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Abstract: In China, Hangzhou is the first city to set up the Public Bicycle System. Now,the system has been the largest bike sharing
program in the world. The software of Hangzhou Public Bicycle System was developed by our team. Accurate and precise prediction of
public bicycle traffic flow is important in traffic planning, design, operations, etc. According to the highly complexity, nonlinearity and
uncertainty of traffic flow, a single prediction model is difficult to ensure the prediction accuracy and efficiency. To overcome the lack
of the single prediction method, this paper uses a hybrid model that combining clustering with support vector machine, by exploiting
complementary advantages of both approaches. Firstly, this method uses improved k-means algorithm to cluster the original sample
set. Secondly, the subset whose character is the most similar to the sampleset to be forecasted is chosen. Finally, a polynomial smooth
support vector machine uses the subset to forecast the public bicycle traffic flow. The experimental results show that the hybrid model
performs higher forecasting accuracy and better generalization ability.
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1. Introduction

With many cities, traffic congestion is a major problem of
public transport in Hangzhou. More and more private cars
will lead to a big traffic problem and to solve road con-
gestion more difficult. Private bicycles are difficult to be
managed and will lead to secure traffic safety. ”Too many
private cars, bicycles too chaotic” is traffic problems.

A free public bicycle system, as a part of the public
transport, the original intention to promote public bike is
to solve the ”last mile” problem. It is ”Too crowd bus ride,
too expensive taxi, too far to walk”, through the ”Bicycle-
Bus-Bicycle” convenient destination, while promoting the
city’s energy reduction of carbon emissions. In China, Hang
zhou is the first city to set up the Public Bicycle System.
Now, Hangzhou city public bike has covered near 3000
service points, a total of about 60000 bicycles. The Hangzhou
Public Bicycle System has surpassed Velib as the largest
bike sharing program in the world. Anyone of over the age
of 16 and under 70 are eligible for bicycle rental. However,
no cash is accepted at the rental service locations.

Because Hangzhou public bicycle is unattended, some-
times it is a common problem to find no bicycle to rent or
no place to return at some stations. Hangzhou Government
is determined to solve this problem. If we can forecast the
public bicycle traffic flow, we can take measures in ad-
vance. Also accurate and precise prediction of public bi-
cycle traffic flow is important in traffic planning, design,
operations, etc. In this paper, we will introduce a hybrid
model to predict the public bicycle traffic flow.

Hangzhou public bicycle system is the largest bike shar-
ing program in the world. Within the limit of our knowl-
edge, the first mention of the intelligent public bicycle traf-
fic flow prediction system appeared in this paper. The sys-
tem used a new hybrid model. The outline of this paper
is as follows. Section 2 reviews the related work of mo-
tor vehicle traffic flow prediction. Section 3 outlines the
architecture of Hangzhou Intelligent Public Bicycle Traf-
fic Flow Prediction System based on a hybrid model. Sec-
tion 4, Section 5 and Section 6 respectively describe the
three components of the hybrid model. Section 7 discusses
the experiments using the hybrid model. Conclusions are
given in Section 8.
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2. Related Work

Within the limit of our knowledge, there is very little re-
search on the public bicycle traffic flow so far, because
public bicycles are an emerging transportation tool. But re-
searchers have built many prediction models of motor ve-
hicle traffic flow. By now there are approximately 30 pre-
diction methods[1]: the dynamic traffic flow distribution
methods, the historical-mean methods, the regression anal-
ysis methods, the time series methods, the Kalman filter-
ing methods, the neural network methods, the fuzzy neu-
ral network method, the fuzzy-neural method, the nonpara-
metric regression methods, the support vector machine(SVM)
methods, etc.

Although these methods have alleviated difficulties in
traffic modeling and prediction to some extent, from a care-
ful review we can still find some problems. the histori-
cal mean methods [2], [3] and regression analysis meth-
ods [4]have common drawbacks, which suppose that traf-
fic flow and travel time are both strictly periodic and ig-
nore the uncertainty and nonlinearity of traffic flow. The
Kalman filtering methods [2]-[6] are unsuitable for pre-
dicting the traffic flow which sample interval is less than
5 min. The nonparametric regression methods [1] need a
huge historical database which occupancies many mem-
ory and takes much time to predict the traffic flow. The
neural network methods suffer from problems like the ex-
istence of local minima and the limited generalization abil-
ity. In order to improve prediction performance, the hybrid
model combined with wavelet analysis and neural network
is proposed, but accompanied with low efficiency due to
the inherent theory flaw from neural networks. SVM is a
relatively new machine learning technique which is used
for classification and regression purposes. The fact that
SVM has better generalization ability from limited sam-
ples than the traditional techniques triggered exploring this
technique for short term prediction of traffic parameters.
Studies have reported the use of SVM for traffic flow fore-
casting. When the size of the data set is large, traditional
SVM tend to perform worse when trained with the entire
data than with a set of fine-quality samples [7].

