

http://dx.doi.org/10.18576/isl/100211

Fixed Point Results of Contractive Mappings with Altering Distance Functions in Ordered *b*-Metric Spaces

K.Kalyani¹, N.Seshagiri Rao^{2,*} and Belay Mitiku²

¹Vignan's Foundation for Science, Technology & Research, Vadlamudi-522213, Andhra Pradesh, India
²Department of Applied Mathematics, School of Applied Natural Sciences, Adama Science and Technology University, Post Box No.1888, Adama, Ethiopia

Received: 2 Feb. 2021, Revised: 2 Mar. 2021, Accepted: 17 Apr. 2021 Published online: 1 May 2021

Abstract: We explore the existence of a fixed point as well as the uniqueness of a mapping in an ordered *b*-metric space using a generalized $(\check{\psi}, \hat{\eta})$ -weak contraction. In addition, some results are posed on a coincidence point and a coupled coincidence point of two mappings under the same contraction condition. These findings generalize and build on a few recent studies in the literature. At the end, we provided some examples to back up our findings.

Keywords: $(\check{\psi}, \hat{\eta})$ -weak contraction, fixed points, coincidence and coupled coincidence points, ordered *b*-metric space.

1 Introduction

In a wide range of pure and applied mathematics problems, fixed points of mappings that satisfy contractive conditions in extended metric spaces are extremely useful. First, Ran and Reuings [31] described the existence of fixed points in this direction for certain maps in ordered metric space and exhibited matrix linear equations applications. Following that, Nieto et al. [28, 29] expanded the result of [31] to nondecreasing mappings and used their findings to obtain differential equations solutions. Agarwal et al. [4] and O'Regan et al. [30] examine the influence of generalized contractions in ordered spaces at the same time. Bhaskar and Lakshmikantham [11] first developed coupled fixed point theory for some maps, then used the results to find a unique solution to periodic boundary value problems. Following that, Lakshmikantham and Cirić [25], which were the extensions of [11] involving monotone property to a function in the space, pioneered the idea of coupled coincidence, common fixed point results. [15, 16, 17, 19, 21,24,26,35,36,37,38] provide additional information on coupled fixed point effects in various spaces under various contractive conditions.

A *b*-metric space is one of several generalizations of a standard metric space proposed by Bakhtin in his work [9], and widely used by Czerwik in his work [13, 14].

* Corresponding author e-mail: seshu.namana@gmail.com

Following that, a lot of progress was made in acquiring the results of fixed points to single valued as well as multi-valued operators in the space, as evidenced by [1,2, 3,5,6,7,8,10,18,20,22,23,27,32,33,34,39].

We demonstrate some fixed points results for mappings in ordered *b*-metric space that satisfy a generalized weak contraction in this paper. The results from [10, 11, 12, 19, 21, 25, 34] are expanded here as well as some examples noted to support the findings at the end of our work.

2 Preliminaries

Definition 21[14] A *b*-metric is a map $\eth : \mathscr{C} \times \mathscr{C} \to [0, +\infty)$ that satisfies the properties below in \mathscr{C} for all ε, \wp, ζ and some $s \ge 1$,

 $\begin{array}{l} (a).\eth(\varepsilon,\wp)=0 \text{ if and if } \varepsilon=\wp.\\ (b).\eth(\varepsilon,\wp)=\eth(\wp,\varepsilon).\\ (c).\eth(\varepsilon,\wp)\leq \mathrm{s}\,(\eth(\varepsilon,\zeta)+\eth(\zeta,\wp)). \end{array} \end{array}$

A *b*-metric space is specified as (\mathcal{E}, \eth, s) .

Definition 22[10, 14] In a b-metric space,

(1).if $\eth(\varepsilon_n, \varepsilon) \to 0$ as $n \to +\infty$, $\{\varepsilon_n\}$ is said to be convergent to ε .

- (2).*if* $\mathfrak{d}(\varepsilon_n, \varepsilon_m) \to 0$ *is the same as* $n, m \to +\infty$, *then* $\{\varepsilon_n\}$ *is a Cauchy sequence.*
- (3).*if* (\mathcal{E}, \eth, s) *is a complete b-metric space, then any Cauchy sequence is convergent.*

Definition 23[14, 34, 38] If \mathscr{C} is a partial ordered set with respect to an ordered relation \preceq and \eth is a metric on it, then $(\mathscr{C},\eth,\preceq)$ is a partially ordered metric space. $(\mathscr{C},\eth,\preceq)$) is a complete partially ordered b-metric space, despite the fact that \eth is complete.

Definition 24[34, 38] If $\Re(\varepsilon) \preceq \Re(\wp)$ for all $\varepsilon, \wp \in \mathcal{E}$ with $\varepsilon \preceq \wp$, the map is called a monotone non-decreasing.

Definition 25[12] Let $\hbar, \mathcal{F} : \mathcal{A} \to \mathcal{A}$ be two mappings, and $\mathcal{A} \neq \emptyset \subseteq \mathscr{C}$ be one. If $\hbar \varepsilon = \mathcal{F} \varepsilon = \varepsilon$ ($\hbar \varepsilon = \mathcal{F} \varepsilon$) for $\varepsilon \in \mathcal{A}$, then ε is a common fixed point (coincidence point) of \hbar, \mathcal{F} .

Definition 26[12] If $h \mathcal{F} \varepsilon = \mathcal{F} h \varepsilon$ for all $\varepsilon \in A$, then h and \mathcal{F} are commuting.

Definition 27[12, 34] The two maps \hbar , \mathscr{F} are compatible if $\lim_{n \to +\infty} d(\mathscr{F}\hbar\varepsilon_n, \hbar\mathscr{F}\varepsilon_n) = 0$ for each sequence $\{\varepsilon_n\} \subseteq \mathscr{E}$ so that $\lim_{n \to +\infty} \hbar\varepsilon_n = \lim_{n \to +\infty} \mathscr{F}\varepsilon_n = \mu$, for some $\mu \in \mathscr{A}$.

Definition 28[12, 34] If $\hbar \varepsilon = \mathcal{F}\varepsilon$ for $\varepsilon \in \mathcal{A}$, then $\hbar \mathcal{F}\varepsilon = \mathcal{F}\hbar\varepsilon$, the mappings \hbar and \mathcal{F} are weakly compatible.

Definition 29[34] If $\hbar \varepsilon \leq \hbar \wp$ implies $\mathcal{F}\varepsilon \leq \mathcal{F}\wp$ for any $\varepsilon, \wp \in \mathcal{E}$, then a map \mathcal{F} is a monotone \hbar -non-decreasing.

Definition 210[11] Let $\mathcal{F} : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ and $\hbar : \mathcal{C} \to \mathcal{C}$ are two mappings,

- (a).a point $(\varepsilon, \wp) \in \mathscr{C} \times \mathscr{C}$ is coupled coincidence point of \mathscr{I} , \hbar if $\mathscr{I}(\varepsilon, \wp) = \hbar \varepsilon$ and, $\mathscr{I}(\wp, \varepsilon) = \hbar \wp$. In particular, if \hbar is an identity map, then (ε, \wp) is a coupled fixed point of \mathscr{I} .
- (b).an element $\varepsilon \in \mathscr{C}$ is a common fixed point of \mathscr{I} , \hbar if $\mathscr{I}(\varepsilon, \varepsilon) = \hbar \varepsilon = \varepsilon$.
- (c).if $\mathcal{F}(\hbar\epsilon, \hbar\wp) = \hbar(\mathcal{F}\epsilon, \mathcal{F}\wp)$ for all $\epsilon, \wp \in \mathcal{E}$, then \mathcal{F} and \hbar are commuting each other.
- (d). If any two elements in a set $\mathcal{A} \subseteq \mathcal{C}$ are comparable, the set is well ordered.

Definition 211*A self map* $\check{\Psi}$ *on* $[0, +\infty)$ *that meets the conditions below is known as an altering distance function:*

(a). $\check{\Psi}$ is a non-decreasing and continuous function. (b). $\check{\Psi}(\ell) = 0$ iff $\ell = 0$.

As seen above, the symbol $\hat{\Phi}$ represents the set of all altering distance functions.

Similarly,

 $\hat{\Psi}: \{\hat{\eta} | \hat{\eta} \text{ is a lower semi} - \text{continuous self mapping on } [0, +\infty) \text{ and, } \hat{\eta}(\ell) = 0 \text{ iff } \ell = 0 \}.$

Lemma 212[27] Let $\hbar : \mathcal{E} \to \mathcal{E}$ be a mapping, and $\mathcal{E} \neq \emptyset$. Then $\mathcal{M} \subseteq \mathcal{E}$ occurs, resulting in $\hbar \mathcal{M} = \hbar \mathcal{E}$, where $\hbar : \mathcal{M} \to \mathcal{E}$ is one-to-one. **Lemma 213**[2] Let $\{\varepsilon_n\}$ and $\{\mathscr{D}_n\}$ be two sequences and *b*-convergent to ε and \mathscr{D} in a *b*-metric space $(\mathscr{E}, \eth, \mathbf{s}, \preceq)$, where $\mathbf{s} > 1$. Then

$$\begin{split} \frac{1}{s^2} \eth(\varepsilon, \wp) &\leq \liminf_{n \to +\infty} \eth(\varepsilon_n, \wp_n) \leq \limsup_{n \to +\infty} \sup \eth(\varepsilon_n, \wp_n) \\ &\leq s^2 \eth(\varepsilon, \wp). \end{split}$$

In particular, if $\varepsilon = \wp$, then $\lim_{n \to +\infty} \eth(\varepsilon_n, \wp_n) = 0$. In addition, for every $\tau \in \mathscr{C}$, we get

$$\frac{1}{s}\eth(\varepsilon,\tau) \leq \lim_{n \to +\infty} \inf \eth(\varepsilon_n,\tau) \leq \lim_{n \to +\infty} \sup \eth(\varepsilon_n,\tau) \leq sd(\varepsilon,\tau).$$

3 Main Results

Let's get started with the theorem below.

