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Abstract: In light of the continuous and rapid increase in reliance on solar energy as a suitable alternative to the conventional energy
produced by fuel, maintenance becomes an inevitable matter for both producers and consumers alike. Electroluminescence technology
is a useful technique in detecting solar panels’ faults and determining their life span using artificial intelligence tools such as neural
networks and others. In recent years, deep learning technology has emerged to open new horizons in the accuracy of learning and
extract meaningful information from many applications, particularly those that depend mainly on images, such as the technique
of electroluminescence. From the literature, it is noted that this part of the research has not received enough attention despite the
importance that researchers have attached to it in the past few years. This paper reviews the most important research papers that rely on
deep learning in studying solar energy failures in recent years. We compare deep and hybrid learning models and highlight the essential
pros and cons of each research separately so that we provide the reader with a critical overview that may contribute positively to the
development of research in this crucial field.

Keywords: Deep learning, data augmentation, electroluminescence, hybrid models, solar defects.

1 Introduction

With the rapid development in the manufacture and use of
solar panels, studying their deterioration becomes
necessary to allow an appropriate intervention before
their final failure. Failure to detect this deterioration may
cause several problems, including the loss of solar panels’
effectiveness and fatal failure in other extreme cases [1].
The problems of solar panels are identified through
several techniques, including electroluminescence (EL)
[2,3,4], where special cameras are used to capture the
panel images, which enable researchers and technicians to
study, troubleshoot or predict faults through the indicators
related to each defect. Among these faults, we mention
cracks [5,6], corrosion [7,8], delamination [7,9], and
others. These faults are identified using several traditional
computer vision techniques that make it easier for
technical examiners to study these errors on a large scale.

In recent years, deep learning technology models have
appeared and have proven to be very effective in studying
and detecting solar panels’ faults, as they benefit from

transfer learning feature that outperforms traditional
computer vision methods. Deep learning (DL) is suitable
not only to classify failures but also to understand the
mechanism through which solar cell defects are detected.
Such detection could improve the solar panels’ reliability
and durability and help manage their deterioration and
enhance their performance. However, it is worth
mentioning that deep learning power can be tremendous
when computers have sufficient ability to interpret data
without the deployment of pre-designed algorithms for
feature extractions [10].

The importance of solar panels’ failure studies has
recently increased, branched into several disciplines such
as those related to the materials industry or the types of
faults and their classifications and their divisions in
different kinds. Due to the increase in the number of
research articles in this field, we in this paper focus most
of our attention on those studies related to deep learning,
as they have not received attention commensurate with
the number of articles published in them. In this paper, we
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focus most of our attention on those studies related to
deep learning. They have not received sufficient attention
in the literature than the number of research articles
published in this field. Also, to the best of our knowledge,
no review has been done on this topic. Thus, we try to
review the most significant development in this area and
enumerate its shortcomings so that the vision becomes
clear to new researchers interested in entering and
continuing to research it. We will also put forth some
proposals and draw some conclusions to indicate new
directions in this important and vital research area.

2 Faults categories of solar cells in EL images

In EL Images, the solar cells emit radiation according to
the electron holes reunion during the state of forwarding
bias. If there is a crack or any type of fault in the solar
cell, the current passage is decreased or hindered during
the state of forwarding bias. In EL images, the defects in
the solar cell appear comparatively dark due to the
reduced radiations. For instance, in Fig.1, the cracking is
demonstrated as grey lines.

Other solar cell faults look like dark grey regions in
the EL images. For example, silicon material defect,
contact forming failure, finger failure, and finger failure
along cracks, as shown in Fig.2. Oppositely, the normal
solar cells emit more radiations during the state of
forwarding bias. It appears brighter in EL images, like the
example of ”Parallel to busbar” image (upper half) shown
in Fig.1.

Cracks can occur due to various reasons. However, the
major causes of cracks occur during the manufacturing
process [12,13]. There are three causes for the cracks in
the manufacturing process [11]: (1) The stress during the
soldering causes cracks at the ribbon. This type is the
most frequent cracking. (2) Needle pressing on a silicon
wafer that is known as a cross crack line. (3) Knocking by
something rigid causes cracking at the cell edge. Next to
the manufacturing process, cracking may occur because
of the thermomechanical loads [13]. Other than that, the
branched form of cracks that occurs when the panel is
exposed to heavy load often occurs during transportation,
panel falling, snow loads, ice pellets, etc. [11].

