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Abstract: In this paper, by applying the lie symmetry method with the aid of Maple, we study the classical Boussinesq (CB) system

to investigate some new exact solutions. Using the infinitesimal generators and the linear combinations of the vector fields to convert

the system to ordinary differential equations (ODEs) with a new dependent variable. Also, using the infinitesimal generators we can

obtain the adjoint table and the commutator table of lie algebra. We employ the generalized tanh-function method to solve the ODEs.

Hence, we obtain various travelling wave solutions for the CB system. We can investigate these solutions by using figures. Additionally,

conservation laws for the CB system are obtained.
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1 Introduction

One of the most sensational advances of theoretical
physics and nonlinear science has been the expansion of
methods to seek exact solutions of nonlinear partial
differential equations (NLPDEs). The study of the exact
solutions has an exciting issue in both experimental and
theoretical research, which can describe the nonlinear
phenomena of fluid dynamics, solid state physics, fluid
mechanics. In latest years, different kinds of exact
solutions of NLPDEs have been obtained, such as
periodic solutions, soliton solutions and rational
solutions. Seeking the exact solutions of NLPDEs has
been an intersting topic in physics and mathematics for a
long time. Some in effect methods to investigate explicit
traveling and solitary wave solutions of nonlinear
evolution equations have been suggested, for instance the
inverse scattering method [1], the tanh- function method
[2], the tanh-coth method [3], the Extended tanh method
[4], the Jacobi elliptic function method [5], the
F-expansion method [6,7], the modified F-expansion
method [8], the homogeneous balance method [9,10],

(G′
G
)-expansion method [11,12,13], the lie point

symmetry method [14,15,16], the generalized
tanh-function method [17,18] and other methods [19,20,

21]. Lie group methods are perhaps the greatest powerful
currently available in getting exact solutions of NLPDEs.
This method has a deep impact on together pure and
applied areas of mechanics, mathematics and physics ,
etc..

The aim of this paper is applying the lie symmetry
method and the generalized tanh-function method to
obtain the exact solutions of the CB system, that reported
by many authors [22,23,24,25] and given as

ut +
1
4

vxxx +[(1+ u)v]x = 0,

vt + ux+ vvx = 0,
(1)

where u and v are the elevation and the surface velocity
of water wave, respectively. The system given in (1) was
presented by Wu and Zhang in (1996), that is derived from
Euler equation and they studied the run-up of ocean waves
by using this system for instance tsunami waves on dykes
and dams.

The plan of this paper arranged as the following:
Firstly, we apply the Lie symmetry method of the CB
system in section 2. Also, some special symmetry
reductions are presented in this section to get exact
solutions. In section 3, we construct the solutions of the
reduced ODEs which obtained in section 2 via the
generalized tanh-function method to get exact solutions of
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(1). Furthermore, in section 4, we get conservation laws
for the CB system. Finally, conclusions of the paper are
given in the last section.

2 Symmetry Analysis

In this section, firstly, we obtain the Lie point symmetries
of (1) and by using them we get exact solutions of (1).

2.1 Lie Point Symmetries for the System

A Lie symmetry of differential equations is a
transformations, that maps one solution to other solution.
We can get the symmetries of CB system with the
following vector field:

X = ξ (x, t,u,v)∂x + τ(x, t,u,v)∂t +η1(x, t,u,v)∂u +

η2(x, t,u,v)∂v. (2)

Appling the prolongation Pr(3)X into (1), we can obtain
a system of linear partial differential equations which are
named determining equations as follows:

ξu = ξv = ξtx = ξxx = τu = τv = τx = 0,

η1 =−2(1+ u)ξx, η2 = vξx − vτt + ξt ,

η1
u =−2vτx +η2

v − τt + ξx,

η1
v =−v2 τx −η2 − vτt + vξx + ξt ,

η1
x =−vη2

x −η2
t , η2

u = τx,

η2
tv = vτtx − ξtx, η2

vv = vτvx − ξvx + τx,

η2
vx = vτxx − ξxx, ξu = vτu − τv.