Theorem 31Suppose $(\mathcal{C}, \eth, \mathsf{s}, \preceq)$ is a complete partially ordered b-metric space with $\mathsf{s} \ge 1$. A map $\mathcal{F} : \mathcal{C} \to \mathcal{C}$ is non-decreasing and continuous with respect to \preceq . If $\varepsilon_0 \in \mathcal{C}$ is such that $\varepsilon_0 \preceq \mathcal{F} \varepsilon_0$ and the following contraction condition is fulfilled, then \mathcal{F} has a fixed point in \mathcal{C} .

$$\check{\psi}(s\eth(\mathscr{F}\varepsilon,\mathscr{F}\wp)) \leq \check{\psi}(\mathscr{P}(\varepsilon,\wp)) - \hat{\eta}(\mathscr{P}(\varepsilon,\wp))$$
(1)

for $\check{\Psi} \in \hat{\Phi}, \hat{\eta} \in \hat{\Psi}$ and for any $\varepsilon, \wp \in \mathscr{C}$ so that $\varepsilon \preceq \wp$ and

$$\mathcal{P}(\varepsilon, \wp) = \max\{\frac{\eth(\wp, \mathscr{F}_{\wp}) [1 + \eth(\varepsilon, \mathscr{F}_{\varepsilon})]}{1 + \eth(\varepsilon, \wp)}, \frac{\eth(\varepsilon, \mathscr{F}_{\varepsilon}) \eth(\wp, \mathscr{F}_{\wp})}{1 + \eth(\varepsilon, \wp)}, (2) \\ \frac{\eth(\varepsilon, \mathscr{F}_{\varepsilon}) \eth(\wp, \mathscr{F}_{\wp})}{1 + \eth(\mathscr{F}_{\varepsilon}, \mathscr{F}_{\wp})}, \eth(\varepsilon, \wp)\}.$$

*Proof.*For some $\varepsilon_0 \in \mathscr{C}$ with $\mathscr{I}\varepsilon_0 = \varepsilon_0$, then the result is trivial. Assuming that $\varepsilon_0 \prec \mathscr{I}\varepsilon_0$, we describe a sequence $\{\varepsilon_n\} \subset \mathscr{C}$ by $\varepsilon_{n+1} = \mathscr{I}\varepsilon_n$ for all $n \ge 0$. However, we can deduce the following as \mathscr{I} is non-decreasing,

$$\varepsilon_0 \prec \mathscr{I} \varepsilon_0 = \varepsilon_1 \preceq \mathscr{I} \varepsilon_1 = \varepsilon_2 \preceq \dots$$

$$\preceq \mathscr{I} \varepsilon_{n-1} = \varepsilon_n \preceq \mathscr{I} \varepsilon_n = \varepsilon_{n+1} \preceq \dots .$$
(3)

If $\varepsilon_{n_0} = \varepsilon_{n_0+1}$ for $n_0 \in \mathbb{N}$, then ε_{n_0} is a fixed point of \mathscr{F} from (3). Otherwise, for all $n \ge 1$, $\varepsilon_n \ne \varepsilon_{n+1}$. For $n \ge 1$, let $D_n = \eth(\varepsilon_{n+1}, \varepsilon_n)$ be used. We know that for every $n \ge 1$, $\varepsilon_{n-1} \prec \varepsilon_n$ and, the equation (1) becomes

$$\begin{split} \check{\psi}(D_n) &= \check{\psi}(\eth(\varepsilon_n, \varepsilon_{n+1})) = \check{\psi}(\eth(\mathscr{I}\varepsilon_{n-1}, \mathscr{I}\varepsilon_n)) \\ &\leq \check{\psi}(s\eth(\mathscr{I}\varepsilon_{n-1}, \mathscr{I}\varepsilon_n)) \\ &\leq \check{\psi}(\mathscr{P}(\varepsilon_{n-1}, \varepsilon_n)) \\ &- \hat{\eta}(\mathscr{P}(\varepsilon_{n-1}, \varepsilon_n)). \end{split}$$
(4)

From (4), we get

$$\eth(\boldsymbol{\varepsilon}_{n},\boldsymbol{\varepsilon}_{n+1}) = \eth(\mathscr{I}\boldsymbol{\varepsilon}_{n-1},\mathscr{I}\boldsymbol{\varepsilon}_{n}) \leq \frac{1}{\jmath}\mathscr{P}(\boldsymbol{\varepsilon}_{n-1},\boldsymbol{\varepsilon}_{n}), \quad (5)$$

where

- -

.

$$\mathcal{P}(\varepsilon_{n-1},\varepsilon_n) = \max\{\frac{\eth(\varepsilon_n,\mathscr{F}\varepsilon_n)\left[1 + \eth(\varepsilon_{n-1},\mathscr{F}\varepsilon_{n-1})\right]}{1 + \eth(\varepsilon_{n-1},\varepsilon_n)}, \\ \frac{\eth(\varepsilon_{n-1},\mathscr{F}\varepsilon_{n-1})\eth(\varepsilon_n,\mathscr{F}\varepsilon_n)}{1 + \eth(\varepsilon_{n-1},\varepsilon_n)}, \\ \frac{\eth(\varepsilon_{n-1},\mathscr{F}\varepsilon_{n-1})\eth(\varepsilon_n,\mathscr{F}\varepsilon_n)}{1 + \eth(\mathscr{F}\varepsilon_{n-1},\mathscr{F}\varepsilon_n)}, \eth(\varepsilon_{n-1},\varepsilon_n)\} \\ \leq \max\{\eth(\varepsilon_n,\varepsilon_{n+1}),\eth(\varepsilon_{n-1},\varepsilon_n)\} \\ \leq \max\{D_n,D_{n-1}\}.$$
(6)

If $\max\{D_n, D_{n-1}\} = D_n$ for certain $n \ge 1$, equation (5) is then accompanied by

$$\eth(\varepsilon_n, \varepsilon_{n+1}) \leq \frac{1}{\imath} \eth(\varepsilon_n, \varepsilon_{n+1})$$

this is a contradiction. Thus, $\max\{D_n, D_{n-1}\} = D_{n-1}$ for $n \ge 1$. Hence, equation (5) becomes

$$\mathfrak{d}(\boldsymbol{\varepsilon}_n, \boldsymbol{\varepsilon}_{n+1}) \leq \frac{1}{\mathfrak{z}}\mathfrak{d}(\boldsymbol{\varepsilon}_n, \boldsymbol{\varepsilon}_{n-1}),$$

Since $\frac{1}{4} \in (0,1)$ then $\{\varepsilon_n\}$ is a Cauchy sequence from [1,6, 8,18]. Also, the completeness of \mathscr{E} gives that $\varepsilon_n \to \mu \in \mathscr{E}$. We may also deduce the following from \mathcal{F} 's continuity:

$$\mathscr{I}\mu = \mathscr{I}(\lim_{n \to +\infty} \varepsilon_n) = \lim_{n \to +\infty} \mathscr{I}\varepsilon_n = \lim_{n \to +\infty} \varepsilon_{n+1} = \mu.$$
 (7)

As a result, \mathcal{F} in \mathcal{E} has a fixed point μ .

The continuity assumption on $\mathcal I$ is extracted from Theorem 31 and used to derive the following theorem.

Theorem 32In Theorem 31, if *C* satisfies below condition, *then I has a fixed point.*

If a non-decreasing sequence
$$\{\varepsilon_n\} \subseteq \mathscr{C}$$
 and $\varepsilon_n \to \sigma$
then $\varepsilon_n \leq \sigma$, for each $n \in \mathbb{N}$, i.e., $\sigma = \sup \varepsilon_n$. (8)

() = cc

- \1

Proof. We have an increasing sequence $\{\varepsilon_n\} \subseteq \mathscr{E}$ that eventually converges to some $\sigma \in \mathscr{E}$ as a result of Theorem 31. But by the hypotheses for all $n, \varepsilon_n \leq \sigma$, which means that $\sigma = \sup \varepsilon_n$.

We can now assert that σ is a fixed point of \mathcal{I} . Assume $\mathcal{F}\sigma\neq\sigma$ is not true. Let

$$\mathcal{P}(\varepsilon_{n},\sigma) = \max\{\frac{\eth(\sigma,\mathscr{I}\sigma)\left[1+\eth(\varepsilon_{n},\mathscr{I}\varepsilon_{n})\right]}{1+\eth(\varepsilon_{n},\sigma)}, \frac{\eth(\varepsilon_{n},\mathscr{I}\varepsilon_{n})\,\eth(\sigma,\mathscr{I}\sigma)}{1+\eth(\varepsilon_{n},\sigma)}, \qquad (9)$$
$$\frac{\eth(\varepsilon_{n},\mathscr{I}\varepsilon_{n})\,\eth(\sigma,\mathscr{I}\sigma)}{1+\eth(\mathscr{I}\varepsilon_{n},\mathscr{I}\sigma)}, \eth(\varepsilon_{n},\sigma)\},$$

then taking limit as $n \to +\infty$ in the equation (9) and making use of $\lim \varepsilon_n = \sigma$, we get

$$\lim_{n \to +\infty} \mathscr{P}(\varepsilon_n, \sigma) = \max\{\eth(\sigma, \mathscr{F}\sigma), 0\} = \eth(\sigma, \mathscr{F}\sigma), (10)$$

Since, $\varepsilon_n \leq \sigma$ for each *n*, then we obtain the following from equations (1) and (9)

$$\begin{split} \check{\psi}(\eth(\varepsilon_{n+1},\mathscr{I}\sigma)) &= \check{\psi}(\eth(\mathscr{I}\varepsilon_n,\mathscr{I}\sigma)) \leq \check{\psi}(s\eth(\mathscr{I}\varepsilon_n,\mathscr{I}\sigma)) \\ &\leq \check{\psi}(\mathscr{P}(\varepsilon_n,\sigma)) - \hat{\eta}(\mathscr{P}(\varepsilon_n,\sigma)). \end{split}$$
(11)

Take limit as $n \to +\infty$ in (11) and from equation (10) as well as the properties of $\check{\Psi}$, $\hat{\eta}$, we have

$$\begin{split} \check{\psi}(\eth(\sigma,\mathscr{I}\sigma)) &\leq \check{\psi}(\eth(\sigma,\mathscr{I}\sigma)) - \hat{\eta}(\eth(\sigma,\mathscr{I}\sigma)) \\ &\quad < \check{\psi}(\eth(\sigma,\mathscr{I}\sigma)). \end{split} \tag{12}$$

This is a contradiction to $\mathcal{F}\sigma \neq \sigma$. Hence, $\mathcal{F}\sigma = \sigma$.

