∑
j=1

X jψ(X j)−
θ̂

θ̂ + 1

[
1− 1

2
Beta(θ̂ + 2,

1

2
)

]
, (16)

where X j = Yj/β̂ , j = 1, ...,n, which is a simple computational Form.

3 Distribution of the proposed tests

It seems that the exact distribution of (16) is difficult to accomplish. However, asymptotic distribution can be derived.

If θ̂ and β̂ are the maximum likelihood estimators of θ and β , then θ̂
p→ θ and β̂

p→ β , as n → ∞ , where
p→ denotes

convergence in probability. Then, by the continuous map theorem,
Yj

β̂

p→ Yj

β and θ̂

θ̂+1

[
1− 1

2
Beta(θ̂ + 2, 1

2
)
]

p→ θ
θ+1

[
1− 1

2
Beta(θ + 2, 1

2
)
]
.

Thus, by Slutsky’s Theorem, D̂n,1
D→ Dn,1 , as n → ∞ , where

D→ refers to convergence in distribution.
The statistic Dn,1 is a sum of independent and identically random variables with finite variance, so by the central

limit theorem we have
√

nDn,1
D→ N

(
0,σ2

θ

)
, where σ2

θ is as given in (9). Thus,
√

nD̂n,1 is approximately N
(
0,σ2

θ

)
. The

accuracy of this approximation is not guaranteed especially for small values of n. Consequently, we will use simulations

to calculate some quantiles for D̂n,1 and then to compute approximated powers. Simulated needed quantiles of D̂n,1 and

D̂n,2 (to be introduced soon) are given in Table 1.

We now consider Dn,2 =
∫ 1

s D2
n (X ,θ )w(s)ds. Here, we also assume that w(s) = 1. To derive a computational

form, we evaluate the following integral

Dn,2 =

∫ 1

0

(
1

n

n

∑
j=1

ψ(X j)I(s,1) (X j)− µθ (s)

)2

ds

=
1

n2

n

∑
i, j=1

ψ(Xi)ψ(X j)(XiΛX j)−
2θ

n(θ + 1)

n

∑
j=1

ψ(X j)

∫ X j

0

(
1−ψ(s)θ+1

)
ds+

∫ 1

0
µ2

θ (s)ds

=
1

n2

n

∑
i, j=1

ψ(Xi)ψ(X j)(XiΛX j)−
θ

n(θ + 1)

n

∑
j=1

ψ(X j)B(θ + 2,
1

2
;X j)+M (θ )

where XiΛX j = Min(Xi,X j), and

M (θ ) =

(
θ

θ + 1

)2 ∫ 1

0

(
1−ψ(s)θ+1

)2

ds

=

(
θ

θ + 1

)2 ∫ 1

0

(
1− 2ψ(s)θ+1+ψ(s)2θ+2

)
ds

=

(
θ

θ + 1

)2(
1−B(θ + 2,

1

2
)+

1

2
B(2θ + 3,

1

2
)

)
.
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Analogous to the statistic, if we replace θ and β with θ̂ and β̂ , respectively, then the test statistic has the following
form:

D̂n,2 =
1

n2

n

∑
i, j=1

ψ(Xi)ψ(X j)IXiΛX j>s −
θ̂

n
(

θ̂ + 1
)

n

∑
j=1

ψ(X j)B(θ̂ + 2,
1

2
;X j)+M

(
θ̂
)
.

Simulations are carried out to compute the 2.5th and 97.5th percentiles of D̂n,1 and the 95th percentile of D̂n,2 for a
range of θ values and samples of sizes 10,20, and 50. These percentiles are displayed in Table1.

Table 1. Needed percentile of the two-sided test statistic D̂n,1 and the one-sided test statistic D̂n,2 for samples of
sizes 10,20, and 50, and for θ = 0.5(0.5)5.