(3)

Solving the system by Maple, we get the follwing
infinitesimals:

ξ = c1 t + c2 x+ c3, τ = 2c2 t + c4,

η1 =−2c2 (1+ u), η2 = c1 − c2 v, (4)

where c1, c2, c3 and c4 are constants. Using (2) and (4), we
have the infinitesimal generators as

X1 = t ∂x + ∂v, X2 = x∂x + 2 t ∂t − 2(1+ u)∂u− v∂v,

X3 = ∂x, X4 = ∂t . (5)

According to the commutator operators

[Xi,X j] = Xi X j −X j Xi,

and the series

Ad(exp(ε Xi))X j = X j − ε [Xi,X j]+
1

2!
ε2[Xi, [Xi,X j]]+ ...,

we can obtain the commutator table and the adjoint table
for the lie algebra (5) in table 1 and table 2, respectively.

2.2 Symmetry Group of the System

In this part, to get the group transformation
Gi : (x, t,u,v) → (x̂, t̂, û, v̂) that is generated by the
generator Xi for i = 1,2,3,4. We want to solve the initial
problems of ODEs that given as

d(x̂, t̂, û, v̂)

dε
= (ξ ,τ,η1

,η2),

(x̂, t̂, û, v̂)|ε=0 = (x, t,u,v),

where ξ = ξ (x̂, t̂, û, v̂), τ = τ(x̂, t̂, û, v̂), η1 =
η1(x̂, t̂, û, v̂), η2 = η2(x̂, t̂, û, v̂) and ε is a group
parameter. Then the one-parameter symmetry groups Gi

corresponding to the generators Xi that given in (5) can be
obtained as follows:

G1 : (x, t,u,v)→ (x+ ε t, t,u,v+ ε),
G2 : (x, t,u,v)→ (xeε , t e2ε ,ue−2ε +(e−2ε − 1),ve−ε),
G3 : (x, t,u,v)→ (x+ ε, t,u,v),
G4 : (x, t,u,v)→ (x, t + ε,u,v).

We observe that G1 is a dependent and a space
translation, whereas G2 is a scaling and a translation. The
transformations G3 and G4 are a space and a time
translation, respectively.
Consider u = U(x, t) and v = V (x, t) is a solution of the
system in (1), by using the one-parameter symmetry
groups Gi(i = 1,2,3,4), we have a new solutions

u(1) =U(x− ε t, t), v(1) =V (x− ε t, t)+ ε

u(2) = e−2ε U(xe−ε , t e−2ε)+ (e−2ε − 1),

v(2) = e−ε V (xe−ε
, t e−2ε)

u(3) =U(x− ε, t), v(3) =V (x− ε, t)

u(4) =U(x, t − ε), v(4) =V (x, t − ε)

2.3 Similarity Reductions

Here, we will use the infinitesimal generators that we
obtained in the preceding section to get the symmetry
variables and the symmetry solutions by applying the
characteristic equation which is equivalent to solving the
invariant surface condition

η1(x, t,u,v)+η2(x, t,u,v)−ξ (x, t,u,v)ux − τ(x, t,u,v)ut

= 0.
(6)

Reduction 1: Using the generator X1 = t ∂x + ∂v with (6),
we get the similarity solutions and the similarity variable

u = f (r), v =
x− g(r)

t
, r = t. (7)

Putting (7) in (1), we obtain the reduction equations

d f
dt
+ 1

t
f =− 1

t
,

dg
dt

= 0.
(8)
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Table 1: Commutator table for the lie algebra in (5).

X1 X2 X3 X4

X1 0 −X1 0 0

X2 X1 0 −X3 −2X4

X3 0 X3 0 0

X4 0 2X4 0 0

Table 2: Adjoint table for the lie algebra in (5).

X1 X2 X3 X4

X1 X1 X2 + ε X1 X3 X4

X2 X1 e−ε X2 X3 eε X4 e2ε

X3 X1 X2 − ε X3 X3 X4

X4 X1 X2 −2ε X4 X3 X4

Obviously, f = β1−t
t

and g = β2. Therefore, equation (1)
has a similarity solution given as

u(x, t) = β1−t

t
,

v(x, t) = x−β2
t

,

(9)

where β1 and β2 are constants.