In the above theorems, the fixed point is unique if $\mathcal E$ meets the following condition.

There is an σ in $\mathscr E$ that is comparable to ε and \wp (13)for each $\varepsilon, \wp \in \mathscr{C}$.

Theorem 33If \mathcal{E} assumes the condition (13) in Theorem 31 & 32, then \mathcal{F} has a unique fixed point in \mathcal{E} .

Proof. Theorems 31 & 32 show that the set of fixed points of \mathscr{I} is nonempty. Assume $\varepsilon^* \neq \wp^*$ are fixed points of \mathscr{I} to ensure uniqueness. Following that,

$$\begin{split} \check{\psi}(\eth(\mathscr{I}\varepsilon^*,\mathscr{I}\wp^*)) &\leq \check{\psi}(s\eth(\mathscr{I}\varepsilon^*,\mathscr{I}\wp^*)) \\ &\leq \check{\psi}(\mathscr{P}(\varepsilon^*,\wp^*)) - \hat{\eta}(\mathscr{P}(\varepsilon^*,\wp^*)) \end{split}$$
(14)

where

$$\mathcal{P}(\boldsymbol{\varepsilon}^{*},\boldsymbol{\wp}^{*}) = \max\{\frac{\eth(\boldsymbol{\wp}^{*},\mathcal{F}\boldsymbol{\wp}^{*})\left[1 + \eth(\boldsymbol{\varepsilon}^{*},\mathcal{F}\boldsymbol{\varepsilon}^{*})\right]}{1 + \eth(\boldsymbol{\varepsilon}^{*},\boldsymbol{\wp}^{*})}, \frac{\eth(\boldsymbol{\varepsilon}^{*},\mathcal{F}\boldsymbol{\varepsilon}^{*})\,\eth(\boldsymbol{\wp}^{*},\mathcal{F}\boldsymbol{\wp}^{*})}{1 + \eth(\boldsymbol{\varepsilon}^{*},\boldsymbol{\wp}^{*})}, \frac{\eth(\boldsymbol{\varepsilon}^{*},\mathcal{F}\boldsymbol{\varepsilon}^{*})\,\eth(\boldsymbol{\wp}^{*},\mathcal{F}\boldsymbol{\wp}^{*})}{1 + \eth(\mathcal{F}\boldsymbol{\varepsilon}^{*},\mathcal{F}\boldsymbol{\wp}^{*})}, \eth(\boldsymbol{\varepsilon}^{*},\boldsymbol{\wp}^{*})\}.$$
(15)

Therefore, from equations (14) and (15), we have

$$\begin{split} \check{\Psi}(\eth(\varepsilon^*, \mathscr{O}^*)) = \check{\Psi}(\eth(\mathscr{F}\varepsilon^*, \mathscr{F}\mathscr{O}^*)) \\ &\leq \check{\Psi}(\eth(\varepsilon^*, \mathscr{O}^*)) - \hat{\eta}(\eth(\varepsilon^*, \mathscr{O}^*)) \\ &< \check{\Psi}(\eth(\varepsilon^*, \mathscr{O}^*)), \end{split}$$
(16)

this contradicts to $\varepsilon^* \neq \wp^*$. Hence, $\varepsilon^* = \wp^*$.

Now, we have the below corollary from Theorems 31 to 33.

Corollary 34*Let* $(\mathcal{C}, \eth, \preceq)$ *be a partially ordered b-metric* space. Suppose the mappings $\mathcal{F}, h : \mathcal{E} \to \mathcal{E}$ are continuous such that

 $(C_1).$

$$\check{\psi}(s\eth(\mathscr{I}\varepsilon,\mathscr{I}_{\mathscr{O}})) \leq \check{\psi}(\mathscr{P}_{\mathscr{H}}(\varepsilon,\wp)) - \hat{\eta}(\mathscr{P}_{\mathscr{H}}(\varepsilon,\wp))$$
(17)

for every ε , $\wp \in \mathscr{E}$ with $\hbar \varepsilon \leq \hbar \wp$, s > 1, $\check{\psi} \in \hat{\Phi}$, $\hat{\eta} \in \hat{\Psi}$ and, where

$$\mathcal{P}_{\hat{\mathcal{R}}}(\varepsilon, \wp) = \max\{\frac{\eth(\hat{\mathcal{R}}\wp, \mathscr{I}\wp) [1 + \eth(\hat{\mathcal{R}}\varepsilon, \mathscr{I}\varepsilon)]}{1 + \eth(\hat{\mathcal{R}}\varepsilon, \hat{\mathcal{R}}\wp)}, \frac{\eth(\hat{\mathcal{R}}\varepsilon, \mathscr{I}\varepsilon) \eth(\hat{\mathcal{R}}\wp, \mathscr{I}\wp)}{1 + \eth(\hat{\mathcal{R}}\varepsilon, \hat{\mathcal{R}}\wp)}, \frac{\eth(\hat{\mathcal{R}}\varepsilon, \mathscr{I}\varepsilon) \eth(\hat{\mathcal{R}}\wp, \mathscr{I}\wp)}{1 + \eth(\mathscr{I}\varepsilon, \mathscr{I}\wp)}, \frac{\eth(\hat{\mathcal{R}}\varepsilon, \mathscr{I}\varepsilon) \eth(\hat{\mathcal{R}}\wp, \mathscr{I}\wp)}{1 + \eth(\mathscr{I}\varepsilon\varepsilon, \mathscr{I}\wp)}, \frac{\eth(\hat{\mathcal{R}}\varepsilon, \hat{\mathcal{R}}\wp)}{1 + \eth(\mathscr{I}\varepsilon\varepsilon, \mathscr{I}\wp)}, (18)$$

 $(C_2).\mathcal{FE} \subset \hbar \mathcal{E} \text{ and } \hbar \mathcal{E} \subseteq \mathcal{E} \text{ is complete,} (C_3).\mathcal{F} \text{ is monotone } \hbar\text{-non-decreasing and} (C_4).\mathcal{F} \text{ and } \hbar \text{ are compatible.}$

If for some $\varepsilon_0 \in \mathcal{E}$ such that $\hbar \varepsilon_0 \preceq \mathcal{I} \varepsilon_0$, then there is a coincidence point in \mathcal{E} for a pair of mappings (\mathcal{I}, \hbar) .

*Proof.*According to lemma 212, there is a subset \mathcal{M} of \mathcal{E} so that $\hbar \mathcal{M} \subset \mathcal{E}$ is a complete subspace, and $\hbar : \mathcal{E} \to \mathcal{E}$ is one-to-one. Following [27]'s Corollary 2.1, there is a sequence $\{\hbar \varepsilon_n\} \subset \hbar \mathcal{M}$ for some $\varepsilon_0 \in \mathcal{M}$ so that $\hbar \varepsilon_{n+1} = \mathcal{J}\varepsilon_n = \hbar(\hbar \varepsilon_n), (n \ge 0)$ and, where $\hbar : \hbar \mathcal{M} \to \hbar \mathcal{M}$ is a mapping so that $\hbar(\hbar \varepsilon) = \mathcal{J}\varepsilon, \varepsilon \in \mathcal{M}$.

Thus from equation (17), we get

$$\check{\psi}(s\eth(\mathscr{k}(\mathscr{h}\varepsilon),\mathscr{k}(\mathscr{h}\wp))) \leq \check{\psi}(\mathscr{P}_{\mathscr{h}}(\varepsilon,\wp)) - \hat{\eta}(\mathscr{P}_{\mathscr{h}}(\varepsilon,\wp)),$$
(19)

for every $\varepsilon, \wp \in \mathscr{C}$ with $\mathscr{h} \varepsilon \preceq \mathscr{h} \wp$ and, where

$$\mathcal{P}_{\hbar}(\varepsilon, \wp) = \max\{\frac{\eth(\hbar\wp, \hbar(\hbar\wp)) [1 + \eth(\hbar\varepsilon, \hbar(\hbar\varepsilon))]}{1 + \eth(\hbar\varepsilon, \hbar\wp)}, \frac{\eth(\hbar\varepsilon, \hbar(\hbar\varepsilon)) \eth(\hbar\wp, \hbar(\hbar\wp))}{1 + \eth(\hbar\varepsilon, \hbar\wp)}, \frac{\eth(\hbar\varepsilon, \hbar(\hbar\varepsilon)) \eth(\hbar\wp, \hbar(\hbar\wp))}{1 + \eth(\hbar(\hbar\varepsilon), \hbar(\hbar\wp))}, \frac{\eth(\hbar\varepsilon, \hbar(\hbar\varepsilon)) \eth(\hbar\wp, \hbar(\hbar\wp))}{\eth(\hbar\varepsilon, \hbar\wp)},$$

$$(20)$$

We can deduce from Theorem 31 that $\{\hbar \varepsilon_n\} \subset \hbar \mathcal{M}$ is a *b*-Cauchy sequence that converging on $v \in \hbar \mathcal{M}$.