Based on these insights, we present a novel hybrid pre-
diction model that combines k-means clustering with SVM.

3. Overview

As shown in Figure 1, the architecture of Hangzhou Intelli-
gent Public Bicycle Traffic Flow Prediction System based
on a hybrid model consists of three major components:
Normalization Processing, K-means Clustering, and SVM
Predictor.

• Normalization Processing: For the convenience of
data set processing and the acceleration of program con-
vergence, normalization processing is needed.

• K-means Clustering: Before training the support vec-
tor machine, we do a preprocessing on the training data

set using k-means clustering algorithm. The preprocess-
ing can reduce the time of constructing support vector.
Clustering can divide data set into multiple clusters and
strengthen data regularity to improve the accuracy of the
system. In this component, we employ our improved k-
means clustering algorithm to solve the problems that the
traditional k-means algorithm has sensitivity to the initial
cluster centers.

• SVM Predictor: SVM will be change the actual non-
linear problem from a nonlinear to a high dimensional fea-
ture space, ingeniously solved the problem of dimension-
ality. In this component, we employ our sixth order poly-
nomial smoothing support vector machine [8].

Figure 1 System overview

4. Normalization Processing

We observe from the historical public bicycle rent-return
records) that the public bicycle traffic flow has certain reg-
ularity. One day’s traffic flow data is well correlated with
the historical data. It links to 3 days before prediction day
and the same time 2 weeks before prediction day. Let P(d,h)
is the prediction value, T(d,h) is the actual traffic flow value.
T(d-1,h) is the actual value of the day before prediction
day at the same time. T(d-2,h) is the actual value of two
days before prediction day at the same time. T(d-3,h) is the
actual value of three days before prediction day at the same
time. T(d-7,h) is the actual value of one week before pre-
diction day at the same time. T(d-14,h) is the actual value
of two weeks before prediction day at the same time.

Based on the variation regularity of some special holi-
day, we add dimension of week and dimension of holidays.
The weather is influential in public bicycle traffic flow, so
the dimension of weather is added. S(d) represents the spe-
cial holiday. W(d) represents the weather of prediction day.
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The dimension of week is coded as (W3(d),W2(d),W1(d)).
For example, (W3(d),W2(d),W1(d)) =(0,0,1) means that
the prediction day is Monday.

The problem that prediction system has to solve is to
find a optimal function that satisfies P(d,h)=f(W(d),T(d-
1,h), T(d-2,h),T(d-3,h),T(d-7,h),T(d-14,h),W3(d),W2(d),W1(d),S(d)).
To find the function f, we use k-means clustering algorithm
to preprocess and SVM to train the data set.

5. K-means Clustering

5.1. Brief review of k-means clustering

Clustering analysis of data set aims at discovering smaller,
more homogeneous groups from a large heterogeneous col-
lection of data points and it is an important unsupervised
classification technique used in identifying some inherent
structure present in a set of objects.

In some circumstances, the number of clusters, the pa-
rameter k, is known as a priori, and clustering may be for-
mulated as distributing m patterns in n-dimensional space
among k sets such that the patterns in one set are more sim-
ilar to each other than to patterns in different sets. This in-
volves minimization of some extrinsic optimization crite-
rion. Agglomerative algorithms, k-means algorithm, fuzzy
algorithms, BIRCH and CLARANS are a few of the exist-
ing clustering methods.