D̂n,1 D̂n,2 D̂n,1 D̂n,2

θ n 2.5% 97.5% 95% θ 2.5% 97.5% 95%

0.5 10 −0.156 0.208 0.171 3 −0.123 0.165 0.941
20 −0.179 0.233 0.116 −0.144 0.195 0.780
50 −0.209 0.255 0.084 −0.172 0.201 0.667

1.0 10 −0.158 0.225 0.387 3.5 −0.114 0.155 1.016
20 −0.199 0.245 0.298 −0.125 0.176 0.855
50 −0.209 0.257 0.220 −0.158 0.187 0.743

1.5 10 −0.153 0.216 0.587 4 −0.105 0.145 1.072
20 −0.184 0.244 0.444 −0.116 0.152 0.929
50 −0.214 0.250 0.355 −0.147 0.172 0.800

2.0 10 −0.147 0.198 0.722 4.5 −0.094 0.144 1.133
20 −0.166 0.210 0.576 −0.111 0.148 0.972
50 −0.203 0.230 0.470 −0.135 0.162 0.860

2.5 10 −0.129 0.188 0.833 5 −0.090 0.120 1.181
20 −0.160 0.208 0.693 −0.104 0.145 1.033
50 −0.186 0.209 0.581 −0.129 0.158 0.922

4 Power Computations

As mentioned earlier, the percentile and power calculations for the proposed tests, as well as for KS,CM and AD tests are
based on Monte Carlo simulations. The first step is to estimate the distribution parameters β and θ . Assume that y1, ...,yn

are the observed values of a random sample of size n drawn from T L(θ ,β ) distribution with the density given in (2),
without loss of generality, we assume that y1 < ... < yn then the likelihood function is

L(θ ,β |y1, ...,yn ) = 2nθ nβ−nI(0,β )yn

n

∏
j=1

(
1− y j

β

)[
1−
(

1− y j

β

)2
]θ−1

,

= 2nθ nβ−2nθ
n

∏
j=1

(β − y j)
n

∏
j=1

[(2β − y j)y j]
θ−1

I(0,β )yn.

Thus, the log-likelihood function is

l (θ ,β ) = n log2+ n logθ − 2nθ logβ +
n

∑
j=1

log(β − y j)+ (θ − 1)
n

∑
j=1

log(2β − y j)y j . (17)

We observe that for fixed θ > 0, lim
β↓yn

l (θ ,β ) = lim
β↑∞

l (θ ,β ) =−∞ . The continuity and concavity of l (θ ,β ) imply that,

for fixed θ , l (θ ,β ) attains its maximum when β is in (yn,∞).
Differentiating (17) with respect to β and equating the result to 0, we get
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∂ l (θ ,β )

∂β
= −2nθ

β
+

n

∑
j=1

1

(β − y j)
+ 2(θ − 1)

n

∑
j=1

1

(2β − y j)
(18)

=
n

∑
j=1

y j

(β − y j) (2β − y j)
− 2θ

n

∑
j=1

(β − y j)

β (2β − y j)
= 0.

Now differentiate (17) with respect to θ , then equate the derivative to 0 to get

∂ l (θ ,β )

∂θ
=

n

θ
− 2n logβ +

n

∑
j=1

log [(2β − y j)y j ] = 0 (19)

Solving (19) for θ , we obtain

θ =− n

∑n
j=1 log [(2β − y j)y j /β 2]

(20)

Implementing (20) in(18), we have

n

∑
j=1

y j

(β − y j)(2β − y j)
+

2n

∑n
j=1 log [(2β − y j)y j /β 2]

n

∑
j=1

(β − y j)

β (2β − y j)
= 0 (21)

The MLE for β is computed numerically from equation (21), and then the MLE of θ is obtained from equation(20).
The simulation proceeds as follows: We generate a random sample of specified size from T L(θ ,β ) for a given value

of the shape parameter θ and, without loss of generality, for β = 1 . Based on this sample we compute the MLEs for β
and θ , then we compute the values of the underlined tests. To find a simulated percentile of a given test, we repeat this

process 10,000 times, then sort the computed test values in increasing order. The 100(1−α)th percentile,0 < α < 1 , is

the 10000× (1−α)th ordered value. Our power computations will be for the nominal value α = 0.05 , so we need to

compute the 95th percentile for the one-sided test statistics KS,CM,AD and D̂n,2 and the 2.5th and 97.5th percentiles for

the two-sided test statistic D̂n,1. The 95th percentiles for KS,CM and AD tests are depicted in Table 2.

Table 2. α = 0.05 criticl values of KS,CM, and AD statistics for samples of sizes n=10,20,and 50, and
θ= 0.5(0.5)5.