We get from the condition (C_4) that,

$$\lim_{n\to+\infty}\eth(\mathscr{h}(\mathscr{I}\mathfrak{e}_n),\mathscr{I}(\mathscr{h}\mathfrak{e}_n))=0.$$

We have from a *b*-metrics triangular inequality that

$$\begin{aligned} \eth(\mathcal{F}v, \hbar v) &\leq s\eth(\mathcal{F}v, \mathcal{F}(\hbar \varepsilon_n)) + s^2\eth(\mathcal{F}(\hbar \varepsilon_n), \hbar(\mathcal{F}\varepsilon_n)) \\ &+ s^2\eth(\hbar(\mathcal{F}\varepsilon_n), \hbar v). \end{aligned}$$
(21)

As $n \to +\infty$ in (21), $\eth(\mathcal{I}v, \hbar v) = 0$ this indicates that v is a coincidence point of \mathcal{I}, \hbar .

The following result can get from Corollary 34 by weakening its hypotheses.

Corollary 35*If & satisfies the following condition in Corollary 34,*

for very nondecreasing sequence
$$\{ \hbar \varepsilon_n \} \subseteq \mathscr{E}$$
 so that
 $\hbar \varepsilon_n \to \hbar \sigma$, then $\hbar \varepsilon_n \leq \hbar \sigma \ (n \geq 0)$, i.e., $\hbar \sigma = \sup \hbar \varepsilon_n$.
(22)

then, if $\hbar \mu \leq \hbar(\hbar \mu)$ for some coincidence point μ , a coincidence point exists for the weakly compatible mappings (\mathcal{F},\hbar) . Moreover, (\mathcal{F},\hbar) has only one common fixed point iff the set of common fixed points is well ordered.

*Proof.*A pair of maps (\mathcal{F}, \hbar) has a coincidence point, according to Theorem 33 and Corollary 34.

Next, assume (\mathcal{F}, \hbar) is only weakly compatible. Let $v \in \mathscr{C}$ be a point with $v = \mathcal{F}\mu = \hbar\mu$. Thence, $\mathcal{F}v = \mathcal{F}(\hbar\mu) = \hbar(\mathcal{F}\mu) = \hbar v$. Therefore,

$$\mathcal{P}_{\hbar}(\mu, v) = \max\{\frac{\eth(\hbar v, \mathcal{I}v)[1 + \eth(\hbar\mu, \mathcal{I}\mu)]}{1 + \eth(\hbar\mu, \hbar v)}, \\ \frac{\eth(\hbar\mu, \mathcal{I}\mu)\eth(\hbar v, \mathcal{I}v)}{1 + \eth(\hbar\mu, \hbar v)}, \\ \frac{\eth(\hbar\mu, \mathcal{I}\mu)\eth(\hbar v, \mathcal{I}v)}{1 + \eth(\mathcal{I}\mu, \mathcal{I}v)}, \eth(\hbar\mu, \hbar v)\} \\ = \max\{0, \eth(\mathcal{I}\mu, \mathcal{I}v)\} \\ = \eth(\mathcal{I}\mu, \mathcal{I}v).$$
(23)

Thus from equation (17), we get

$$\begin{split} \check{\Psi}(\eth(\mathscr{S}\mu,\mathscr{S}v)) &\leq \check{\Psi}(\mathscr{P}_{\hbar}(\mu,v)) - \hat{\eta}(\mathscr{P}_{\hbar}(\mu,v)) \\ &\leq \check{\Psi}(\eth(\mathscr{S}\mu,\mathscr{S}v)) - \hat{\eta}(\eth(\mathscr{S}\mu,\mathscr{S}v)). \end{split}$$
(24)

By the property of $\hat{\eta}$, we get $\eth(\mathscr{F}\mu, \mathscr{F}v) = 0$ implies that $\mathscr{F}v = \hbar v = v$.

Finally, we can deduce from Theorem 33 that (\mathcal{F}, \hbar) only has one common fixed point iff the common fixed points of (\mathcal{F}, \hbar) is well ordered.

Remark 36*Theorems 31 to 33 are the extension of Theorems 2.1,.2.2 & 2.3 of [12].*

Remark 37*Corollaries 34 & 35 are the generalizations of Corollaries 2.1 & 2.2 of [27] respectively.*

Definition 38*Consider the partially ordered b-metric* space, $(\mathcal{E}, \eth, \preceq)$. A map $\mathcal{F} : \mathcal{E} \times \mathcal{E} \to \mathcal{E}$ is known to be a generalized $(\check{\psi}, \hat{\eta})$ -contractive map with regards to $\hbar : \mathcal{E} \to \mathcal{E}$, if

$$\begin{split} \check{\Psi}(s^{k}\eth(\mathscr{F}(\varepsilon,\wp),\mathscr{F}(\zeta,\mathfrak{I}))) &\leq \check{\Psi}(\mathscr{P}_{\hbar}(\varepsilon,\wp,\zeta,\mathfrak{I})) \\ &- \hat{\eta}(\mathscr{P}_{\hbar}(\varepsilon,\wp,\zeta,\mathfrak{I})), \end{split}$$
(25)

for all $\varepsilon, \wp, \zeta, \mathfrak{I} \in \mathscr{C}$ with $\hbar \varepsilon \leq \hbar \zeta$ and $\hbar \wp \geq \hbar \mathfrak{I}, k > 2$, $s > 1, \check{\Psi} \in \hat{\Phi}, \hat{\eta} \in \hat{\Psi}$ and where

$$\begin{split} \mathscr{P}_{\hbar}(\varepsilon,\wp,\zeta,\mathfrak{I}) &= \max\{\frac{\eth(\hbar\zeta,\mathscr{I}(\zeta,\mathfrak{I}))\left[1+\eth(\hbar\varepsilon,\mathscr{I}(\varepsilon,\wp))\right]}{1+\eth(\hbar\varepsilon,\hbar\zeta)},\\ \frac{\eth(\hbar\varepsilon,\mathscr{I}(\varepsilon,\wp))\eth(\hbar\zeta,\mathscr{I}(\zeta,\mathfrak{I}))}{1+\eth(\hbar\varepsilon,\hbar\zeta)},\\ \frac{\eth(\hbar\varepsilon,\mathscr{I}(\varepsilon,\wp))\eth(\hbar\zeta,\mathscr{I}(\zeta,\mathfrak{I}))}{1+\eth(\mathscr{I}(\varepsilon,\wp),\mathscr{I}(\zeta,\mathfrak{I}))},\\ \frac{\eth(\hbar\varepsilon,\hbar\zeta)\}. \end{split}$$

Theorem 39Suppose $(\mathcal{E}, \mathfrak{H}, \preceq)$ be a complete partially ordered b-metric space. A map $\mathcal{F} : \mathcal{E} \times \mathcal{E} \to \mathcal{E}$ satisfies the condition (25) and, \mathcal{F} , \hbar are continuous, \mathcal{F} has mixed \hbar -monotone property and also commutes with \hbar . Assume, if some $(\varepsilon_0, \wp_0) \in \mathcal{E} \times \mathcal{E}$ so that $\hbar \varepsilon_0 \preceq \mathcal{F}(\varepsilon_0, \wp_0)$, $\hbar \wp_0 \succeq \mathcal{F}(\wp_0, \varepsilon_0)$ and $\mathcal{F}(\mathcal{E} \times \mathcal{E}) \subseteq \hbar(\mathcal{E})$, then \mathcal{F} and \hbar in \mathcal{E} have a coupled coincidence point.

Proof.From [7] of Theorem 2.2, there will be two sequences $\{\mathcal{E}_n\}, \{\mathcal{P}_n\} \subset \mathcal{E}$ so that

$$\hbar \varepsilon_{n+1} = \mathscr{F}(\varepsilon_n, \mathscr{O}_n), \quad \hbar \mathscr{O}_{n+1} = \mathscr{F}(\mathscr{O}_n, \varepsilon_n), n \ge 0.$$

In particular, the sequences $\{ \hbar \varepsilon_n \}$, $\{ \hbar \wp_n \}$ are non-decreasing and non-increasing in \mathscr{E} . Put $\varepsilon = \varepsilon_n, \wp = \wp_n, \zeta = \varepsilon_{n+1}, \Im = \wp_{n+1}$ in (25), we get

$$\begin{split} \check{\Psi}(s^{k}\eth(\hbar\varepsilon_{n+1},\hbar\varepsilon_{n+2})) &= \check{\Psi}(s^{k}\eth(\mathscr{I}(\varepsilon_{n},\mathscr{O}_{n}),\mathscr{I}(\varepsilon_{n+1},\mathscr{O}_{n+1}))) \\ &\leq \check{\Psi}(\mathscr{P}_{\hbar}(\varepsilon_{n},\mathscr{O}_{n},\varepsilon_{n+1},\mathscr{O}_{n+1})) \\ &\quad - \hat{\eta}(\mathscr{P}_{\hbar}(\varepsilon_{n},\mathscr{O}_{n},\varepsilon_{n+1},\mathscr{O}_{n+1})), \end{split}$$
(26)

where

$$\mathcal{P}_{\mathscr{R}}(\varepsilon_{n}, \mathscr{D}_{n}, \varepsilon_{n+1}, \mathscr{D}_{n+1}) \leq \max\{\eth(\mathscr{R}\varepsilon_{n}, \mathscr{R}\varepsilon_{n+1}), \\ \eth(\mathscr{R}\varepsilon_{n+1}, \mathscr{R}\varepsilon_{n+2})\}$$
(27)

As a result of (26), we get

$$\begin{split} \check{\psi}(s^{k}\eth(\hbar\varepsilon_{n+1},\hbar\varepsilon_{n+2})) \\ &\leq \check{\psi}(\max\{\eth(\hbar\varepsilon_{n},\hbar\varepsilon_{n+1}),\eth(\hbar\varepsilon_{n+1},\hbar\varepsilon_{n+2})\}) \\ &- \hat{\eta}(\max\{\eth(\hbar\varepsilon_{n},\hbar\varepsilon_{n+1}),\eth(\hbar\varepsilon_{n+1},\hbar\varepsilon_{n+2})\}). \end{split}$$
(28)

