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Abstract: The periodic-review inventory process is a review of the level of stock for each item over a number of periods. The main

problem with an inventory model is determining the optimal number of periods, the optimal maximum inventory level, and the

minimum expected total inventory cost. This research deals with two different cases of relational function in periodic-review

probabilistic inventory models, where the holding cost is an increasing function of the number of periods under nonlinear and linear

constraints. The nonlinear constraint is the expected ordering cost and the linear constraint is storage space. The goal of this research

is to find the minimum expected total cost for the two different probabilistic inventory models based on two different relational

functions using a geometric programming approach. The classical inventory model without any constraints is derived as a special case.

A numerical example is analyzed for each model.

Keywords: Inventory, relational function, increasing holding cost, constraints, geometric programming approach.

1 Introduction

An inventory model is a mathematical model that aims to determine the optimal level of inventories that should be
maintained in a construction process to prevent the risk of stock running out. In the probabilistic inventory models, the
demand rate is considered as a random variable and follows a known probability distribution with a known average.
Multi-item probabilistic inventory models have been studied widely in the literature with and without constraints. An
unconstrained multi-item probabilistic inventory model was investigated by [1], [2], and [3]. [4] introduces deterministic
and probabilistic inventory models where classical optimization is used. [5] is the initial research into an optimized
inventory model using a geometric programming approach (GPA).

[6] introduced GPA to solve non-linear cases. An Economic Order Quantity (EOQ) inventory model, where the
production cost is independent of demand, was studied by [8] using GPA. [7] introduces a reliable production process
with a fixed order cost in the EOQ model. An unconstrained inventory model was investigated by [9], again using GPA.
[10] develops a periodic-review inventory model under the circumstances that demand in any periods is random. [11]
determines the inventory policy variable where the order cost is a continuous function of the order quantity, again using
GPA. [12] uses GPA to illustrate a multi-item EOQ inventory model where the holding cost is a continuous function of
the order quantity under two constraints. [13] considers the order cost as an increased function of the number of periods
with a constant relational function. [14] illustrates a mixed periodic-review inventory model. [15] introduces a
periodic-review probabilistic inventory model where the order cost is an increased function of the number of periods.

[16] uses GPA to show the periodic-review safety stock model where the holding cost varies under only one constraint.
[17] introduces an EOQ model with deteriorating items and time varying demand. [18] presents dynamic programming
for a single-item periodic-review inventory model with a fixed lead time in a fluctuating environment. [19] uses GPA to
solve a multi-item EOQ model where the holding cost is a decreasing continuous function of the production quantity. [20]
adopts GPA to present an EOQ single-item inventory model where the order cost is a linear function of the order quantity.
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More recently, [21] discusses, via GPA, different cases of relational function for multi-product inventory models where
the order cost is an increased function of the number of periods under three constraints.

In the literature of periodic-review inventory models consideration is mainly given to the varying order costs with
constraints. However, in this research the holding cost is considered as an increasing continuous function of the number of
periods, and the relational function can be either a constant or a rational function of the number of periods. This research is
organized as follows: Section 2 proposes the model notations, assumptions, and two probabilistic inventory models, each
model under two constraints. Model I considers the constant relational function, and a rational function of the number of
periods is discussed in model II. The classical inventory models [4] is derived in Section 4. Finally, the comparison of the
two models is illustrated by numerical examples in Section 5.

2 Model Assumptions

Let Cpi, Coi, and Chi(Ni) be the purchase cost, order cost, and holding cost for the ith item respectively. Let E(PC),
E(OC), and E(HC) be the expected purchase cost, expected order cost and the expected holding cost respectively. The
expected total cost is denoted by E(TC) which is the sum of E(PC), E(OC), and E(HC) for each item. The demand
is a random variable denoted by xi for the ith item during Ni, with f(xi) the probability density function of the demand,
and the expected value of demand is E(xi) =

∫ xui

xli
xif(xi)dxi, where xui is the maximum values of xi,and xli is the

minimum values of xi. The annual demand rate for the ith item per period is Di, with expected annual demand E(Di).
The expected level of inventory is Īi, the maximum inventory level for the ith item Qmi. Let k1 and k2 be the limitation
of the order cost and the storage space by square meter m2 respectively. The following assumptions are considered in
constructing the mathematical model:

–Consider that the maximum inventory level (maximum order quantity) Qmi for the ith item is associated with the
expected order quantity E(Qi) during the cycle by the relation function g(Ni), so Qmi = g(Ni)E(Qi), where
E(Qi) = NiE(Di).