According to the information presented in Table.1,
cracks with their different types are the most common
fault targeted in the reviewed studies. Other defects, such
as paste spot, dirtiness, interconnection, soiling, and
shunt, were covered. The mutual characteristic of all these
faults is their appearance in the EL images.

3 Data augmentation operations

The CNN models can integrate the spatial data, but they
are not equivariant in rotation and scale transformations.
Therefore, the data augmentation should involve rotation

Fig. 1: Cracking orientations presented in EL images of
solar cells [11,12].

and scale operations to enhance the networks’
generalization [38]. Fawzi, (2016) [39] confirms the
importance of data augmentation in deep learning DL
methods for two purposes; (1) Data shortage: a small
dataset, sufficient for training DL models, especially for
multi-level classification. (2) New images (unseen to the
model) at which the images are in different forms than the
trained images influence the model and lead to wrong
results. With data augmentation, it is possible to modify
or produce totally new images by capturing necessary
characteristics from both images and expanding the
training set. For data shortage, applying different
transformations with the data augmentation can widely
broaden the initial training set.

Recent research work in [40] and [12] developed
CNN models for solar defects recognition and confirmed
that the models could be improved by applying data
augmentation operations. However, a large dataset is
required for training to avoid noise. Among the reviewed
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Fig. 2: Other faults in EL images of solar cells [11].

studies, as shown in Table.2, most of the studies
implement the data augmentation operation, and the most
common operations are flip and rotation.

4 Deep learning models

The implications of the artificial neural networks
approach have improved the solar faults detection
applications by applying shallow neural networks [41,42,
43,44,45,46]. However, in the recent five years, the deep
learning approach has emerged as a powerful tool to solve
problems related to visual computing and recognition of
patterns; this includes object detection, image
classification, face recognition, transfer learning, and
language processing. Implementing deep learning
methods in detecting the defects of solar cells is relatively
new [21]. In [16], the authors assessed the automatic
detection and classification of the hidden cracks using
CNN on a small EL image dataset. It was confirmed that
the proposed model could predict the defects of the PC
cells with an accuracy of 98.4% using 2000 training steps
(25 epochs). The multichannel deep nets and restricted
Boltzmann machines were used in [15] for defective cell
classification. However, the performance of the model
was not stated clearly. Similarly, in [14], they used CNN
approach to detect a solar defect, but they focus on the
effects of data augmentation and oversampling to process
the dataset imbalance. They confirmed that the accuracy
of detecting unknown samples could be improved in the
implementation of practical detection and classification.

Table 1: Solar cell types in the reviewed studies .

Study The target of solar cell fault
[14] Cell cracks
[15] Cell cracks
[16] Cell cracks
[17] Thick lines, broken gates, scratches, paste spot,

color differences, and dirty cell
[18] Material, finger interruption, microcracks, inter-

connection, and insulated cells
[19] Cell cracking and busbar corrosion
[12] Cracks, shunt faults, finger failure, material defect,

and contact forming failure
[20] Micro-crack, break, finger-interruption
[21] Cracks, finger-interruption
[22] Cracks
[23] Glass breakage, soiling, delamination,

discoloration, snail tracks
[24] Glass breakage, soiling, corrosion, delamination,

discoloration, snail trail
[25] Soiling
[26] Crack, scratch, broken edge, hot spot, large area

damage, surface impurity
[27] Fault cell
[28] Cracks
[29] Crack, broken, unsoldered
[30] Cracks, fingerprint, black core
[31] Cracks
[32] Crystal breakage, dirty, spotted past, scratches,

micro-cracks, burned panels
[33] Micro-crack
[34] Cracks
[35] Finger interruption, dislocation pattern
[36] Soiling
[37] Cracks

The CNN’s outstanding performance was also
indicated by [18]. The results showed an accuracy of
88.42% on the dataset, outperforming the SVM model by
6%. Meanwhile, the performance of the method fulfills
the requirements of real-time production in terms of
speed. This model achieved good results, but the false
positive rate remains high, and the classification
performance is not up to the expectations. This could be
caused by the sameness of the defect characteristics and
the complicated background of solar cells.