Reduction 2: For the infinitesimal generator X4 = ∂t and
equation (6), we have the similarity solutions and the
similarity variable as the following:

u = f (r), v = g(r), r = x. (10)

Substituting (10) into (1), we obtain

g f ′+( f + 1)g′+ 1
4

g′′′ = 0,

gg′+ f ′ = 0.
(11)

Equation (11) can be written in the form

g′′− 2g3 + 4g = 0, (12)

with setting the constant of integration equal to zero.

Reduction 3: By the infinitesimal generator
X = λ X3 + µ X4 with (6), we get the similarity solutions
and the similarity variable

u = f (r), v = g(r), r = µ x−λ t, (13)

where λ and µ are constants. From (13) and (1), we have

1
4

µ3 g′′′+(µ g−λ ) f ′+ µ (1+ f )g′ = 0,

µ f ′+(µ g−λ )g′ = 0.
(14)

We can writte equation (14) as

µ4 g′′− 2 µ2 g3 + 6λ µ g2 + 4(µ2 −λ 2)g = 0. (15)

Reduction 4: By using the infinitesimal generator
X = X1 +Ω X3 + δ X4 and (6), we get

u = f (r), v =
1

δ
t − g(r), r = 2(δ x−Ω t)− t2

, (16)

where Ω and δ are arbitrary constants. Substituting (16)
into (1), we obtain

δ 3 g′′′+(δ g+Ω) f ′+ δ (1+ f )g′ = 0,

2δ 2 f ′+ 2δ (δ g+Ω)g′+ 1 = 0.
(17)

From (17) we can get

2δ 5 g′′′− 3δ 3 g2 g′− 6Ω δ 2 gg′+ δ [2(δ 2 −Ω 2)− r]g′

−δ g−Ω = 0.
(18)

Now, we construct solutions of the reduced ODEs that we
obtained by applying the generalized tanh-function
method.

3 Solutions of the Reduced Equations

In this section, using the generalized tanh-function method
[17,18] to solve the equations (12), (15) and (18) . Hence,
we obtain a new exact solutions of (1).
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3.1 Solutions of (12)

Let the solution of (12) given in the form

g(r) = A0 +
M

∑
i=1

Ai F i(r)+Bi F
−i(r), (19)

where A0, Ai, Bi (i = 0,1,2, ...,M) are constants, M is a
positive integer that we can be calculated by balancing the
nonlinear term (s) and the highest derivative term in (12)
and F(r) is a solution of Riccati equation

F ′(r) = b+F2(r), (20)

where b is a constant and the solution of (20) are






































F(r) =−
√
−b tanh(

√
−br), b < 0,

F(r) =−
√
−b coth(

√
−br), b < 0,

F(r) =
√

b tan(
√

br), b > 0,

F(r) =
√

b cot(
√

br), b > 0,

F(r) =− 1
r
, b = 0.

(21)

Applying balancing procedure in (12), we get M = 1. Then
we can write the solution for it as

g(r) = A0 +A1 F(r)+
B1

F(r)
. (22)

Putting (22) into (12) and using (20), we get a polynomial
in F i(r). Setting all coefficients of it equal to zero, we
have a system of algebraic equations for A0, A1,B1 and b.
By using Maple to solve it, we have the results

Case 1

A0 = A1 = 0, B1 =±2, b =−2. (23)

Case 2

A0 = B1 = 0, A1 =±1, b =−2. (24)

Case 3

A0 = 0, A1 =±1, B1 =±1

2
, b =−1

2
. (25)

Case 4

A0 = 0, A1 =±1, B1 =±1, b = 1. (26)

Substituting these results into (22) with (21), we get the
solutions of g(r). From (11) and the solutions of g(r), we
obtain the solutions of f (r). Putting these solutions in (10)
we have the travelling wave solutions of the model (1) as

u =− tanh2(
√

2x), v =±
√

2 tanh(
√

2x), (27)

u =−coth2(
√

2x), v =±
√

2 coth(
√

2x), (28)

u = −1
2

[

tan(x)+ cot(x)

]2

,

v =±
[

tan(x)+ cot(x)

]

,

(29)

u = −1
4

[

tanh( 1√
2

x)+ coth( 1√
2

x)

]2

,

v =± 1√
2

[

tanh( 1√
2

x)+ coth( 1√
2

x)

]

.