θ n KS CM AD θ n KS CM AD

10 0.302 0.174 0.953 10 0.297 0.163 0.897
0.5 20 0.223 0.186 1.014 3 20 0.220 0.173 0.963

50 0.146 0.198 1.075 50 0.143 0.184 1.017
10 0.302 0.168 0.921 10 0.294 0.158 0.878

1 20 0.221 0.178 1.001 3.5 20 0.220 0.178 0.960
50 0.143 0.187 1.040 50 0.142 0.182 1.000
10 0.298 0.164 0.906 10 0.297 0.163 0.899

1.5 20 0.219 0.175 0.966 4 20 0.218 0.173 0.948
50 0.143 0.186 1.029 50 0.143 0.179 0.988
10 0.296 0.162 0.895 10 0.295 0.160 0.882

2 20 0.218 0.172 0.962 4.5 20 0.218 0.171 0.941
50 0.144 0.182 1.010 50 0.142 0.181 1.010
10 0.299 0.165 0.903 10 0.299 0.165 0.908

2.5 20 0.219 0.174 0.966 5 20 0.218 0.172 0.946
50 0.143 0.185 1.022 50 0.144 0.187 1.025

To compute the approximate power of a test against some alternative, we first simulate a random sample of a given
size from the alternative distribution, then compute the test value. This process is repeated 10,000 times, the percentage
of times the test value exceeds the 95th percentile for a right-tailed test, or falls outside the range of the 2.5th and 97.5th

percentiles for a two-tailed test is an approximate power.
The alternatives were selected from the neighbouring beta distribution, β (a,b) with a = 0.5,1,2,3,and 4, and b =

0.5,1.5,2.5,3.5, and 5; a total of 25 alternatives covering a wide spectrum of distribution shapes. The power values for
the underlined tests for a range of θ values between 0.5 and 5 in increments of 0.5 and for samples of sizes 10,20, and 50,
when testing T L(θ ,β ) against the abovementioned alternatives are calculated. This produced a huge array of 750 rows,
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so only a representative portion of those are shown in Tables A2-A4 in the appendix. We also calculated the power of
the underlined tests when the T L(θ ,β ) is tested against itself. The results are displayed in Table A1. It can be seen from
Table A1 that the tests recover the nominal value α = 0.05 except in a few cases where it is slightly lower than α(0.04)
or slightly higher than α(0.06). In Tables A2-A4 it is noted that the tests under consideration do not restore the nominal
value for certain values of θ and / or n, which implies the bias of these tests.

5 Discussion and Conclusions

Following the procedures described in the previous section, we calculated the power of the proposed tests as well as the
KS,CM and AD tests. Calculations were made for 10 values of the Topp-Leone shape parameter θ , each tested against the
aforementioned 25 beta distributions of the Beta family, which covered a wide range of alternative shapes. As mentioned
above, the simulated powers were calculated based on samples of sizes 10,20 and 50.

Although the average calculated power is a rough measure of test performance, nevertheless it gives an idea of how
tests generally work. Table 3 shows the average of 250 (10 values of θ each tested against 25 alternatives) simulated power
values for each of the five underlined tests. The table shows that the power of all the tests considered increases with the

size of the sample revealing the consistency of the tests. Table 3 also shows that D̂n,2 on average, outperforms the other

four tests for small (n = 10) and moderate (n = 20) sample sizes, while D̂n,1 average power outperforms the other tests
for n = 50.

Table 3. The power means of KS,CM,AD,D̂n,1 and D̂n,2 tests for samples of sizes 10,20,and 50, and θ ranges
from 0.5 to 5 with increments of 0.5 when testing the null hypothesis against 25 different distributions from the
Beta family.

n KS CM AD D̂n,1 D̂n,2

10 0.126 0.139 0.149 0.179 0.246
20 0.193 0.211 0.218 0.246 0.295
50 0.293 0.318 0.325 0.385 0.346

Another issue to consider is how changes in the shape parameter θ would affect the performance of each test. For
n = 20 and for each value of θ = 0.5(0.5)5, we calculated the average power resulting from testing H0 against the 25
alternatives. These averages for the tests considered are given in Table 4. It is surprising that the KS, CM and AD tests

show no significant sensitivity to variations in θ , while in general D̂n,1 indicates an increase in power and D̂n,2 indicates a
decrease in power with θ . The same is true for n = 10 and 50

Table 4. also tells that, on the average, KS,CM and AD have almost the same power, D̂n,2 outperforms all tests for

values of θ less than 2.5, and D̂n,1 outperforms all other tests for θ of value 3.0 or more.