Among of them, the k-means algorithm is the most ba-
sically and widely used one for clustering. Random pro-
cedures are used to generate starting clustering centers at
the beginning of the k-means algorithm. However, it is
known and also can be found from the experiments pre-
sented in this paper that the efficiency of the k-means al-
gorithm largely depends on the choice of the clustering
centers (Boris Mirkin[10][11][12] has presented this opin-
ion and proposed some intuitions for selection of cluster-
ing centers, such as MaxMin for producing deviate cen-
troids, deviate centroids with anomalous pattern, intelli-
gent k-means and so on). In 2004, Shehroz S. Khan and
Amir Ahmad [13] also presented that performance of itera-
tive clustering algorithms which would converge to numer-
ous local minima depended highly on Max-Min clustering
centers and proposed a clustering center Max-Min algo-
rithm(named CCIA). Their results showed the proposed al-
gorithm could achieve better performance. Also, in 1998,
Paul S. Bradley and Usama M. Fayyad [14] had proved
that the better Max-Min starting points indeed could lead
to improved solutions for clustering problems. In order to
improve performance of the k-means method for data clus-
tering, a better centers selection algorithm is proposed in
this paper. The idea comes from partition technology ac-
cording to data distribution. Before k-means algorithm is
made, some features of data set for clustering are analyzed,
then, the beginning clusters for k-means algorithm are ob-
tained.

5.2. Improved k-means clustering algorithm

Here, we proposed an improved k-means clustering algo-
rithm to do it.

Clustering in n dimensional Euclidean space Rn is the
process of partitioning a given set of m points into a num-
ber of groups (or, clusters) based on some similarities (or
dissimilarities). The similarity establishes a rule for as-
signing patterns (points) to the domain of a particular clus-
ter center. Let the set of m points be S = x1,x2,o o o,xm
with xi being an n-dimensional vector, and k clusters be
represented by C1,C2, o o o,Ck . The basic model of de-
scribing the clustering problem is given by (can be seen in
[7])














k
⋃

i=1
Ci = S;

Ci
⋂

C j = φ , i 6= j, i, j = 1,2, · · · ,k;
Ci 6= φ , i = 1,2, · · · ,k.

(1)

The procedure of finding thek optimal clustersC1,C2, · · · ,Ck
is equivalent to findk clustering centers, denoted as{z1,z2, · · · ,zk}.
For the swatch set ofm pointsS = {x1,x2, · · ·,xm}, cluster
Ci is determined as follows

Ci = {x j | ‖x j − zi‖ ≤ ‖x j − zp‖,

p 6= i, p = 1,2, · · · ,k, x j ∈ S} (2)

where‖ · ‖ is some norm inRn, that is,Ci is the set of the
points that are the closest to the cluster centerzi.

Therefore, the clustering problem is to findk clustering
centers{z1,z2, · · ·,zk} such that the sum of the distances
of each point in the setS to one point in{z1,z2, · · ·,zk}
is minimized, that is,{z1,z2, · · ·,zk} is the solution of the
following optimization problem

min
z1,z2,···,zk

n

∑
j=1

min
1≤p≤k

‖x j − zp‖. (3)

The objective function in (3) is in general neither con-
vex nor concave, and hence it could be difficult to find
the solution by solving the problem. However, based on
Lemma 3.1 in [8], problem (3) can be reformulated into
the following constrained optimization problem

min
Z,t

n

∑
j=1

k

∑
p=1

t jp‖x j − zp‖, (4)

s.t.
k

∑
p=1

t jp = 1, t jp ≥ 0, , j = 1,2, · · ·,n, p = 1,2, · · ·,k,

wheret j p̄ = 1 if z p̄ is the closet center tox j, andt jp = 0 for
p = 1,2, · · · ,k, p 6= p̄. If multiple centers have the same
minimum distance tox j, thent jp can be nonzero between
x j and these clustering centers, and form a convex combi-
nation of this minimum distance.
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Usually, in problem (4), if we employℓ2−norm, the
following optimal problem is obtained

min
Z,t

f (z, t) =
n

∑
j=1

k

∑
p=1

t jp(
1
2
‖x j − zp‖

2
2), (5)

s.t.
k

∑
p=1

t jp = 1, t jp ≥ 0, , j = 1,2, · · ·,n, p = 1,2, · · ·,k,

andk−Means algorithm is one of the widely used cluster-
ing techniques for (5). Thek-means algorithm is an itera-
tive descent method and can be described as follows:

The k−Means Algorithm.
Step1: Generatek initial clustering centersz1,z2, · · ·,zk.
Step2: Cluster Assignment: Assign pointx j, j = 1,2, · ·
·,n, to clustersCi

with centerszi, i = 1,2, · · · ,k;
Step3: Update clustering centersz∗i =

1
|Ci|

∑
x j∈Ci

x j;

Step4: If z∗i = zi,∀i = 1,2, · · · ,k terminate, elsezi = z∗i and
go to step 2;

The k−means algorithm generally works well. How-
ever, random procedures are used to generate initial clus-
tering centers at the beginning of the traditional k-means
algorithm and the algorithm has sensitivity to the initial
cluster centers. To solve this problem, the following algo-
rithm is proposed to optimize the initial centers based on
the minimum spanning tree. The algorithm partition data
points into K initial cluster, and calculate the initial cluster
centers.