Likewise by taking $\varepsilon = \wp_{n+1}, \wp = \varepsilon_{n+1}, \zeta = \varepsilon_n, \Im = \varepsilon_n$ in (25), we get

$$\begin{split} \check{\psi}(s^{k}\eth(\Re \wp_{n+1}, \Re \wp_{n+2})) \\ &\leq \check{\psi}(\max\{\eth(\Re \wp_{n}, \Re \wp_{n+1}), \eth(\Re \wp_{n+1}, \Re \wp_{n+2})\}) \quad (29) \\ &- \hat{\eta}(\max\{\eth(\Re \wp_{n}, \Re \wp_{n+1}), \eth(\Re \wp_{n+1}, \Re \wp_{n+2})\}). \end{split}$$

We know that $\max{\{\check{\psi}(l_1),\check{\psi}(l_2)\}} = \check{\psi}{\{\max{\{l_1,l_2\}}\}}$ for $l_1, l_2 \in [0, +\infty)$. Then we add (28) and (29) together to get,

$$\begin{split} & \check{\psi}(s^{k}\Gamma_{n}) \\ \leq \check{\psi}(\max\{\eth(\hslash \varepsilon_{n}, \hslash \varepsilon_{n+1}), \eth(\hslash \varepsilon_{n+1}, \hslash \varepsilon_{n+2}), \\ & \eth(\hslash \wp_{n}, \hslash \wp_{n+1}), \eth(\hslash \wp_{n+1}, \hslash \wp_{n+2})\}) \\ & - \hat{\eta}(\max\{\eth(\hslash \varepsilon_{n}, \hslash \varepsilon_{n+1}), \eth(\hslash \varepsilon_{n+1}, \hslash \varepsilon_{n+2}), \\ & \eth(\hslash \wp_{n}, \hslash \wp_{n+1}), \eth(\hslash \wp_{n+1}, \hslash \wp_{n+2})\}) \end{split}$$
(30)

where

$$\Gamma_{n} = \max\{\eth(\hbar \varepsilon_{n+1}, \hbar \varepsilon_{n+2}), \eth(\hbar \wp_{n+1}, \hbar \wp_{n+2})\}.$$
(31)

Let us denote,

$$\varkappa_{n} = \max\{\eth(\hslash \varepsilon_{n}, \hslash \varepsilon_{n+1}), \eth(\hslash \varepsilon_{n+1}, \hslash \varepsilon_{n+2}), \eth(\hslash \wp_{n}, \hslash \wp_{n+1}), \\ \eth(\hslash \wp_{n+1}, \hslash \wp_{n+2})\}.$$
(32)

Hence from equations (28)-(31), we obtain

$$s^{k}\Gamma_{n} \leq \varkappa_{n}.$$
 (33)

Now to claim that

 $\Gamma_n \le \lambda \Gamma_{n-1}, \tag{34}$

for $n \ge 1$ and $\lambda = \frac{1}{c^k} \in [0, 1)$.

Suppose that if
$$\varkappa_n = \Gamma_n$$
 then from (33), we get $s^k \Gamma_n \le \Gamma_n$ this leads to $\Gamma_n = 0$ since $s > 1$ and thus (34) holds.

Suppose $\Im(f(a, f(a)))$

$$\varkappa_n = \max\{\partial(\mathscr{h}\varepsilon_n, \mathscr{h}\varepsilon_{n+1}), \partial(\mathscr{h}\wp_n, \mathscr{h}\wp_{n+1})\}, \quad \text{i.e.,} \\ \varkappa_n = \Gamma_{n-1} \text{ then (33) follows (34).}$$

Now from (33), we obtain that $\Gamma_n \leq \lambda^n \delta_0$ and hence,

$$\eth(\hbar \varepsilon_{n+1}, \hbar \varepsilon_{n+2}) \le \lambda^n \Gamma_0 \text{ and } \eth(\hbar \wp_{n+1}, \hbar \wp_{n+2}) \le \lambda^n \Gamma_0,$$
(35)

which shows that $\{ \hbar \varepsilon_n \}$, $\{ \hbar \wp_n \}$ in \mathscr{E} are Cauchy sequences by Lemma 3.1 of [22]. Therefore, we can conclude from Theorem 2.2 of [5] that in \mathscr{E} , \mathscr{I} and \hbar have a coincidence point.

Corollary 310*Suppose* $(\mathcal{C}, \eth, \preceq)$ *be a complete partially* ordered *b-metric space.* A continuous map $\mathcal{F} : \mathcal{E} \times \mathcal{E} \to \mathcal{E}$ has mixed monotone property is satisfying the below contraction conditions for all $\varepsilon, \wp, \zeta, \Im \in \mathcal{E}$ such that $\varepsilon \preceq \zeta$ and $\wp \succeq \Im$, k > 2, s > 1, $\check{\Psi} \in \hat{\Phi}$ and $\hat{\eta} \in \hat{\Psi}$:

(*i*).

$$\check{\psi}(s^k\eth(\mathscr{F}(\varepsilon,\wp),\mathscr{F}(\zeta,\mathfrak{T}))) \leq \check{\psi}(\mathscr{P}_{\mathscr{A}}(\varepsilon,\wp,\zeta,\mathfrak{T})) - \hat{\eta}(\mathscr{P}_{\mathscr{A}}(\varepsilon,\wp,\zeta,\mathfrak{T})),$$

(*ii*).

$$egin{aligned} \eth(\mathscr{F}(arepsilon,\mathscr{P}(\zeta,\mathfrak{I})) &\leq rac{1}{s^k}\mathscr{P}_{\hslash}(arepsilon,\mathscr{P},\zeta,\mathfrak{I}) \ &- rac{1}{s^k} \hat\eta(\mathscr{P}_{\hslash}(arepsilon,\mathscr{P},\zeta,\mathfrak{I})). \end{aligned}$$

where

$$\begin{split} \mathscr{P}_{\mathbb{A}}(\varepsilon, \wp, \zeta, \mathfrak{I}) &= \max\{\frac{\eth(\zeta, \mathscr{I}(\zeta, \mathfrak{I}))[1 + \eth(\varepsilon, \mathscr{I}(\varepsilon, \wp))]}{1 + \eth(\varepsilon, \zeta)}, \\ &\frac{\eth(\varepsilon, \mathscr{I}(\varepsilon, \wp)) \eth(\zeta, \mathscr{I}(\zeta, \mathfrak{I}))}{1 + \eth(\varepsilon, \zeta)}, \\ &\frac{\eth(\varepsilon, \mathscr{I}(\varepsilon, \wp)) \eth(\zeta, \mathscr{I}(\zeta, \mathfrak{I}))}{1 + \eth(\mathscr{I}(\varepsilon, \wp), \mathscr{I}(\zeta, \mathfrak{I}))}, \eth(\varepsilon, \zeta)\}. \end{split}$$

If there exists $(\varepsilon_0, \wp_0) \in \mathscr{C} \times \mathscr{C}$ so that $\varepsilon_0 \preceq \mathscr{I}(\varepsilon_0, \wp_0)$ and $\wp_0 \succeq \mathscr{I}(\wp_0, \varepsilon_0)$, then \mathscr{I} in \mathscr{C} has a coupled fixed point.

Theorem 311*The unique coupled common fixed point for* \mathscr{I} and \And exists in Theorem 39, if for every $(\varepsilon, \wp), (\And, \ell) \in \mathscr{E} \times \mathscr{E}$ there is some $(\Lambda, \Upsilon) \in \mathscr{E} \times \mathscr{E}$ such that $(\mathscr{I}(\Lambda, \Upsilon), \mathscr{I}(\Upsilon, \Lambda))$ is comparable to $(\mathscr{I}(\varepsilon, \wp), \mathscr{I}(\wp, \varepsilon))$ and to $(\mathscr{I}(\And, \mathscr{I}), \mathscr{I}(\ell, \And))$.

*Proof.*The existence of a coupled coincidence point for \mathscr{I} , \mathscr{K} is guaranteed by the Theorem 39. Let $(\varepsilon, \wp), (\mathscr{K}, \ell) \in \mathscr{C} \times \mathscr{C}$ are coupled coincidence points of \mathscr{I}, \mathscr{K} . Now, we assert that $\mathscr{K}\varepsilon = \mathscr{K}\mathscr{K}$ and $\mathscr{K}\wp = \mathscr{K}\ell$. By hypotheses $(\mathscr{I}(\Lambda, \Upsilon), \mathscr{I}(\Upsilon, \Lambda))$ is comparable to $(\mathscr{I}(\varepsilon, \wp), \mathscr{I}(\wp, \varepsilon))$ and $(\mathscr{I}(\mathscr{K}, \mathscr{I}), \mathscr{I}(\ell, \mathscr{K}))$ for some $(\Lambda, \Upsilon) \in \mathscr{C} \times \mathscr{C}$.