Table 4. The power means computed according to the skewness of the alternatives based on samples of sizes 20
and θ = 0.5(0.5)5 when testing against 25 different distributions from the Beta family.

Test

θ KS CM AD D1 D2
0.5 0.18 0.20 0.21 0.17 0.78
1 0.19 0.21 0.21 0.14 0.58

1.5 0.19 0.21 0.22 0.16 0.46
2 0.20 0.21 0.22 0.20 0.34

2.5 0.19 0.21 0.22 0.21 0.24
3 0.19 0.21 0.22 0.24 0.18

3.5 0.19 0.21 0.22 0.29 0.13
4 0.20 0.21 0.22 0.34 0.10

4.5 0.19 0.21 0.22 0.29 0.13
5 0.20 0.21 0.22 0.34 0.10

We calculated the skewness and kurtosis of each of the alternatives and found that there is a connection between
the skewness of the alternative and the powers of the underlined tests. However, kurtosis does not seem to have such a
connection. Table 5 shows the mean power of the tests under consideration computed according to the skewness values.

We notice that D̂n,2 and AD tests outperform the other tests for skewness less than −1, and that KS,CM and AD, roughly,

perform the same for other skewness values. Although D̂n,2 appears to be superior to other tests for negative and small
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positive skewness alternatives, it is nevertheless inferior to all other tests for alternatives with a skewness of values of

about 0.5 or more. In the latter case, D̂n,1 does better than any other underlined test.

Generally speaking, D̂n,2 outperforms all underlined tests when testing against negatively skewed alternatives and

D̂n,1 outperforms all considered tests when testing against positively skewed alternatives. It does not seem that the
Kurtosis has a clear impact on tests powers.

Table 5. The power means computed according to the skewness of the alternatives based on samples of sizes
10,20 and 50, and θ = 0.5(0.5)5 when testing against 25 different distributions from the Beta family.

Alternativ KS CM AD D̂n,1 D̂n,2

skeness

<−1 0.775 0.822 0.856 0.404 0.862
−1.0to− 0.5 0.376 0.417 0.450 0.333 0.564
−0.5to0 0.158 0.169 0.181 0.194 0.381
0.0to0.5 0.084 0.093 0.091 0.205 0.201
0.5to1 0.097 0.109 0.105 0.281 0.067
1to1.5 0.122 0.140 0.130 0.344 0.018
> 1.5 0.132 0.153 0.144 0.374 0.000
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Appendix

Table A1. Computed powers of the proposed tests and the other considered tests when, for each value of θ =
0.5(0.5)5, the T L(θ ,β ) is tested against itself at nominal α = 0.05 based on samples of sizes n = 10,20,and 50.

θ n KS CM AD D̂n,1 D̂n,2

0.5 10 0.055 0.053 0.051 0.053 0.051
0.5 20 0.049 0.051 0.052 0.051 0.052
0.5 50 0.051 0.051 0.051 0.051 0.051
1 10 0.054 0.054 0.054 0.054 0.054
1 20 0.051 0.054 0.051 0.054 0.051
1 50 0.048 0.052 0.053 0.052 0.053

1.5 10 0.053 0.055 0.052 0.055 0.052
1.5 20 0.050 0.044 0.044 0.044 0.044
1.5 50 0.053 0.054 0.054 0.054 0.054
2 10 0.052 0.051 0.053 0.051 0.053
2 20 0.052 0.053 0.048 0.053 0.048
2 50 0.053 0.061 0.059 0.061 0.059

2.5 10 0.054 0.048 0.052 0.048 0.052
2.5 20 0.053 0.052 0.054 0.052 0.054
2.5 50 0.051 0.052 0.052 0.052 0.052
3 10 0.052 0.048 0.047 0.048 0.047
3 20 0.049 0.048 0.046 0.048 0.046
3 50 0.050 0.048 0.048 0.048 0.048

3.5 10 0.054 0.054 0.052 0.054 0.052
3.5 20 0.043 0.046 0.049 0.046 0.049
3.5 50 0.051 0.051 0.057 0.051 0.057
4 10 0.043 0.043 0.043 0.043 0.043
4 20 0.054 0.050 0.051 0.050 0.051
4 50 0.049 0.051 0.053 0.051 0.053