New Initial Centers Algorithm:.
Input: Data setS which containing n samples, the number
of clustersK.
Output: K initial cluster centers.
Step1: Calculate the distance of two data pointsxi and
x j(1≤ i ≤ n,1≤ j ≤ n);
Get the distance matrixD according to dist[xi, x j];
Calculate the sum of distance betweenxi and other data
point;
Calculate the average distance of data setS ;
Step2: S1=null; For i = 1 to n do if sum[xi] ¡ avg[S] then
S1=S1+xi ;
Step3: Get the distance matrixD1 according toS1;
Step4: T=null; flag[1]=True; Fori = 2 to n do flag[i]=false;
Step5: Repeat search out the edge e with the minimum
dist[xi,x j] which connecting pointxi (flag[i]=false) and
point x j (flag[ j]=true);T=T+e; flag[i]=true;
Until length(T )==n;
Step6: Split T into K subtrees according to distance de-
scending;
Step7: Calculate average value of data points in each sub-
trees and getK cluster centers.

6. SVM Predictor

6.1. SVM

SVM is a new statistical learning technique that can be
seen as a new method for training classifiers based on poly-
nomial functions, radial basis functions, neural networks,
splines or other functions. Mathematically, SVM is a pat-
tern classification problem based on a given classification
of m points in then−dimensional spaceRn, represented
by anm× n matrix A, given the membership of each data
point Ai, i = 1,2, · · · ,m in the classes 1 or -1 as specified
by a givenm×m diagonal matrixD with 1 or -1 diagonals.

This problem is given by the following model

min
(ω,γ)∈Rn+1

1
2ωT ω,

s.t. D(Aω − eγ)≥ e.
(6)

Model (6) can be seen as the original model of SVM.ω
is a vector of separator coefficients ( direction vector of
classification hyperplane),γ is an offset ( the control pa-
rameter of the distance of hyperplane plane to the origin)
ande ∈ Rm stands for a vector of ones.

The linear separating hyperplane

P = {x|x ∈ Rn,xT ω = γ}, (7)

with normalω ∈ Rn and distance |γ |
‖ω‖2

to the origin.
Mathematically, the model (6) is a quadratical program-

ming with linear inequalities constraints. The most impor-
tant thing is how to get the optimal solution of (1). One
solution method comes from duality theory. Till now, most
proposed solution methods are based on the dual method
by Lagrange multiplier[15][16].

Another method comes from the approximation solu-
tion theory. In 2001[17], Lee formulated (6) into a non-
smooth unconstrained optimization problem. They employed
smoothing method to smoothen their proposed model. Their
selected function is the integral of the sigmoid function of
neural networks. In 2005, Y.Yuan et proposed two classes
of polynomial functions[18][19]. In 2007, the spline func-
tion was introduced to smoothen the plus function[20]. In
this paper,we use an arc smoothing function to smoothen
it.

The original model of support vector machine (6) is
a special quadratic programming with linear inequalities
constraints. In order to solve it, the constraints should be
moved away from the optimal model. A slack variabley ∈
Rm is introduced to do it. With it, the primal model (6) of
SVM can be reformulated as following with norm 2

min
(ω,γ ,y)∈Rn+1+m

ν
2
‖y‖2

2+
1
2
‖ω‖2

2,

s.t. D(Aω − eγ)+ y ≥ e, (8)

y ≥ 0.

As a feasible solution of problem (8),y is given by

y = (e− (D(Aω − eγ)))+, (9)
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where the elements of the vector(a)+ is defined by

(ai)+ =

{

ai, if ai > 0,
0, if ai ≤ 0. (10)

Substitutingy into the objective function of (8) converts
problem (8) into an equivalent unconstrained optimization
problem

min
(ω,γ)∈Rn+1

ν
2
‖(e− (D(Aω − eγ)))+‖2

2+
1
2
‖ω‖2

2. (11)

This is a strongly convex minimization problem without
any constraints and exists a unique solution. However, the
objective function in (11) is not differentiable at zero which
precludes the use of existing optimization methods using
derivatives. In the next section we will introduce a smooth-
ing function with parameterk to smoothen the objective
function.