Similarly, [22] assess the feasibility of three DL
methods in detecting solar defects. The results show
LeNet architecture (99%) outperforms other architecture
GoogleNet (98%), and CifarCNN (50%). But the results
still binary.

The CNN model proposed by [12] outperforms the
method proposed by [18] with an accuracy rate of 93.02%
with minimal resources. The data augmentation
operations (rotation, cropping, mirroring, etc.) applied
help to increase the model accuracy up to 6.5%. Although
they suggested different types of microcracks, the method

c© 2021 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


326 R. Al-Mashhadani et al.: Deep Learning Methods for Solar Fault Detection and...

Fig. 3: CNN model developed by [12].

Table 2: Data augmentation operations applied on
reviewed studies.

Study Data augmentation operations
[14] Flip, rotation, translation, cropping
[15] NA
[16] Brightness adjustment, adding blurring, rotation
[17] NA
[18] Rotation, translation, flip
[19] Flip, rotation
[12] Flip, rotation, cropping
[20] GAN-based model operation
[21] Flip, shift, rotation
[22] NA
[29] NA
[31] Rotations, mirroring
[32] NA
[33] Flip
[34] Flip, rotation
[35] Flip, rotation, brightness and contrast, additive

Gaussian noise
[36] Gaussian noise
[37] NA

remains two category results. Moreover, this type of
method may experience overfitting caused by training
samples produced by geometric deformation [20].

An automatic application using multispectral CNN
was developed in [17]. The study aimed at detecting the
surface of solar with irregular structure and complex

background. The proposed CNN model is an effective
model for solar faults detection and comprises fifteen
conventional layers, nine pooling layers, and two fully
connected layers. The results showed that the proposed
model had achieved good performance with an accuracy
of 94.3%. However, this model can be used to detect
small cracks [47].

In [19], Karimi et al. evaluated the automation data
analysis pipeline for solar defects recognition using EL
images. A comparison of three models (SVM, RF, and
CNN) was conducted. The CNN model outperformed
other methods with an accuracy rate of 99.42%. However,
the result of the application is a binary classification.
According to the information presented in Table 3, the
CNN model is dominant due to its good performance in
image processing in recent years. It outperforms all other
previously implemented tools.

Through the eighteen CNN models used, seven models
are with a low number of parameters and low number of
layers similar to the model developed by [12], as shown in
Fig.3.

Out of the eighteen models, there are two models with
a low number of parameters and a high number of layers,
like the model in Fig.4. The last type of model is with a
low number of layers and a high number of parameters.

Through the observations of the models, we can see
that the high number of parameters do not depend on the
high number of layers but the kernel and the size of fully
connected layers. The Electroluminescence (EL) images
were dominant across the reviewed studies in terms of the
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Table 3: Studies of detecting the defects of solar cells using a deep learning approach.

Study Model No. of para-
meters

Number of
layers

Type of
image

Performance
criteria

Remarks

[14] VGG-16 0.38 M 21 EL 7.7% (balanced
error), 92.3%
(balanced accurate)

Considers effects of augmentation
and oversampling.

[15] DBN 4.7M 4 EL NA Time-consuming
[16] CNN 1.1 M 6 EL 98.4% Small datasets
[17] CNN 101.2 M 27 RGB 94.3% Considers only visible defects,

not applicable for weak scratch
inspection.

[18] CNN, SVM 34.9 M 24 EL 88.42% (CNN),
82.44% (SVM)

Processing did not distinguish the
defect type

[19] CNN 0.2 M 5 EL 99.43% (SVM),
97.46% (RF), 99.71
% (CNN)

Two-category result

[12] CNN 2.5 M 9 EL 93.02% Two-
category result,

Can suffer from the over-fitting
phenomenon.

[20] CNN 12.9 M 9 EL Micro-crack (82%),
finger-interruption
(81%), break (83%)

Two-category result.

[21] CNN with
Attention
network &
U-net

8.1 M 35 EL 99.3% Considers hybrid loss and
incorporating CNN model with
other networks

[22] CNN
(LeNet)

0.06 M 7 EL 99% Outperforms GoogleNet

[29] R-CNN &
R-FCN

- - EL 98.3% The strategy of hard negative
sample mining was used.