4.5 10 0.053 0.056 0.054 0.056 0.054
4.5 20 0.049 0.046 0.049 0.046 0.049
4.5 50 0.052 0.052 0.049 0.052 0.049
5 10 0.041 0.046 0.046 0.046 0.046
5 20 0.052 0.056 0.056 0.056 0.056
5 50 0.042 0.043 0.045 0.043 0.045
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Table A2. Computed powers of the considered tests based on samples of size 20 when testing TL with θ = 0.5
against 25 different distributions from the Beta family.

Alternative Skewness Kurtosis KS CM AD D̂n,1 D̂n,2

Beta(3,0.5) −1.57 5.22 0.83 0.89 0.92 0.10 1.00
Beta(2,0.5) −1.25 3.82 0.81 0.88 0.92 0.33 1.00
Beta(4,0.5) −0.69 2.93 0.15 0.18 0.19 0.01 1.00
Beta(1,0.5) −0.64 2.14 0.76 0.84 0.89 0.76 1.00
Beta(3,1.5) −0.51 2.54 0.13 0.15 0.17 0.04 1.00
Beta(4,2.5) −0.31 2.49 0.05 0.05 0.05 0.01 1.00
Beta(2,1.5) −0.22 2.14 0.11 0.13 0.14 0.09 1.00
Beta(4,3) −0.18 2.44 0.04 0.04 0.04 0.01 1.00

Beta(3,2.5) −0.12 2.31 0.04 0.04 0.04 0.01 1.00
Beta(4,3.5) −0.08 2.44 0.04 0.04 0.03 0.01 1.00

Beta(0.5,0.5) 0.00 1.50 0.65 0.72 0.82 0.88 0.84
Beta(4,4) 0.00 2.45 0.05 0.05 0.04 0.03 1.00

Beta(3,3.5) 0.10 2.38 0.04 0.05 0.04 0.04 1.00
Beta(2,2.5) 0.16 2.23 0.04 0.04 0.04 0.05 1.00
Beta(3,5) 0.31 2.59 0.08 0.09 0.07 0.15 1.00

Beta(1,1.5) 0.34 2.05 0.07 0.09 0.10 0.14 0.95
Beta(2,3.5) 0.39 2.49 0.06 0.06 0.05 0.11 1.00
Beta(2,5) 0.60 2.88 0.10 0.12 0.10 0.28 1.00

Beta(1,2.5) 0.73 2.76 0.05 0.05 0.04 0.08 0.72
Beta(1,3.5) 0.96 3.41 0.07 0.08 0.06 0.17 0.51

Beta(0.5,1.5) 1.00 3.00 0.07 0.07 0.08 0.08 0.08
Beta(1,5) 1.18 4.20 0.11 0.13 0.10 0.35 0.29

Beta(0.5,2.5) 1.43 4.56 0.05 0.05 0.04 0.05 0.01
Beta(0.5,3.5) 1.69 5.82 0.07 0.08 0.06 0.11 0.00
Beta(0.5,5) 1.93 7.25 0.10 0.13 0.11 0.25 0.00
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Table A3. Computed powers of the considered tests based on samples of size 20 when testing TL with θ = 2.5
against 25 different distributions from the Beta family.

Alternative Skewness Kurtosis KS CM AD D̂n,1 D̂n,2

Beta(3,0.5) −1.57 5.22 0.83 0.90 0.93 0.14 1.00
Beta(2,0.5) −1.25 3.82 0.83 0.89 0.93 0.41 0.91
Beta(4,0.5) −0.69 2.93 0.16 0.19 0.22 0.03 0.98
Beta(1,0.5) −0.64 2.14 0.78 0.85 0.90 0.82 0.13
Beta(3,1.5) −0.51 2.54 0.15 0.17 0.19 0.07 0.70
Beta(4,2.5) −0.31 2.49 0.06 0.06 0.05 0.01 0.71
Beta(2,1.5) −0.22 2.14 0.12 0.14 0.16 0.13 0.10
Beta(4,3) −0.18 2.44 0.05 0.05 0.04 0.01 0.52