Now, assume the following

$$(\mathscr{F}(\varepsilon, \wp), \mathscr{F}(\wp, \varepsilon)) \leq (\mathscr{F}(\Lambda, \Upsilon), \mathscr{F}(\Upsilon, \Lambda)) \text{ and } \\ (\mathscr{F}(\mathscr{K}, \ell), \mathscr{F}(\ell, \mathscr{K})) \leq (\mathscr{F}(\Lambda, \Upsilon), \mathscr{F}(\Upsilon, \Lambda)).$$

Suppose $\Lambda_0 = \Lambda$ and $\Upsilon_0 = \Upsilon$ then there is a point $(\Lambda_1, \Upsilon_1) \in \mathscr{C} \times \mathscr{C}$ such that

$$\hbar\Lambda_1 = \mathcal{F}(\Lambda_0, \Upsilon_0), \quad \hbar\Upsilon_1 = \mathcal{F}(\Upsilon_0, \Lambda_0) \quad (n \ge 1)$$

As by applying the preceding argument repeatedly, we have the sequences $\{\Re \Lambda_n\}$ and $\{\Re \Upsilon_n\}$ in \mathscr{E} with

$$\mathscr{M}\Lambda_{n+1} = \mathscr{F}(\Lambda_n, \Upsilon_n), \quad \mathscr{M}\Upsilon_{n+1} = \mathscr{F}(\Upsilon_n, \Lambda_n) \quad (n \ge 0)$$

Define the sequences in the same way $\{ \hbar \mathcal{E}_n \}$, $\{ \hbar \mathcal{P}_n \}$ and, $\{ \hbar \mathcal{K}_n \}$, $\{ \hbar \mathcal{L}_n \}$ in \mathcal{E} by setting $\mathcal{E}_0 = \mathcal{E}$, $\mathcal{P}_0 = \mathcal{P}$ and $\mathcal{K}_0 = \mathcal{K}$, $\mathcal{L}_0 = \mathcal{L}$. Further, we have that

$$\begin{aligned} &\hbar \varepsilon_n \to \mathcal{F}(\varepsilon, \wp), \ \hbar \wp_n \to \mathcal{F}(\wp, \varepsilon), \\ &\hbar \kappa_n \to \mathcal{F}(\kappa, \ell), \ \hbar \ell_n \to \mathcal{F}(\ell, \kappa) (n \ge 1). \end{aligned}$$
(36)

Thus by induction, we get

$$(\hbar \varepsilon_n, \hbar \omega_n) \le (\hbar \Lambda_n, \hbar \Upsilon_n)$$
 for every *n*. (37)

As a consequence of (25), we have

$$\begin{split} \check{\Psi}(\eth(\hslash\varepsilon, \hslash\Lambda_{n+1})) &\leq \check{\Psi}(s^k\eth(\hslash\varepsilon, \hslash\Lambda_{n+1})) \\ &= \check{\Psi}(s^k\eth(\mathscr{F}(\varepsilon, \wp), \mathscr{F}(\Lambda_n, \Upsilon_n))) \\ &\leq \check{\Psi}(\mathscr{P}_{\hslash}(\varepsilon, \wp, \Lambda_n, \Upsilon_n)) \\ &- \hat{\eta}(\mathscr{P}_{\hslash}(\varepsilon, \wp, \Lambda_n, \Upsilon_n)), \end{split}$$
(38)

where

$$\begin{split} \mathscr{P}_{\hbar}(\varepsilon, \wp, \Lambda_{n}, \Upsilon_{n}) \\ &= \max\{\frac{\eth(\hbar\Lambda_{n}, \mathscr{F}(\Lambda_{n}, \Upsilon_{n})) \left[1 + \eth(\hbar\varepsilon, \mathscr{F}(\varepsilon, \wp))\right]}{1 + \eth(\hbar\varepsilon, \hbar\Lambda_{n})}, \\ &\frac{\eth(\hbar\varepsilon, \mathscr{F}(\varepsilon, \wp)) \eth(\hbar\Lambda_{n}, \mathscr{F}(\Lambda_{n}, \Upsilon_{n}))}{1 + \eth(\hbar\varepsilon, \hbar\Lambda_{n})}, \\ &\frac{\eth(\hbar\varepsilon, \mathscr{F}(\varepsilon, \wp)) \eth(\hbar\Lambda_{n}, \mathscr{F}(\Lambda_{n}, \Upsilon_{n}))}{1 + \eth(\mathscr{F}(\varepsilon, \wp), \mathscr{F}(\Lambda_{n}, \Upsilon_{n}))}, \\ &\frac{\eth(\hbar\varepsilon, \hbar\Lambda_{n})\}}{\eth(\hbar\varepsilon, \hbar\Lambda_{n})\} \\ &= \max\{0, \eth(\hbar\varepsilon, \hbar\Lambda_{n})\} \end{split}$$

As a result of (38), we now have

$$\check{\Psi}(\eth(\mathscr{h}\varepsilon,\mathscr{h}\Lambda_{n+1})) \leq \check{\Psi}(\eth(\mathscr{h}\varepsilon,\mathscr{h}\Lambda_n)) - \hat{\eta}(\eth(\mathscr{h}\varepsilon,\mathscr{h}\Lambda_n)).$$
⁽³⁹⁾

As by the similar argument, we acquire that

$$\check{\psi}(\eth(\hbar \wp, \hbar \Upsilon_{n+1})) \leq \check{\psi}(\eth(\hbar \wp, \hbar \Upsilon_n)) - \hat{\eta}(\eth(\hbar \wp, \hbar \Upsilon_n)).$$
(40)

Hence from (39) and (40), we have

$$\begin{split} &\check{\psi}(\max\{\eth(\hslash\varepsilon, \hslash\Lambda_{n+1}), \eth(\hslash\wp, \hslash\Upsilon_{n+1})\}) \\ &\leq \check{\psi}(\max\{\eth(\hslash\varepsilon, \hslash\Lambda_n), \eth(\hslash\wp, \varkappa\Upsilon_n)\}) \\ &- \hat{\eta}(\max\{\eth(\hslash\varepsilon, \hslash\Lambda_n), \eth(\hslash\wp, \varkappa\Upsilon_n)\}) \\ &< \check{\psi}(\max\{\eth(\hslash\varepsilon, \hslash\Lambda_n), \eth(\hslash\wp, \varkappa\Upsilon_n)\}). \end{split}$$
(41)

Thus, the property of $\check{\Psi}$ implies,

$$\max\{\Im(\mathscr{h}\varepsilon,\mathscr{h}\Lambda_{n+1}),\Im(\mathscr{h}\wp,\mathscr{h}\Upsilon_{n+1})\} \\ < \max\{\Im(\mathscr{h}\varepsilon,\mathscr{h}\Lambda_n),\eth(\mathscr{h}\wp,\mathscr{h}\Upsilon_n)\}.$$

Hence, $\max\{\eth(\hbar\varepsilon, \hbar\Lambda_n), \eth(\hbar\wp, \hbar\Upsilon_n)\}$ is a decreasing sequence of positive reals and bounded below and by a result, we have

$$\lim_{n\to+\infty} \max\{\eth(\hbar\varepsilon,\hbar\Lambda_n),\eth(\hbar\wp,\hbar\Upsilon_n)\} = \Gamma, \ \Gamma \ge 0.$$

Therefore as $n \to +\infty$ in equation (41), we get

$$\check{\psi}(\Gamma) \le \check{\psi}(\Gamma) - \hat{\eta}(\Gamma), \tag{42}$$

from which we have $\hat{\eta}(\Gamma) = 0$, implies that $\Gamma = 0$. Therefore,

$$\lim_{n\to+\infty}\max\{\eth(\hbar\varepsilon,\hbar\Lambda_n),\eth(\hbar\wp,\hbar\Upsilon_n)\}=0.$$

Hence, we have that,

$$\lim_{n \to +\infty} \eth(\hbar \varepsilon, \hbar \Lambda_n) = 0 \text{ and } \lim_{n \to +\infty} \eth(\hbar \wp, \hbar \Upsilon_n) = 0.$$
(43)

By the similar argument as above, we obtain

$$\lim_{n \to +\infty} \eth(\mathscr{k}\mathscr{K}, \mathscr{k}\Lambda_n) = 0 \text{ and } \lim_{n \to +\infty} \eth(\mathscr{k}\mathscr{I}, \mathscr{k}\Upsilon_n) = 0.$$
(44)

Therefore from (43) and (44), we get $\hbar \varepsilon = \hbar \hbar$ and $\hbar \wp = \hbar \mathcal{F}$. Since $\hbar \varepsilon = \mathcal{F}(\varepsilon, \wp)$ and $\hbar \wp = \mathcal{F}(\wp, \varepsilon)$ and, the commutativity property of \mathcal{F} , \hbar implies that

$$\begin{aligned}
&\hbar(\hbar\varepsilon) = \hbar(\mathcal{F}(\varepsilon, \wp)) = \mathcal{F}(\hbar\varepsilon, \hbar\wp) \text{ and} \\
&\hbar(\hbar\wp) = \hbar(\mathcal{F}(\wp, \varepsilon)) = \mathcal{F}(\hbar\wp, \hbar\varepsilon).
\end{aligned}$$
(45)

If $\hbar \varepsilon = \Lambda^*$ and $\hbar \wp = \Upsilon^*$ then from (45), we get

$$\mathscr{H}(\Lambda) = \mathscr{F}(\Lambda^*, \Upsilon^*) \text{ and } \mathscr{H}(\Upsilon^*) = \mathscr{F}(\Upsilon^*, \Lambda^*), \quad (46)$$

which exhibits that (Λ^*, Υ^*) is a coupled coincidence point of \mathscr{I} , \mathscr{R} . Hence, $\mathscr{R}(\Lambda^*) = \mathscr{R}\mathscr{R}$ and $\mathscr{R}(\Upsilon^*) = \mathscr{R}\mathscr{I}$ which in turn gives that $\mathscr{R}(\Lambda) = \Lambda^*$ and $\mathscr{R}(\Upsilon^*) = \Upsilon^*$. Therefore

from (46), (Λ^*, Υ^*) is a coupled common fixed point of \mathscr{F} , \mathscr{h} .

Let $(\Lambda_1^*, \Upsilon_1^*)$ be another coupled common fixed point of \mathscr{F} , \mathscr{R} . Thence, $\Lambda_1^* = \mathscr{R}\Lambda_1^* = \mathscr{F}(\Lambda_1^*, \Upsilon_1^*)$ and $\Upsilon_1^* = \mathscr{R}\Upsilon_1^* = \mathscr{F}(\Upsilon_1^*, \Lambda_1^*)$. But $(\Lambda_1^*, \Upsilon_1^*)$ is a coupled common fixed point of \mathscr{F} , \mathscr{R} then, $\mathscr{R}\Lambda_1^* = \mathscr{R}\mathscr{E} = \Lambda$ and $\mathscr{R}\Upsilon_1^* = \mathscr{R}\mathscr{G} = \Upsilon^*$. Therefore, $\Lambda_1^* = \mathscr{R}\Lambda_1^* = \mathscr{R}\Lambda = \Lambda$ and $\Upsilon_1^* = \mathscr{R}\Upsilon_1^* = \mathscr{R}\Upsilon^* = \Upsilon^*$. Hence the uniqueness.