–To maintain Qmi for any cycle Ni the safety stock is reviewed for every Ni which can help to prevent the risk of
stock-out.

–The holding cost is an increasing function of Ni which takes the form Chi(Ni) = ChiN
β
i , Chi > 0, , 0 ≤ β ≤ 1.

The holding cost Chi(Ni) is an increasing function in the number of periods Ni for all values of β, and can be reduced
to the constant value Chi if the value of β is equal to zero.

3 Probabilistic Inventory Model with Increasing Holding Cost under two constraints

The annual expected total cost consists of the sum of three components which are as follows

E(TC) = E(PC) + E(OC) + E(HC),

where E(PC) is defined as,

E(PC) =

n
∑

i=1

CpiE(Di),

and E(OC) has the following form

E(OC) =

n
∑

i=1

C0i

Ni

.

E(HC) is given by

E(HC) =

n
∑

i=1

Chi(Ni)Ī

Ni

.

The expected level of inventory Īi = N
[

Qmi −
E(Qi)

2

]

, then Īi = E(Di)N
2
i [

2g(Ni)−1
2 ], and the expected holding cost is

given by

E(HC) =

n
∑

i=1

Chi(Ni)E(Di)Ni[2g(Ni)− 1]

2
.
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According to the model assumption the expected total cost is

E(TC) =

n
∑

i=1

[

CpiE(D) +
Coi

Ni

+
ChiN

β+1
i E(Di)

2
(2g(Ni)− 1)

]

. (1)

Under non-linear and linear constraints:

∑n
i=1

Coi

Ni
≤ k1

∑n

i=1 SE(Di)Ni ≤ k2

}

(2)

As mentioned earlier the relational function g(Ni) can takes either form constant or rational function.

3.1 Model I

In this model the constant case of the relational function is considered, where g(Ni) = γ, γ > 1
2 , where γ represents

the proportion of one period’s consumption that is held as safety stock. Substituting the value of g(Ni) in equation (1)
gives the expected total cost as follows

E(TC) =

n
∑

i=1

[

CpiE(Di) +
Coi

Ni

+
ChiE(Di)N

β+1
i (2γ − 1)

2

]

. (3)

The first term of the above equation
∑n

i=1 CpiE(Di) can be removed without any effect on the solution to the optimization
problem, because it is not dependent on Ni, but it has an effect on the calculation of expected total cost. Therefore, the
minimum expected total cost is

minE(TC) =
n
∑

i=1

[coi

Ni

+
ChiE(Di)N

β+1
i (2γ − 1)

2

]

(4)

subject to

∑n

i=1
Coi

Nik1
≤ 1

∑n

i=1
SE(Di)Ni

k2
≤ 1

}

(5)

Applying GPA to equation (4) and equation(5), the primal geometric function is obtained as follows:

G(W ) =

n
∏

i=1

[ Coi

Niw1i

]w1i
[ChiE(Di)N

β+1
i

2w2i

]w2i
[ Coi

Nik1w3i

]w3i
[SE(Di)Ni

k2w4i

]w4i

,

=
n
∏

i=1

[Coi

w1i

]w1i
[ChiE(Di)(2γ − 1)

2w2i

]w2i
[ Coi

k1w3i

][SE(Di)

k2w4i

]w4i

×N−w1i+(β+1)w2i−w3i+w4i , (6)

where w = wji, 0 < wji < for all i = 1, 2, . . . , n and j = 1, 2, 3, 4 are the weights which satisfy the following
conditions ( the normal and the orthogonal situations)

w1i + w2i = 1
and

−w1i + (β + 1)w2i − w3i + w4i = 0







. (7)