(30)

3.2 Solutions of (15)

Consider the solution of (15) is the same solution as given
in (19) and by using the balance of the nonlinear term (s)
with the highest derivative term appearing in (15), we get
M = 1. Then the solution for it is the same solution in
(22). Setting (22) in (15) and using (20), we have a
polynomial in F i(r). Putting each coefficients of it equal
to zero, we get a system of algebraic equations for
A0, A1,B1 and b. Using Maple to solve this system, we
get the cases

Case 1

A0 =
λ

µ
, A1 = 0, B1 =± (λ 2 + 2 µ2)

µ3
, b =− (λ 2 + 2 µ2)

µ4
.

(31)

Case 2

A0 =
λ

µ
, A1 =±µ , B1 = 0, b =− (λ 2 + 2 µ2)

µ4
. (32)

Case 3

A0 =
λ

µ
, A1 =±µ , B1 =± (λ 2 + 2 µ2)

4 µ3
, b=− (λ 2+ 2 µ2)

4 µ4
.

(33)

Case 4

A0 =
λ

µ
, A1 =±µ , B1 =± (λ 2 + 2 µ2)

2 µ3
, b =

(λ 2 + 2 µ2)

2 µ4
.

(34)
Setting these values into (22) with (21), we have the
solutions of g(r). Using (14) and the solutions of g(r) ,
we get the solutions of f (r). Putting these solutions in
(13), we construct the solutions of (1) as follows:

u = (λ
µ )

2 ± λ
√

λ 2+2 µ2

µ2 tanh

(√
λ 2+2 µ2

µ2 (µ x−λ t)

)

− 1
2

[

λ
µ ±

√
λ 2+2 µ2

µ tanh

(√
λ 2+2 µ2

µ2 (µ x−λ t)

)]2

,

v = λ
µ ±

√
λ 2+2 µ2

µ tanh

(√
λ 2+2 µ2

µ2 (µ x−λ t)

)

.

(35)
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u = (λ
µ )

2 ± λ
√

λ 2+2 µ2

µ2 coth

(√
λ 2+2 µ2

µ2 (µ x−λ t)

)

− 1
2

[

λ
µ ±

√
λ 2+2 µ2

µ coth

(√
λ 2+2 µ2

µ2 (µ x−λ t)

)]2

,

v = λ
µ ±

√
λ 2+2 µ2

µ coth

(√
λ 2+2 µ2

µ2 (µ x−λ t)

)

.

(36)

u = (λ
µ )

2 ± λ
√

λ 2+2µ2

2µ2

[

tanh

(√
λ 2+2 µ2

2 µ2 (µ x−λ t)

)

+

coth

(√
λ 2+2 µ2

2 µ2 (µ x−λ t)

)]

− 1
2

[

λ
µ ±

√
λ 2+2 µ2

2 µ
[

tanh

(√
λ 2+2 µ2

2 µ2 (µ x−λ t)

)

+

coth

(√
λ 2+2 µ2

2 µ2 (µ x−λ t)

)]]2

,

v = λ
µ ±

√
λ 2+2 µ2

2 µ

[

tanh

(√
λ 2+2 µ2

2 µ2 (µ x−λ t)

)

+coth

(√
λ 2+2 µ2

2 µ2 (µ x−λ t)

)]

.