[31] CNN 34.1 M 8 EL F-measure 98.46% Fuses steerable evidence filter
(SEF) with the function of
structural decoupling to filter the
input images.

[32] CNN
(AlexNet)

61 M 25 RGB 93.3%. Two-category result.

[33] U-Net &
Attention
mechanism

- 28 EL IOU (69%) DICE
(54%)

Solves the All black issue.

[34] CNN
(ResNet50)

23.5 M 51 EL 98.59% Used on-field low-resolution EL
images.

[35] CNN
(U-Net)

- - EL & C-
DCR

F1-score is (89%)
for dark saturation
current density (j0)
(82%) for series
resistance (Rs)

Introduces smart labeling of
defects.

[37] CNN
(ResNet-
50)

5.4 M 7 EL 91% Examines the effect of different
parameterizations of the
normalized Lp layer on the
segmentation performance

[36] YOLOv3 - 53 RGB 94.5% Two-category result.

image types. Regarding the detection of the defects, many
studies evaluated the cell cracking faults. This is due to
the remarkable presence of the defaults in the used
images, which enable the different deep learning
applications to recognize them. Overall, most of the
models achieve an accuracy rate greater than 90%.

However, more than 60% of the reviewed models can do
two-class classification (Binary classification) to
determine either the case is faulty or healthy. It was
noticed that the models examining the multi-class
classification are less than binary classification.
Moreover, the complexity of the two-class classification
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Table 4: Studies of detecting the defects of solar cells using hybrid models.

Study Objective Model
type

No. of
layers

No. of
Para-
meters

Approach Fault Performance

[23] Postprocess VGG 21 - SVM Glass breakage,
soiling,
delamination,
discoloration, snail
tracks

90.2% (Tow-class
classification) 76.9% (Glass
breakage) 84.4% (Soiling)
78.9% (Delamination) 77.3%
(Discoloration) 77.8% (Snail
tracks)

[24] Postprocess CNN 9 25.7 M SVM Glass breakage,
soiling, corrosion,
delamination,
discoloration, snail
trail

98.1% (average) 96% (glass
breakage) 96% (soiling) 97%
(corrosion) 98% (delamination)
100% (discoloration) 98%
(snail trail)

[25] Extract
features

ResNet 50 - DnCNN Soiling RMSE: 0.69, F-score: 90%

[26] Extract
features
and pre-
process

GoogLeNet 21 6 M PCA Crack, scratch,
broken edge, hot
spot, large area
damage, surface
impurity

99.7% (average)

[27] Extract
features

CNN 9 0.37 M Sliding
window
scan

Fault cell 88.4% (average)

[28] Postprocess VGG-16 21 134.2 M LRMR Cracks F-score :46.8%
[30] Extract

features
CNN 120.87M BAFPN Cracks, fingerprint, black

core
Cracks (73.16%), fingerprint
(91.3%), black core (100%)

[48] Extract
features

CNN - - ML Bing 93.7%

models requires more computational resources.
Regarding the auto-detection of solar defects, there is still
a need for more consolidations via tests to enhance
precision and robustness.

5 Hybrid models

The multi-scale identification of defects in the
electroluminescence of solar cells is challenging. Many
researchers have developed various hybrid models [23,24,
27,48] to address this problem. In [30], the authors
developed a new attention feature pyramid network
(BAFPN) for solar defect detection. The BAFPN is an
integration of the region proposal network (RPN) and
FPN. In their experiments, 3629 images were included, of
which 2129 were detectable. The proposed methods have
shown very satisfactory results, indicating that both deep
learning and hybrid models have many advantages and
offer a practical solution in solar fault detections.