The problem is to find out the optimal solution of the weights w∗

ji for j = 1, 2, 3, 4, solving equation (7) as follows:

w1i =
β+1−w3i+w4i

β+2

w2i =
1+w3i−w4i

β+2

}

. (8)
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Substituting the values of w1i, w2i in equation (8) into equation (6) in the dual functions we obtain the following form:

g(w3i, w4i) =
[ (β + 2)Coi

β + 1− w3i + w4i

]

β+1−w3i+w4i
β+2

[ (β + 2)ChiE(Di)(2γ − 1)

2(1 + w3i − w4i)

]

1+w3i−w4i
β+2

[ Coi

k1w3i

]w3i
[SE(Di)

k2w4i

]w4i

. (9)

In order to calculate w∗

3i and w∗

4i which maximize g(w3i, w4i), the logarithm for both sides in equation (9) can be applied,
and then the first partial derivative of ln g(w3i, w4i) with respect to w3i and w4i taken respectively and each set to zero as
follows:

∂ ln g(w3i, w4i)

∂w3i
=

−1

β + 2
+
[

ln (β + 2)Coi − ln(β + 1− w3i + w4i)
]

(10)

+
1

β + 2

[

ln
(β + 2)ChiE(Di)(2γ − 1)

2
− ln(1 + w3i − w4i)

]

+
[

ln
Coi

k1
− lnw3i

]

− 1 = 0

∂ ln g(w3i, w4i)

∂w4i
=

−1

β + 2
+
[

ln 2Coi − ln(β + 1− w3i + w4i)
]

(11)

+
1

β + 2

[

ln
(β + 2)ChiE(Di)(2γ − 1)

2
− ln(1 + w3i − w4i)

]

+
[

ln
SE(Di)

k2
− lnw4i

]

− 1 = 0

Simplifying equations (10) and (11) we get

[β + 1− w3i + w4i

1 + w3i − w4i

]
1

β+2
[ChiE(Di)(2γ − 1)

2Coi

]
1

β+2
[ Coi

k1ew3i

]

= 1 (12)

[ 1 + w3i − w4i

β + 1− w3i + w4i

]
1

β+2
[ 2Coi

ChiE(Di)(2γ − 1)

]
1

β+2
[SE(Di)

2k2ew4i

]

= 1 (13)

multiplying these equations, we obtain

w3iw4i =
[CoiSE(Di)

k1k2e2

]

(14)

then we obtain:

f(w3i) = w
β+4
3i + w

β+3
3i −Aw

β+2
3i +B1w

2
3i − (β + 1)B1Aw3i −B1A = 0 (15)

f(w4i) = w
β+4
4i + (β + 1)wβ+3

4i −Aw
β+2
4i +B2w

2
4i −B2w4i −B2A = 0 (16)

where A =
[

CoiSE(Di)
k1k2e2

]

, B1 =
[

ChiE(Di)(2γ−1)
2Coi

][

Coi

k1e

]β+2

, and B2 =
[

2Coi

ChiE(D)(2γ−1)

][

SE(Dr)
k2e

]β+2

. Because

fj(0) < 0, and fj(1) > 0, ∀j = 3, 4, there must exist roots wij ∈ (0, 1),  = 3, 4, and to calculate these roots a
numerical method can be used. To clarify that any w∗

ji,  = 3, 4 are calculated from equations (15) and (16) maximize

g(w∗

3i, w
∗

4i), the following conditions can be applied ( negative Hessian matrix) as follows

∂2g(w3i, w4i)

∂w2
3i

= −

[ 1

β + 2

][ 1

(β + 1− w3i + w4i)
+

1

(1 + w3i − w4i)

]

−
1

w3i
< 0

∂2g(w3i, w4i)

∂w2
4i

= −

[ 1

β + 2

][ 1

(β + 1− w3i + w4i)
+

1

(1 + w3i − w4i)

]

−
1

w4i
< 0

∂2g(w3i, w4i)

∂w3i∂w4i
=
[ 1

β + 2

][ 1

(β + 1− w3i + w4i)
+

1

(1 + w3i − w4i)

]

> 0
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Hence

∆ =
[∂2g(w3i, w4i)