(37)

u = (λ
µ )

2 ± λ
√

λ 2+2µ2
√

2µ2

[

tan

(√
λ 2+2 µ2
√

2µ2
(µ x−λ t)

)

+cot

(√
λ 2+2 µ2
√

2µ2 (µ x−λ t)

)]

− 1
2

[

λ
µ ±

√
λ 2+2 µ2
√

2 µ
[

tan

(√
λ 2+2 µ2
√

2µ2
(µ x−λ t)

)

+

cot

(√
λ 2+2 µ2
√

2µ2
(µ x−λ t)

)]]2

,

v = λ
µ ±

√
λ 2+2 µ2
√

2 µ

[

tan

(√
λ 2+2 µ2
√

2 µ2
(µ x−λ t)

)

+cot

(√
λ 2+2 µ2
√

2 µ2
(µ x−λ t)

)]

.

(38)

The traveling wave solutions and its position of (35), (36)
and (38) are plotted when (+) sign is taken with the
parameters λ = 2 and µ = 5 as shown in Fig. (1), Fig. (2)
and Fig. (3), respectively.

3.3 Solutions of (18)

Here, we also solve equation (18) by the generalized tanh-
function method. By the same steps that we used in solving
(12) and (15) , we can obtain

A0 =−Ω

δ
, A1 = B1 = 0, b = b. (39)

Substituting (39) into (22) with (21) and (16), we get the
solution of (1) as

u = 1
2δ 2

[

t2 +Ω 2 − 2(δ x−Ω t)

]

,

v = 1
δ (t +Ω).

(40)

4 Conservation Laws

Conservation laws play a vital role in physics and
mathematics. Mathematical expressions of physical laws
are the coservation laws, such as coservation of mass,
energy and momentum. The coservation laws can be used
to study the properties of the existance, uniqueness and
stability of solutions. We investigate in this part the
conservation laws for the system (1) by applying
Ibragimove’s theorem. Firstly, we simply present some
notation used in this section. Suppose that a kth-order
system of partial differential equations (PDEs) of m
dependent variables u = (u1

,u2
, .....,um) and of n

independent variables x = (x1,x2, .....,xn), define as

Fα(x,u,u(1), ...,u(k)) = 0, α = 1,2, ...,m, (41)

where, u(1),u(2), ...,u(k) represent the collections of all
first, second,...,kth-order partial derivatives. This means
that, uα

i = Di(u
α), uα

i j = D jDi(u
α), ..., respectively, where

the total derivative operator with respect to xi given as

Di =
∂

∂xi
+ uα

i

∂

∂uα
+ uα

i j

∂

∂uα
j

+ ..., i = 1,2, ...,n. (42)

Also, we can define the symmetry operator and the adjoint
equation for the system (41), respectively as

X = ξ i ∂

∂xi
+ηα ∂

∂uα
(43)

δ (viF i)

δuα
= F∗

α (x,u,v,u(1),v(1), ...,u(k),v(k)) = 0, α = 1,2, ...,m.

(44)

Theorem 1 [26]: One Lie-Bäcklund, Lie point and non-
local symmetry X , that is define in (43) admitted by the
system (41) provides a conservation law for (41) and its
adjoint (44), then the conserved vectors T i are calculated
by

T i = ξ i L+W α

[

∂ L
∂ uα

i
−D j

(

∂ L
∂ uα

i j

)

+D jDk

(

∂ L
∂ uα

i jk

)

− ...

]

+

D j(W
α )

[

∂ L
∂ uα

i j
−Dk

(

∂ L
∂ uα

i jk

)

+DkDr

(

∂ L
∂ uα

i jkr

)

− ...

]

+

D jDk(W
α )

[

∂ L
∂ uα

i jk

−Dr

(

∂ L
∂ uα

i jkr

)

+ ...

]

+ ...,

(45)

where, W α = ηα − ξ iuα
i and L = ∑m

i=1 viF i are the Lie
characteristic function and the formal Lagrangian,
respectively. Now we obtain the conservation laws for (1),
first we can define the Lagrangian formal for the system
(1) as

L=

[

ū

(

ut +vx+uvx+vux+
1

4
vxxx

)

+ v̄

(

vt +vvx+ux

)]

,

(46)
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Fig. 1: Different shapes of traveling wave solutions of (35) are plotted when (+) sign is taken with the parameters λ = 2 and µ = 5 :

(1.a) Traveling wave solution of u and (1.b) its position at t = 1. (1.c) and (1.d) the solution of v and its position at t = 1, respectively.

where, v̄ and ū are two a new dependent variables. By
using (45) and (46), we obtain

T x = ξ L+W1(ū v+ v̄)+W2(ū+ u ū+ v v̄+ 1
4

ūxx)−
1
4

ūxDx(W
2)+ 1

4
ūD2

x(W
2),

T t = τ L+W1 ū+W2 v̄.