Theorem 312In Theorem 311, if $\hbar \varepsilon_0 \leq \hbar \wp_0$ or $\hbar \varepsilon_0 \geq \hbar \wp_0$, then an unique common fixed point of \mathcal{F} , \hbar can be found.

*Proof.*Assume $(\varepsilon, \wp) \in \mathscr{E}$ is a unique coupled common fixed point of \mathscr{I} , \mathscr{h} . Then, to demonstrate that $\varepsilon = \wp$. Suppose that $\mathscr{h} \varepsilon_0 \leq \mathscr{h} \wp_0$ then we get by induction, $\mathscr{h} \varepsilon_n \leq \mathscr{h} \wp_n$, $n \geq 0$. From Lemma 2 of [23], we have

$$\begin{split} \check{\psi}(s^{k-2}\eth(\varepsilon, \wp)) &= \check{\psi}(s^k \frac{1}{s^2}\eth(\varepsilon, \wp)) \\ &\leq \lim_{n \to +\infty} \sup \check{\psi}(s^k\eth(\varepsilon_{n+1}, \mathscr{O}_{n+1})) \\ &= \lim_{n \to +\infty} \sup \check{\psi}(s^k\eth(\mathscr{F}(\varepsilon_n, \mathscr{O}_n), \mathscr{F}(\mathscr{O}_n, \varepsilon_n))) \\ &\leq \lim_{n \to +\infty} \sup \check{\psi}(\mathscr{P}_{\&}(\varepsilon_n, \mathscr{O}_n, \mathscr{O}_n, \varepsilon_n)) \\ &- \lim_{n \to +\infty} \inf \hat{\eta}(\mathscr{P}_{\&}(\varepsilon_n, \mathscr{O}_n, \mathscr{O}_n, \varepsilon_n)) \\ &\leq \check{\psi}(\eth(\varepsilon, \wp)) \\ &- \lim_{n \to +\infty} \inf \hat{\eta}(\mathscr{P}_{\&}(\varepsilon_n, \mathscr{O}_n, \mathscr{O}_n, \varepsilon_n)) \\ &< \check{\psi}(\eth(\varepsilon, \wp)), \end{split}$$

a contradiction. Hence, $\varepsilon = \wp$.

The result can also see in the case of $\hbar \varepsilon_0 \succeq \hbar \wp_0$.

Remark 313*While* s = 1 and the result of [21], the condition

$$\begin{split} \check{\psi}(\eth(\mathscr{I}(\varepsilon,\wp),\mathscr{I}(\eth,\mathfrak{I}))) \\ &\leq \check{\psi}(\max\{\eth(\hslash\varepsilon,\hslash\eth),\eth(\hslash\wp,\hslash\mathfrak{I})\}) \\ &- \hat{\eta}(\max\{\eth(\hslash\varepsilon,\hslash\eth),\eth(\hslash\wp,\hbar\mathfrak{I})\}) \end{split}$$

is equivalent to,

$$\eth(\mathscr{F}(\varepsilon, \wp), \mathscr{F}(\eth, \mathfrak{I})) \leq \varphi(\max\{\eth(\hbar\varepsilon, \hbar\eth), \eth(\hbar\wp, \hbar\mathfrak{I})\}),$$

here $\check{\Psi} \in \check{\Psi}$, $\hat{\eta} \in \hat{\eta}$ and φ is a continuous self map on $[0, +\infty)$ with $\varphi(y) < y$ for every y > 0 with $\varphi(y) = 0$ iff y = 0. Hence the results found here are generalized and extended the results of [11, 18, 25, 26, 27] and a number of comparable results.

Now, depending on the type of metric, some examples are shown.

Example 314Let $\mathscr{E} = \{e_{11}, e_{22}, e_{33}, e_{44}, e_{55}, e_{66}\}$ and $\eth : \mathscr{E} \times \mathscr{E} \to \mathscr{E}$ be a metric defined by

$$\begin{aligned} \eth(\varepsilon, \wp) &= \eth(\wp, \varepsilon) = 0, \\ if \varepsilon &= \wp = \{e_{11}, e_{22}, e_{33}, e_{44}, e_{55}, e_{66}\} and \varepsilon = \wp, \\ \eth(\varepsilon, \wp) &= \eth(\wp, \varepsilon) = 3, \\ if \varepsilon &= \wp = \{e_{11}, e_{22}, e_{33}, e_{44}, e_{55}\} and \varepsilon \neq \wp, \\ \eth(\varepsilon, \wp) &= \eth(\wp, \varepsilon) = 12, \\ if \varepsilon &= \{e_{11}, e_{22}, e_{33}, e_{44}\} and \wp = e_{66}, \\ \eth(\varepsilon, \wp) &= \eth(\wp, \varepsilon) = 20, if \varepsilon = e_{55} and \wp = e_{66}, \\ with usual order \leq . \end{aligned}$$

A self-map \mathscr{F} on \mathscr{C} defined by $\mathscr{F}e_{11} = \mathscr{F}e_{22} = \mathscr{F}e_{33} = \mathscr{F}e_{44} = \mathscr{F}e_{55} = 1, \mathscr{F}e_{66} = 2$ has a fixed point with $\check{\Psi}(y) = \frac{y}{2}, \ \hat{\eta}(y) = \frac{y}{4}$ where $y \in [0, +\infty)$.

Proof. When s = 2, $(\mathcal{E}, \mathfrak{d}, \leq)$ is a complete partially ordered *b*-metric space. Let $\mathcal{E}, \mathcal{D} \in \mathcal{E}$ such that $\mathcal{E} < \mathcal{D}$ then we'll look at the cases below.

Case 1. If $\varepsilon, \wp \in \{e_{11}, e_{22}, e_{33}, e_{44}, e_{55}\}$ then $\eth(\mathscr{I}\varepsilon, \mathscr{I}\wp) = \eth(e_{11}, e_{11}) = 0$. Hence,

$$\check{\psi}(2\eth(\mathscr{F}\!\!\mathcal{E},\mathscr{F}_{\mathscr{D}}))=0\leq\check{\psi}(\mathscr{P}(\mathcal{E},\wp))-\hat{\eta}(\mathscr{P}(\mathcal{E},\wp)).$$

Case 2. If $\varepsilon \in \{e_{11}, e_{22}, e_{33}, e_{44}, e_{55}\}$ and $\wp = e_{66}$, then $\eth(\mathscr{I}\varepsilon, \mathscr{I}\wp) = \eth(e_{11}, e_{22}) = 3$, $\mathscr{P}(e_{66}, e_{55}) = 20$ and $\mathscr{P}(\varepsilon, e_{66}) = 12$, for $\varepsilon \in \{e_{11}, e_{22}, e_{33}, e_{44}\}$. Hence,

$$\check{\psi}(2\eth(\mathscr{I}\varepsilon,\mathscr{I}\wp)) \leq \frac{\mathscr{P}(\varepsilon,\wp)}{4} = \check{\psi}(\mathscr{P}(\varepsilon,\wp)) - \hat{\eta}(\mathscr{P}(\varepsilon,\wp)).$$

As a result, all of the conditions of Theorem 31 are met, and \mathcal{I} has a fixed point.

Example 315*Let us define a metric* \eth *with usual order* \leq *by*

$$\eth(\varepsilon, \wp) = \begin{cases} 0 & , \text{ if } \varepsilon = \wp \\ 1 & , \text{ if } \varepsilon \neq \wp \in \{0, 1\} \\ |\varepsilon - \wp| & , \text{ if } \varepsilon, \wp \in \{0, \frac{1}{2n}, \frac{1}{2m} : n \neq m \ge 1\} \\ 6 & , \text{ otherwise.} \end{cases}$$

where $\mathscr{C} = \{0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ..., \frac{1}{n}, ...\}$. A self-map \mathscr{F} on \mathscr{C} by $\mathscr{F}0 = 0, \mathscr{F}\frac{1}{n} = \frac{1}{12n} (n \ge 1)$ has a fixed point with $\check{\Psi}(y) = y$, $\hat{\eta}(y) = \frac{4y}{5}$ for $y \in [0, +\infty)$.

Proof. \eth is clearly discontinuous, and (\mathscr{C},\eth,\leq) is a complete partially ordered *b*-metric space for $s = \frac{12}{5}$. Now we'll look at the cases for $\varepsilon, \wp \in \mathscr{C}$ with $\varepsilon < \wp$. **Case 1.** Suppose $\varepsilon = 0$ and $\wp = \frac{1}{n}$ (n > 0), then $\eth(\mathscr{I}\varepsilon,\mathscr{I}\wp) = \eth(0,\frac{1}{12n}) = \frac{1}{12n}$ and $\mathscr{P}(\varepsilon,\wp) = \frac{1}{n}$ and $\mathscr{P}(\varepsilon,\wp) = \{1,6\}$. Thus,

$$\begin{split} \check{\Psi}\left(\frac{12}{5}\eth(\mathscr{F}\varepsilon,\mathscr{F}\wp)\right) &\leq \frac{\mathscr{P}(\varepsilon,\wp)}{5} \\ &= \check{\Psi}(\mathscr{P}(\varepsilon,\wp)) - \hat{\eta}(\mathscr{P}(\varepsilon,\wp)). \end{split}$$

Case 2. Let $\varepsilon = \frac{1}{m}$ and $\wp = \frac{1}{n}$ where $m > n \ge 1$, thence

$$\mathfrak{d}(\mathscr{F}\varepsilon,\mathscr{F}\wp) = \mathfrak{d}(\frac{1}{12m},\frac{1}{12n}) \text{ and}$$

 $\mathscr{P}(\varepsilon,\wp) \ge \frac{1}{n} - \frac{1}{m} \text{ or } \mathscr{P}(\varepsilon,\wp) = 6.$

Thus,

$$\begin{split} \check{\Psi}\left(\frac{12}{5}\eth(\mathscr{I}\varepsilon,\mathscr{I}\wp)\right) &\leq \frac{\mathscr{P}(\varepsilon,\wp)}{5} \\ &= \check{\Psi}(\mathscr{P}(\varepsilon,\wp)) - \hat{\eta}(\mathscr{P}(\varepsilon,\wp)). \end{split}$$

Hence, we have the conclusion from Theorem 31 as all assumptions are fulfilled.