∂w3i∂w4i

]2

−
∂2g(w3i, w4i)

∂w2
3i

∂2g(w3i, w4i)

∂w2
4i

=

[

[ 1

β + 2

][ 1

(β + 1− w3i + w4i)
+

1

(1 + w3i − w4i)

]

]2

−

[(

[ 1

β + 2

][ 1

(β + 1− w3i + w4i)
+

1

(1 + w3i − w4i)

]

−
1

w3i

)(

[ 1

β + 2

]

[ 1

(β + 1− w3i + w4i)
+

1

(1 + w3i − w4i)

]

−
1

w4i

)]

< 0.

This confirms that the roots w∗

3i and w∗

4i which are calculated from equations (15) and (16) maximize the dual function
g(w3i, w4i). To find w∗

1i and w∗

2i substitute the value of w∗

3i and w∗

4i in expression (8).

The following relation as a result of Duffin and Peterson’s theorem ([22]) of GPA can be used to find the optimal
number of periods as follows:

Coi

Ni

= w∗

1ig(w
∗

3i, w
∗

4i),

and

ChiE(Di)N
β+1
i (2γ − 1)

2
= w∗

2ig(w
∗

3i, w
∗

4i).

Solving the above equations leads to obtaining the N∗

i as follows:

N∗

i =
[ 2Coi(1 + w∗

3i − w∗

4i)

ChiE(Di)(2γ − 1)(β + 1− w∗

3i + w∗

4i)

]
1

β+2

. (17)

If the maximum inventory level as defined earlier is Q∗

mi = g(Ni)E(Di)N
∗

i , then

Q∗

m = γE(Di)
[ 2Coi(1 + w∗

3i − w∗

4i)

ChiE(Di)(2γ − 1)(β + 1− w∗

3i + w∗

4i)

]
1

β+2

. (18)

The minimum expected total cost can be achieved by substituting N∗

i into equation (3) as follows,

E(TC) =

n
∑

i=1

[

CpiE(Di) + Coi

[ChiE(Di)(2γ − 1)(β + 1− w∗

3i + w∗

4i)

2Coi(1 + w∗

3i − w∗

4i)

]
1

β+2

(19)

+
ChiE(Di)(2γ − 1)

2

[ 2Coi(1 + w∗

3i − w∗

4i)

ChiE(Di)(2γ − 1)(β + 1− w∗

3i + w∗

4i)

]

β+1
β+2
]

.

3.2 Model II

This model considers a rational function of the number of periods, so the relational function takes the form g(Ni) =
Ni+α
Ni

,

and the expected total cost in equation (1) becomes:

E(TC) =

n
∑

i=1

[

CpiE(Di) +
Coi

Ni

+
ChiE(Di)N

β+1
i

2
+ ChiE(Di)α

]

. (20)

The last term of the above equation,
∑n

i=1 ChiE(Di)α, can be seen as the cost of safety stock insurance, a cost incurred to
hold an amount in excess of the expected demand as insurance against the danger of stock running out. However, equation
(20) includes two terms that are not dependent on Ni. These are

∑n

i=1 CpiE(Di) and
∑n

i=1 ChiE(Di)α, and these terms
can be ignored, so the expected total cost can be written as

E(TC) =

n
∑

i=1

[Coi

Ni

+
ChiE(Di)N

β+1
i

2

]

, (21)
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subject to the constraints which are in equation (5). Applying the geometric programming approach to equations (21) and
(5) we obtain

G(w) =

n
∏

i=1

[Coi

w1i

]w1i
[ChiE(Di)

2w2i

]w2i
[ Coi

k1w3i

]w3i
[SE(Di)

k2w4i

]w4i

×N
−w1i+(β+1)w2i−w3i+w4i

i . (22)

where w = wji where 0 < wji < 1 for j = 1, 2, 3, 4 and i = 1, 2, 3, . . . , n,( satisfying the orthogonal and natural
conditions defined earlier), substituting the values of w1i and w2i from (8) to equation (22), we obtain the following for
the dual function:

g(w3i, w4i) =

n
∏

i=1

[ (β + 2)Coi

β + 1− w3i + w4i

]