In light of the shortcomings that were highlighted
within the current line of industrial production, the
substantial detection errors and the limited amount of data
were reported. Du et al. [26] proposed a deep CNN to
enhance silicon photovoltaic (Si-PV) detection efficiency.
In this work, eddy current thermography (ECT) is utilized

in order to acquire the infrared thermography (IRT) of
various solar cell defects. Other image classifier models
such as GoogleNet, VGG-16, and LeNet-5 were also used
to detect and classify Si-PV cell faults. Another novel
method of detecting microcracks in solar cells through
merging the long and short terms features is developed by
[28]. In this work, the short-term features represent
current knowledge learned from a series of image stacked
denoising auto-encoder (SDAE). In contrast, the
long-term features represent previous knowledge from a
series of natural images that an individual see through
CNNs. This work concludes that such a combination of
deep features can lead to a better performance in
detecting different types of microcracks on the surface of
solar cells compared with other methods.

Dust on solar panels is another major problem that
can lead to degrading performance, eruption, corrosion,
and various defects. Therefore, a new CNNs denoising
based on the status of dust accumulation of solar was
proposed by [25]. The work concluded that among all the
comparisons between various combinations of DnCNNs
and VGG-16, ResNet-50, ResNet models, AlexNet, the
DnCNN with ResNet-50 model would produce a
real-time evaluation of dust accumulation levels. It was
also stated that this proposed dust evaluation method
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Fig. 4: CNN model developed by [21].

could enhance the accuracy of neural network structure
and image quality.

Table 4 summarizes all the work that has used
hybridized models for detecting different types of faults
regarding the solar. Data such as the main objective, the
deep learning model, the approach, the targeted solar
defects, and the detection performance were extracted
(see table 4).

6 Conclusion

This study presented a review of the deep learning
methods applied in solar fault detection. Across all the
deep learning methods, it was observed that all the
methods are capable of detecting visible defects such as
cracks, discoloration, and delamination. In terms of the
deep learning approach performance, most of the models
achieved good results for classification with accuracy
exceeding 90%. However, the other models’ performance
was lower due to the inappropriate structure of the models
or to their ability to separate the input features. However,
it should be noted that the results of the hybrid modes
showed a better performance than the standard models,
and that also depends on the incorporated methods. The
data augmentation operations approved in most of the
studies their ability to improve the models, and the most
commonly used procedures are flip and rotation.
Regarding the type of targeted faults, it should be noted
that cracks in their different forms are the most common
fault targets in the reviewed studies. However, other faults
were covered (e.g., paste spot, dirtiness, interconnection,
soiling, and shunt).

Concerning applied deep learning models, it was
noted that more than 60% of the applications were able to
handle two-class classification by identifying whether the
module is defective or healthy. However, other studies can
do the multi-class classification, but their performance is
lower than the two-class applications in terms of
accuracy. This indicates the complexity of proper solar
fault detections through image processing. In addition,
some models are very complex and require more
computational resources. Consequently, it is
recommended to develop models with suitable
architecture and less complexity, as discusses in Section
4. Finally, considering the real-time solar faults detection,
the deep learning models showed a good performance,
especially for large-scale solar farms. However, it still
requires further enhancement in precision and robustness.
For future work, it is recommended to explore various
deep learning models with different input features and to
investigate other hybrid model structures.
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[11] M. Köntges et al., “Review of failures of photovoltaic
modules,” Technical Report UNSPECIFIED, 2014. http://
repository.supsi.ch/id/eprint/9645

[12] M. W. Akram et al., “CNN based automatic detection of
photovoltaic cell defects in electroluminescence images,”
Energy, 2019, 189, pp.116319.

[13] G. Li et al., “Thermo-mechanical behavior assessment
of smart wire connected and busbarPV modules during
production, transportation, and subsequent field loading
stages,” Energy, 2019, 168, pp.931-945.

[14] A. Bartler, L. Mauch, B. Yang, M. Reuter, and L.
Stoicescu, “Automated Detection of Solar Cell Defects with
Deep Learning,” in 2018 26th European Signal Processing
Conference (EUSIPCO), 2018, pp. 2035–2039.

[15] B. Ni, P. Zou, Q. Li, and Y. Chen, “Intelligent Defect
Detection Method of Photovoltaic Modules Based on
Deep Learning,” in 2018 International Conference on
Transportation & Logistics, Information & Communication,
Smart City (TLICSC 2018), 2018.

[16] M. Sun, S. Lv, X. Zhao, R. Li, W. Zhang, and X.
Zhang, “Defect detection of photovoltaic modules based on
convolutional neural network,” in International Conference
on Machine Learning and Intelligent Communications, 2017,
pp. 122–132.