(47)

From the symmetry operators given in (5) with (47), we
get the following cases for the conservation laws:

Case 1: We consider the symmetry operator

X1 = t ∂x + ∂v, we have ξ = t, τ = η1 = 0, η2 = 1 and the
Lie characteristic functions corresponding to this

symmetry are W 1 = −t ux and W 2 = 1− t vx. Hence, the
associated conserved vectors are

T x = ū(tut +u+1)+ v̄(tvt +v)+ 1
4 [t(ūxvxx −vxūxx)+ ūxx],

T t =−t ux ū+(1− t vx) v̄.
.(48)

Case 2: Using the symmetry operator X2 = x∂x + 2 t ∂t −
2(1+ u)∂u − v∂v, we have ξ = x, τ = 2 t, η1 = −2(1+
u), η2 = −v and the Lie characteristic functions become

W 1 =−2(1+u)− xux−2 t ut and W 2 =−v− xvx −2 t vt .
So, the associated conserved vectors given as

T x = 1
4
[ū(2 t vtx − 2 t vtxx − 3vxx)+ ūx (2vx + xvxx)

−ūxx (xvx + 2 t vt + v)]+ ū[xut − (3u+ 2 t ut + 3)v
−2 t (1+ u)vt ]+ v̄ [xvt − 2u− 2 t ut − v2 − 2 t vvt − 2],

T t = 2 ū [t (vx + uvx + vux)− u− 1]

+v̄ [2 t (vvx + ux)− v− xvx]+
1
2

ū(t vxxx − 2xux).

(49)

Case 3: For the symmetry operator X3 = ∂x, we have ξ =
1, τ = η1 = η2 = 0 and the Lie characteristic functions
written as W 1 = −ux and W 2 = −vx. So, the conserved
vectors are

T x = ū ut + v̄vt +
1
4
(ūx vxx − vx ūxx),

T t =−(ux ū+ vx v̄).
(50)

Case 4: Using the symmetry operator X4 = ∂t , we have
τ = 1, ξ = η1 = η2 = 0 and we get W 1 =−ut , W 2 =−vt .
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Fig. 2: Traveling wave solutions of (36) are plotted when (+) sign is taken with the parameters λ = 2 and µ = 5 : (1.a) Traveling wave

solution of u and (1.b) its position at t = 1. (1.c) and (1.d) the solution of v and its position at t = 1, respectively.

So, we obtain the conserved vectors as

T x =−ū(vut + uvt + vt)− v̄(ut + vvt)− 1
4

(vt ūxx + ūvtxx − ūx vtx),

T t = ū(vx + uvx + vux +
1
4

vxxx)+ v̄(vvx + ux).

(51)

5 Conclusion

In this paper, we have used the Lie point symmetry
method for the CB system to obtain the symmetries and
similarity reduction. This reduction leads us to transform
the system to nonlinear ODEs with a new dependent
variable. Solving the nonlinear ODEs via the generalized
tanh-function methods, we construct a new exact
solutions for this system. Our new solutions are soliton,

periodic solutions and rational solutions which we
investigated some of them by using figures. Also, we get
the adjoint table, the commutator table and the symmetry
group of the system. Moreover, the conservation laws are
obtained. Insure that the Lie point symmetry is an actual
powerful method and is worthy of studying further. The
computer systems like as Maple is used to easy and solve
the complecated algebraic equations. Also, by Maple
software we have checked the solutions that we obtained
in this paper.
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Fig. 3: The solutions of (38)are plotted when (+) sign is taken with the parameters λ = 2 and µ = 5 : (1.a) 3D plots the solution of u

and (1.b) its position at t = 1. (1.c) and (1.d) the solution of v and its position at t = 1, respectively.
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