β+1−w3i+w4i
β2

[ (β + 2)ChiE(Di)

2(1 + w3i − w4i)

]

1+w3i−w4i
β+2

[ Coi

k1w3i

]w3i
[SE(Di)

k2w4i

]w4i

. (23)

To calculate w∗

3r and w∗

4r that maximize g(w∗

3r, w
∗

4r), the logarithm of both sides in equation (23) is applied and then the
first partial derivative of log g(w3i, w4i) with respect to w3i and w4i is taken and set to zero as follows:

f(w3i) = w
β+4
3i + w

β+3
3i −Aw

β+2
3i +B3w

2
3i − (β + 1)B3w3i −B3A = 0. (24)

f(w4i) = w
β+4
4i + (β + 1)wβ+3

4i −Aw
β+2
4i +B4w

2
4i −B4w4i −B4A = 0. (25)

A as defined earlier, B3 =
[

ChiE(Di)
2Coi

][

Coi

k1e

]β+2

, and B4 =
[

2Coi

ChiE(Di)

][

SE(Di)
k2e

]β+2

. As we see in model I, fj(0) < 0

and fj(1) > 0 for j = 3, 4, which means there are roots wj ∈ (0, 1) for j = 3, 4. To check that w∗

3r and w∗

4r maximize
g(w∗

3i, w
∗

4i), the second derivative with respect to w3r and w4r is applied to obtain the Hessian matrix as follows:

∆ =
[∂2g(w3i, w4i)

∂w3i∂w4i

]2

−
∂2g(w3i, w4i)

∂w2
3i

∂2g(w3i, w4i)

∂w2
4i

< 0,

This confirms that the roots w∗

3i and w∗

4i from equation (24) and (25) maximize the dual function g(w∗

3i, w
∗

4i). The results
of the Duffin and Peterson theorem ([22]) of GPA is adopted to find N∗

r as follows:

N∗

r =
[ 2Cor(1 + w3i − w4i)

ChiE(Di)(β + 1− w3i + w4i)

]
1

β+2

. (26)

The maximum inventory level Qmr is

Q∗

mi = E(Di)
[ 2Coi(1 + w∗

3i − w∗

4i)

ChiE(Di)(β + 1− w∗

3i + w∗

4i)

]
1

β+2

+ E(Di)α. (27)

The minimum expected total cost can be found by replacing the value of N∗

i in equation (20) as follows:

E(TC) =

n
∑

i=1

[

CpiE(Di) + Coi

[ChiE(Di)(β + 1− w∗

3i + w∗

4i)

2Coi(1 + w∗

3i − w∗

4i)

]
1

β+2

(28)

+
ChrE(Di)

2

[ 2Coi(1 + w∗

3i − w∗

4i)

ChiE(Di)(β + 1− w∗

3i + w∗

4i)

]

β+1
β+2

+ ChiE(Di)α
]

.

4 Special Case

Let β = 0, i = 1 ⇒ Chi(Ni) = Ch = constant and k1, k2 → ∞ so w∗

3i, w
∗

4i = 0 and w∗

1i = w∗

2i = 1
2 . Assume that

γ = 1, α = 0, this will lead to a probabilistic single-item inventory model, where all the cost components are constant
and without any constraints. This leads to the classical inventory model of [4]. Therefore, N∗

i , Q∗

mi, and minE(TC) for
model I and model II become:

N∗ =

√

2Co

ChE(D)
,
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Q∗

m = E(D)

√

2Co

ChE(D)
.

minE(TC) = CpE(D) +
√

CorChE(D).

Harris’s results ([23]) can be obtained in the case of a deterministic inventory model without constraints if E(D) = D,
γ = 1, and α = 0.