[17] H. Chen, Y. Pang, Q. Hu, and K. Liu, “Solar cell surface
defect inspection based on multispectral convolutional neural
network,” J. Intell. Manuf., 2020, 31, pp. 453–468.

[18] S. Deitsch et al., “Automatic classification of defective
photovoltaic module cells in electroluminescence images,”
Sol. Energy, 2019, 185, pp. 455–468.

[19] A. M. Karimi et al., “Automated pipeline for photovoltaic
module electroluminescence image processing and
degradation feature classification,” IEEE J. Photovoltaics,
2019, 9, pp.1324–1335.

[20] W. Tang, Q. Yang, K. Xiong, and W. Yan, “Deep learning
based automatic defect identification of photovoltaic module
using electroluminescence images,” Sol. Energy, 2020, 201,
pp. 453–460.

[21] M. R. U. Rahman and H. Chen, “Defects Inspection
in Polycrystalline Solar Cells Electroluminescence Images
Using Deep Learning,” IEEE Access, 2020, 8, pp.
40547–40558.

[22] P. Banda and L. Barnard, “A deep learning approach to
photovoltaic cell defect classification,” in Proceedings of
the Annual Conference of the South African Institute of
Computer Scientists and Information Technologists, 2018,
pp. 215–221.

[23] X. Li, J. Wang, and Z. Chen, “Intelligent fault pattern
recognition of aerial photovoltaic module images based on
deep learning technique,” J. Syst. Cybern. Inf, 2018, 16, pp.
67–71.

[24] X. Li, W. Li, Q. Yang, W. Yan, and A. Y. Zomaya,
“Building an Online Defect Detection System for Large-
scale Photovoltaic Plants,” in Proceedings of the 6th ACM
International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation, 2019, pp. 253–262.

[25] Y. Tan, K. Liao, X. Bai, C. Deng, Z. Zhao, and B.
Zhao, “Denoising Convolutional Neural Networks Based
Dust Accumulation Status Evaluation of Photovoltaic Panel,”
in 2019 IEEE International Conference on Energy Internet
(ICEI), 2019, pp. 560–566.

[26] B. Du, Y. He, J. Duan, and Y. Zhang, “Intelligent
classification of silicon photovoltaic cell defects based on
eddy current thermography and convolution neural network,”
IEEE Trans. Ind. Informatics, 2019, 16(10), pp. 6242-6251.

[27] J. Balzategui et al., “Semi-automatic quality inspection
of solar cell based on convolutional neural networks,” in
2019 24th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), 2019, pp.
529–535.

[28] X. Qian, J. Li, J. Cao, Y. Wu, and W. Wang, “Micro-cracks
detection of solar cells surface via combing short-term and
long-term deep features,” Neural Networks, 2020, 127, pp.
132-140..

c© 2021 NSP
Natural Sciences Publishing Cor.

http://repository.supsi.ch/id/eprint/9645
http://repository.supsi.ch/id/eprint/9645


Inf. Sci. Lett. 10, No. 2, 323-331 (2021) / www.naturalspublishing.com/Journals.asp 331

[29] X. Zhang, Y. Hao, H. Shangguan, P. Zhang, and A.
Wang, “Detection of surface defects on solar cells by fusing
Multi-channel convolution neural networks,” Infrared Phys.
Technol., 2020, 108, pp. 103334.

[30] B. Su, H. Chen, and Z. Zhou, “BAF-Detector: An Efficient
CNN-Based Detector for Photovoltaic Solar Cell Defect
Detection,” arXiv Prepr. arXiv2012.10631, 2020.

[31] H. Chen, S. Wang, and J. Xing, “Detection of Cracks
in Electroluminescence Images by Fusing Deep Learning
and Structural Decoupling,” in 2019 Chinese Automation
Congress (CAC), 2019, pp. 2565–2569.

[32] I. Zyout and A. Oatawneh, “Detection of PV Solar
Panel Surface Defects using Transfer Learning of the
Deep Convolutional Neural Networks,” in 2020 Advances
in Science and Engineering Technology International
Conferences (ASET), pp. 1–4.