Beta(3,2.5) −0.12 2.31 0.05 0.05 0.05 0.03 0.20
Beta(4,3.5) −0.08 2.44 0.05 0.05 0.05 0.03 0.37

Beta(0.5,0.5) 0.00 1.50 0.67 0.73 0.84 0.91 0.00
Beta(4,4) 0.00 2.45 0.06 0.06 0.05 0.05 0.25

Beta(3,3.5) 0.10 2.38 0.05 0.05 0.04 0.07 0.05
Beta(2,2.5) 0.16 2.23 0.05 0.05 0.05 0.08 0.01
Beta(3,5) 0.31 2.59 0.09 0.10 0.08 0.21 0.01

Beta(1,1.5) 0.34 2.05 0.08 0.10 0.11 0.19 0.00
Beta(2,3.5) 0.39 2.49 0.07 0.07 0.06 0.15 0.00
Beta(2,5) 0.60 2.88 0.11 0.12 0.10 0.33 0.00

Beta(1,2.5) 0.73 2.76 0.05 0.05 0.05 0.11 0.00
Beta(1,3.5) 0.96 3.41 0.08 0.08 0.07 0.22 0.00

Beta(0.5,1.5) 1.00 3.00 0.07 0.07 0.09 0.14 0.00
Beta(1,5) 1.18 4.20 0.13 0.15 0.13 0.45 0.00

Beta(0.5,2.5) 1.43 4.56 0.06 0.07 0.06 0.08 0.00
Beta(0.5,3.5) 1.69 5.82 0.08 0.09 0.07 0.17 0.00
Beta(0.5,5) 1.93 7.25 0.12 0.14 0.12 0.34 0.00
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Table A4. Computed powers of the considered tests based on samples of size 20 when testing TL with θ = 4.0
against 25 different distributions from the Beta family.

Alternative Skewness Kurtosis KS CM AD D̂n,1 D̂n,2

Beta(3,0.5) −1.57 5.22 0.67 0.73 0.85 0.96 0.00
Beta(2,0.5) −1.25 3.82 0.07 0.07 0.09 0.29 0.00
Beta(4,0.5) −0.69 2.93 0.06 0.07 0.06 0.19 0.00
Beta(1,0.5) −0.64 2.14 0.08 0.09 0.08 0.34 0.00
Beta(3,1.5) −0.51 2.54 0.12 0.14 0.13 0.58 0.00
Beta(4,2.5) −0.31 2.49 0.77 0.84 0.90 0.92 0.02
Beta(2,1.5) −0.22 2.14 0.09 0.10 0.11 0.36 0.00
Beta(4,3) −0.18 2.44 0.06 0.06 0.05 0.24 0.00

Beta(3,2.5) −0.12 2.31 0.08 0.08 0.07 0.36 0.00
Beta(4,3.5) −0.08 2.44 0.13 0.15 0.13 0.65 0.00

Beta(0.5,0.5) 0.00 1.50 0.82 0.88 0.93 0.63 0.54
Beta(4,4) 0.00 2.45 0.12 0.14 0.17 0.29 0.00

Beta(3,3.5) 0.10 2.38 0.05 0.05 0.05 0.17 0.00
Beta(2,2.5) 0.16 2.23 0.07 0.07 0.06 0.28 0.00
Beta(3,5) 0.31 2.59 0.11 0.13 0.12 0.52 0.00

Beta(1,1.5) 0.34 2.05 0.85 0.91 0.94 0.33 0.94
Beta(2,3.5) 0.39 2.49 0.14 0.17 0.20 0.18 0.15
Beta(2,5) 0.60 2.88 0.06 0.06 0.06 0.10 0.01

Beta(1,2.5) 0.73 2.76 0.06 0.06 0.06 0.18 0.00
Beta(1,3.5) 0.96 3.41 0.10 0.12 0.10 0.41 0.00

Beta(0.5,1.5) 1.00 3.00 0.17 0.20 0.23 0.10 0.61
Beta(1,5) 1.18 4.20 0.06 0.06 0.06 0.05 0.14

Beta(0.5,2.5) 1.43 4.56 0.05 0.05 0.04 0.07 0.05
Beta(0.5,3.5) 1.69 5.82 0.05 0.05 0.04 0.09 0.02
Beta(0.5,5) 1.93 7.25 0.06 0.07 0.06 0.14 0.01
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