5 An illustrative example

The following table represents the inventory parameters of the probabilistic inventory model for 3 items. The holding cost
is a continuous increasing function and the lead time is equal to zero as we assumed earlier in the model assumptions. Let
the expected order cost limitation be k1 = 1500, the storage space limitation S = 80m2, k2 = 6000, γ = 1.2, and α = 3.

parameter item 1 item 2 item 3

E(D) 34 23 16
Chr 0.40 0.42 0.44
Cor 130 160 180
Cpr 80 100 120

The roots w∗

3r and w∗

4r calculated in equations (15), and (16) for model I, and equations (24), and (25) for model II,
so N∗

i in model I can be calculated in equation (17), and in equation (26) for model II. Similarly, the optimal maximum
inventory levels for models I and II are calculated from equations (18), and (27) respectively. Finally, minE(TC) which
is equal to the sum of the minE(TC) for each item is calculated from equations (19); and (28) for models I and II
respectively. All these results are presented in Table (1).

Table 1: The optimal solution for model I and model II.

β N∗
1 N∗

2 N∗
3 Q∗

1 Q∗
2 Q∗

3 minE(TC)
Model I

0.00 3.01 4.00 5.05 122.66 110.48 96.87 7058.89

0.10 2.78 3.66 4.56 113.61 101.02 87.63 7069.84

0.20 2.60 3.38 4.17 106.03 93.17 80.01 7080.62

0.30 2.44 3.14 3.84 99.61 86.56 73.65 7091.19

0.40 2.31 2.93 3.56 94.12 80.96 68.29 7101.51

0.50 2.19 2.76 3.32 89.39 76.16 63.73 7111.55

0.60 2.09 2.61 3.12 85.28 72.01 59.82 7121.30

0.70 2.00 2.48 2.94 81.68 68.40 56.43 7130.74

0.80 1.92 2.36 2.79 78.51 65.24 53.48 7139.87

0.90 1.86 2.26 2.65 75.70 62.45 50.89 7148.69

1.00 1.79 2.17 2.53 73.20 59.98 48.61 7157.19

Model II

0.00 3.50 4.66 5.87 173.21 155.82 136.33 7042.23

0.10 3.22 4.23 5.28 163.88 145.50 125.90 7052.30

0.20 2.99 3.88 4.79 156.03 136.86 117.23 7062.28

0.30 2.79 3.59 4.39 149.37 129.55 109.94 7072.12

0.40 2.63 3.34 4.05 143.65 123.31 103.75 7081.79

0.50 2.48 3.13 3.77 138.71 117.94 98.45 7091.27

0.60 2.36 2.95 3.52 134.42 113.28 93.87 7100.52

0.70 2.25 2.79 3.31 130.67 109.22 89.89 7109.54

0.80 2.16 2.65 3.12 127.36 105.64 86.41 7118.31

0.90 2.07 2.53 2.96 124.44 102.48 83.34 7126.81

1.00 2.00 2.42 2.82 121.85 99.67 80.62 7135.06
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Fig. 1: The optimal number of periods for different values of β.
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Fig. 2: The optimal maximum inventory level for different values of β.

The results show a decrease in N∗

i and Q∗

mi as the values of β increases. This is clear from Figure (1) and Figure (2),
whereas value of minE(TC) increases as the value of β increases as shown in Figure (3). Comparing the minE(TC) of
model I with model II, we can see that the minimum expected total cost in model II is less than in model I. This means that
model II is better than model I because it achieves the goal which is the lowest expected total cost. Furthermore, when the
value of β is equal to zero, this means models I and II become crisp models (without varying holding costs), the values
of minE(TC) of crisp model I and crisp model II are 7058.89 and 7042.23 respectively. This confirms that model II is
better than model I. However, increasing the values of α and γ will increase minE(TC) for both models.

6 Conclusion

This paper has investigated which relational function form can lead to minimum expected total costs for a periodic-
review probabilistic inventory model under two constraints, where the relational function can be either constant or a
rational function, and the constraints are the expected ordering cost and the limit of the storage space. The holding cost
is a continuously increasing function of the number of periods. The geometric programming approach is considered for
finding the optimal solutions of N∗

i , Q∗

mi and minE(TC) for the ith item in the two probabilistic inventory models. The
classical inventory model of [4] is derived as a special case. The results show that the rational function form achieved
minE(TC) for all values of β compared to the constant form.
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Fig. 3: The minimum annual expected total cost for different values of β.
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