[33] Y. Jiang, C. Zhao, W. Ding, L. Hong, and Q. Shen,
“Attention M-net for Automatic Pixel-Level Micro-
crack Detection of Photovoltaic Module Cells in
Electroluminescence Images,” in 2020 IEEE 9th Data
Driven Control and Learning Systems Conference (DDCLS),
2020, pp. 1415–1421.

[34] A. Chindarkkar, S. Priyadarshi, N. S. Shiradkar, A.
Kottantharayil, and R. Velmurugan, “Deep Learning Based
Detection of Cracks in Electroluminescence Images of
Fielded PV modules,” in 2020 47th IEEE Photovoltaic
Specialists Conference (PVSC), 2020, pp. 1612–1616.

[35] P. Kunze et al., “EFFICIENT DEPLOYMENT OF DEEP
NEURAL NETWORKS FOR QUALITY INSPECTION OF
SOLAR CELLS USING SMART LABELING,” in Presented
at the 37th European PV Solar Energy Conference and
Exhibition, 2020, vol. 7, p. 11.

[36] J. Wang, B. Zhao, and X. Yao, “PV Abnormal Shading
Detection Based on Convolutional Neural Network,” in 2020
Chinese Control And Decision Conference (CCDC), 2020,
pp. 1580–1583.

[37] M. Mayr, M. Hoffmann, A. Maier, and V. Christlein,
“Weakly Supervised Segmentation of Cracks on Solar
Cells Using Normalized Lp Norm,” in 2019 IEEE
International Conference on Image Processing (ICIP),
2019, pp. 1885–1889.

[38] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep
learning, MIT press Cambridge, 2016.

[39] A. Fawzi, H. Samulowitz, D. Turaga, and P. Frossard,
“Adaptive data augmentation for image classification,” in
2016 IEEE International Conference on Image Processing
(ICIP), 2016, pp. 3688–3692.

[40] M. Koziarski and B. Cyganek, “Image recognition with deep
neural networks in presence of noise&nbsp;– Dealing with
and taking advantage of distortions,” Integr. Comput. Aided.
Eng., 2017, 24, pp. 337–349.

[41] Y. Wu, Q. Lan, and Y. Sun, “Application of BP neural
network fault diagnosis in solar photovoltaic system,” in 2009
International conference on Mechatronics and Automation,
2009, pp. 2581–2585.

[42] K.-H. Chao, C.-T. Chen, M.-H. Wang, and C.-F. Wu, “A
novel fault diagnosis method based-on modified neural
networks for photovoltaic systems,” in International
Conference in Swarm Intelligence, 2010, pp. 531–539.

[43] W. Chine and A. Mellit, “ANN-based fault diagnosis
technique for photovoltaic stings,” in 2017 5th International

Conference on Electrical Engineering-Boumerdes (ICEE-B),
2017, pp. 1–4.

[44] S. Laamami, M. Benhamed, and L. Sbita, “Artificial
neural network-based fault detection and classification for
photovoltaic system,” in 2017 International Conference on
Green Energy Conversion Systems (GECS), 2017, pp. 1–7.

[45] E. Garoudja, A. Chouder, K. Kara, and S. Silvestre, “An
enhanced machine learning based approach for failures
detection and diagnosis of PV systems,” Energy Convers.
Manag., 2017, 151, pp. 496–513.

[46] N. Sabri and A. Tlemçani, “Faults diagnosis in Stand-
Alone photovoltaic system using Artificial Neural Network,”
in 2018 6th International Conference on Control Engineering
& Information Technology (CEIT), 2018, pp. 1–6.

[47] W. Hou, X. Tao, and D. Xu, “Combining Prior Knowledge
With CNN for Weak Scratch Inspection of Optical
Components,” IEEE Trans. Instrum. Meas., 2020, 70, pp.
1–11.

[48] Y. Buratti, A. Sowmya, R. Evans, T. Trupke, and Z. Hameiri,
“End-of-Line Binning of Full and Half-Cut Cells using Deep
Learning on Electroluminescence Images,” in 2020 47th
IEEE Photovoltaic Specialists Conference (PVSC), 2020, pp.
133–138.

c© 2021 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Faults categories of solar cells in EL images
	Data augmentation operations
	Deep learning models
	Hybrid models
	Conclusion