Example 316Define a metric $\mathfrak{d} : \mathscr{C} \times \mathscr{C} \to \mathscr{C}$, where $\mathscr{C} = \{\tilde{\ell}/\tilde{\ell} : [a_1, a_2] \to [a_1, a_2] \text{ continuous} \}$ by

$$\eth(\tilde{\ell}_1, \tilde{\ell}_2) = \sup_{y \in [a_1, a_2]} \{ |\tilde{\ell}_1(y) - \tilde{\ell}_2(y)|^2 \}$$

for any $\tilde{\ell}_1, \tilde{\ell}_2 \in \mathcal{E}$, $0 \le a_1 < a_2$ with $\tilde{\ell}_1 \preceq \tilde{\ell}_2$ implies $a_1 \le \tilde{\ell}_1(y) \le \tilde{\ell}_2(y) \le a_2, y \in [a_1, a_2]$. A self-map \mathcal{F} on \mathcal{E} defined by $\mathcal{F}\tilde{\ell} = \frac{\tilde{\ell}}{5}, \tilde{\ell} \in \mathcal{E}$ has a unique fixed point with $\check{\Psi}(y) = y$, $\hat{\eta}(y) = \frac{y}{3}$, for any $y \in [0, +\infty]$.

*Proof.*As $\min(\tilde{\ell}_1, \tilde{\ell}_2)(y) = \min\{\tilde{\ell}_1(y), \tilde{\ell}_2(y)\}\)$ is continuous and all other assumptions of Theorem 33 are fulfilled for s = 2. Therefore, $0 \in \mathcal{C}$ is an unique fixed point \mathcal{F} .

Acknowledgement

The authors do thankful to the editor for his suggestions and kind help to publish our paper in this esteemed journal.

Competing interests

The authors declare that they have no competing interests.

References

- [1] M. Abbas, B. Ali, Bandar Bin-Mohsin, Nebojša Dedović, T. Nazir and S. Radenović, Solutions and Ulam-Hyers stability of differential inclusions involving Suzuki type multivalued mappings on *b*-metric spaces, Vojnotehnički glasnik/Military Technical Courier **68(3)**, 438-487 (2020).
- [2] A. Aghajani and R. Arab, Fixed points of (ψ, ϕ, θ) contractive mappings in partially ordered *b*-metric spaces and applications to quadratic integral equations, Fixed Point Theory Appl. 2013, Article ID 245 (2013).
- [3] A. Aghajani, M. Abbas and J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered *b*-metric spaces, Math. Slovaca **64(4)**, 941-960 (2014).

- [5] M. Akkouchi, Common fixed point theorems for two self mappings of a *b*-metric space under an implicit relation, Hacet. J. Math. Stat. 40(6), 805-810 (2011).
- [6] S. Aleksić, Huaping Huang, Zoran D. Mitrović and Stojan Radenović, Remarks on some fixed point results in *b*metric spaces, J. Fixed Point Theory Appl. **20:147** (2018). doi.org/10.1007/s11784-018-2
- [7] R. Allahyari, R. Arab and A.S. Haghighi, A generalization on weak contractions in partially ordered *b*-metric spaces and its applications to quadratic integral equations, J. Inequal. Appl. 2014, Article ID 355 (2014).
- [8] H. Aydi, N. Dedović, B. Bin-Mohsin, M. Filipović and S. Radenović, Some new observations on Geraghty and Ćirić type results in *b*-metric spaces, Mathematics 7:643 (2019). doi:10.3390/math707064
- [9] I. A. Bakhtin, The contraction principle in quasimetric spaces, Func. An., Ulianowsk, Gos. Fed. Ins. 30, 26-37 (1989).
- [10] Belay Mituku, K. Kalyani and N. Seshagiri Rao, Some fixed point results of generalized (φ, ψ)-contractive mappings in ordered *b*-metric spaces, BMC Research Notes 13:537 (2020). DOI :https://doi.org/10.1186/s13104-020-05354-1
- [11] T.G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65, 1379-1393 (2006). doi:10.1016/j.na.2005.10.017.
- [12] S. Chandok, E. Karapinar, Common fixed point of generalized rational type contraction mappings in partially ordered metric spaces, Thai J. Math. 11(2), 251-260 (2013).
- [13] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Univ. Ostrav. 1, 5-11 (1993).
- [14] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti. Semin. Mat. Fis. Univ. Modena 46(2), 263-276 (1998).
- [15] L.J. Ćirić, N. Cakić, M. Rajović, J.S. Ume, Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2008:11 (2008). Article ID 131294
- [16] D. Dorić, Common fixed point for generalized (ψ, ϕ) -weak contractions, Appl. Math. Lett. **22**, 1896-1900 (2009).
- [17] R. H. Haghi, S. Rezapour, N. Shahzad, Some fixed point generalizations are not real generalizations, Nonlinear Anal. 74, 1799-1803 (2011).
- [18] Hamid Faraji, Dragana Savić and S. Radenović, Fixed point theorems for Geraghty contraction type mappings in *b*-metric spaces and applications, Aximos 8, 34 (2019).
- [19] J. Harjani, B. López and K. Sadarangani, Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear Anal. 74, 1749-1760 (2011).
- [20] Huaping Huang, S. Radenović and Jelena Vujaković, On some recent coincidence and immediate consequences in partially ordered *b*-metric spaces, Fixed Point Theory and Appl. **2015:63** (2015). doi: 10.1186/s13663-015-0308-3.
- [21] J. Jachymski, Equivalent conditions for generalized contractions on (ordered) metric spaces, Nonlinear Anal. 74, 768-774 (2011).
- [22] M. Jovanović, Z. Kadelburg and S. Radenović, Common fixed point results in metric-type spaces, Fixed Point Theory Appl. 2010. Article ID 978121.

- [23] E. Karapinar, Zoran D. Mitrović, Ali Özturk and S. Radenović, On a theorem of Ćirić in *b*-metric spaces, Rendiconti del Circolo Matematico di Palermo Series 2. doi.org/10.1007/s12215-020-00491-9
- [24] W-A. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Berlin, 2014.
- [25] V. Lakshmikantham and L.J. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70, 4341-4349 (2009). doi:10.1016/j.na.2008.09.020.
- [26] N.V. Luong and N.X. Thuan, Coupled fixed point theorems in partially ordered metric spaces, Bull. Math. Anal. Appl. 4, 16-24 (2010).
- [27] Nguyen T. Hieu, Nguyen V. Dung, Some fixed point results for generalized rational type contraction mappings in partially ordered *b*-metric space, Facta Univ. Ser. Math. Inform. **30(1)**, 49-66 (2015).
- [28] J.J. Nieto, R.R. Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22, 223-239 (2005). doi:10.1007/s11083-005-9018-5.
- [29] J.J. Nieto, R.R. Lo
 ´pez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math Sinica Engl. Ser. 23(12), 2205-2212 (2007). doi:10.1007/s10114-005-0769-0.
- [30] D. O'Regan, A. Petrutel, Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl. 341, 1241-1252 (2008).
- [31] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Am. Math. Soc. 132, 1435-1443 (2004). doi:10.1090/S0002-9939-03-07220-4.
- [32] J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi, Common fixed points of almost generalized $(\psi, \phi)_s$ -contractive mappings in ordered *b*-metric spaces, Fixed Point Theory Appl. **2013:159**, 1-23 (2013).
- [33] J. R. Roshan, V. Parvaneh and I. Altun, Some coincidence point results in ordered *b*-metric spaces and applications in a system of integral equations, Appl. Math. Comput. **226**, 725-737 (2014).
- [34] N. Seshagiri Rao and K. Kalyani, Fixed point theorems for nonlinear contractive mappings in ordered *b*-metric space with auxiliary function, BMC Research Notes 13:451 (2020). DOI :10.1186/s13104-020-05273-1
- [35] N. Seshagiri Rao and K. Kalyani, Generalized Contractions to Coupled Fixed Point Theorems in Partially Ordered Metric Spaces, Journal of Siberian Federal University. Mathematics & Physics 13(4), 492-502 (2020). DOI: 10.17516/1997-1397-2020-13-4-492-502
- [36] N. Seshagiri Rao and K. Kalyani, Coupled fixed point theorems with rational expressions in partially ordered metric spaces, The Journal of Analysis. 28(4), 1085-1095 (2020). https://doi.org/10.1007/s41478-020-00236-y
- [37] N. Seshagiri Rao, K. Kalyani and Kejal Khatri, Contractive mapping theorems in Partially ordered metric spaces, CUBO, A Mathematical Journal 22(2), 203-214 (2020).
- [38] N. Seshagiri Rao and K. Kalyani, Unique fixed point theorems in partially ordered metric spaces, Heliyon 6(11), e05563 (2020). doi.org/10.1016/j.heliyon.2020.e05563
- [39] W. Shatanawi, A. Pitea and R. Lazović, Contraction conditions using comparison functions on *b*-metric spaces, Fixed Point Theory Appl. **2014:135**, 1-11 (2014).