6.2. Sixth Order Polynomial Smoothing
Function

In this section, we present smoothing functions to smoothen
the first term of (11). Obviously, the plus function is not
differentiable at zero. The non-differentiability of(x)+ can
be moved away by the smoothing function.

In this paper, we proposed a new smoothing function
as following

cp(x,k,M) =







x, if x > 1
k ;

P6(x,k,M), if − 1
k ≤ x ≤ 1

k ;
0, if x <−1

k .

(12)

where

P6(x,k,M) =− k5

9M (5k−4M)x6+ k3

36M (68k−49M)x4

− k
36M (88k−47M)x2+ 1

2x+ 1
M .

Theorem 6.1. If the smoothing function have the formula-
tion as (12), then

i) For any givenx ∈ R andk ∈ Z+,M ∈ R+, cp(x,k,M)
is continuous;

ii) cp(x,k,M) is differentiable for anyx ∈ R;
iii)For any givenx ∈ R andk ∈ Z+,M ∈ R+, we have

cp(x,k,M)2− x2
+ ≤ Qmax(k,M). (13)

Proof. Since

lim
x→ 1

k
−

cp(x,k,M) = 1
k , lim

x→(− 1
k )

+
cp(x,k,M) = 0,

and

( d(cp(x,k,M))
dx )|x=− 1

k
= 0, ( d(cp(x,k,M))

dx )|x= 1
k
= 1.

The smoothing functioncp(x,k,M) is first-order con-
tinuously differentiable for anyx ∈ R. i) and ii) hold.

From the definition (12), the resultcp(x,k,M)≥ x+ is
obviously.

For x ∈ [−1
k ,

1
k ], we use the method of finding maxi-

mize function,

max
x∈[− 1

k ,
1
k ]
(cp(x,k,M)2− x2).

If the cp(x,k,M) is replaced by (12), then we have

max
x∈[− 1

k ,
1
k ]

Q(x,k,M). (14)

where

Q(x,k,M) =−C1(k,M)(kx)6+C2(k,M)(kx)4

−C3(k,M)(kx)2+ 1
2x+ 1

M ,

and
C1(k,M) = ( 5

9M − 4
9k ),

C2(k,M) = ( 68
36M − 49

36k ),
C3(k,M) = ( 88

36M − 47
36k +

1
k2 ).

Actually, the problem (14) is a basic optimal one. The
objective function of it is continuous on the interval[−1

k ,
1
k ].

According to the min-max value existence theorem. The
maximal must can be checked out. Here, we denote the
maximal of objective function on the interval[−1

k ,
1
k ] as

Qmax(k,M).
Figure 2 shows that the maximal distance between plus

and one control parameter smoothing function can be con-
trolled by the parameterM.The top blue solid line is the
smoothing function withM = k. The other blue lines are
the smoothing functions withM = k*N in turn from top
to bottom. Doted lines are the quadratic, forth polynomial
and plus functions.

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 2 Maximal distance between plus and smoothing func-
tion

If we select an enough large number M, we can make
sure that

Qmax(k,M)≤
1

20k2 .

iii) holds. The proof of Theorem 6.1 is ended.
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6.3. Solution of the Proposed Model

If we employ the sixth order smoothing function in (12),
the following unconstrained optimal model of SVM can be
obtained

min
(ω,γ)∈Rn+1

ν
2
‖cp((e− (D(Aω − eγ))),k)‖2

2+
1
2
‖ω‖2

2. (15)

Theorem 6.2. There exists a unique solutionx∗ of (11)
and a unique solutionx(k)∗ of (15).

Proof. Let

f1(x) =
ν
2
‖(e− (D(Aω − eγ)))+‖2

2+
1
2
‖ω‖2

2,

f2(x,k,M)=
ν
2
‖cp((e− (D(Aω − eγ))),k,M)‖2

2+
1
2
‖ω‖2

2.

It is obvious thatf1(x) and f2(x,k,M) are strongly con-
vex functions. The optimal solutions of (11) and (15) are
existed.

Sincecp(x,k,M)≥ (x)+, the level sets

LS( f2(x,k,M)) = {x|x ∈ Rn, f2(x,k,M)≤ S},

LS( f1(x)) = {x|x ∈ Rn, f (x)≤ S}

satisfy

LS( f2(x,k,M))⊂ LS( f1(x))⊂ {x|‖x‖2
2 ≤ 2S}, (16)

for S ≥ 0. HenceLS( f2(x,k,M)) andLS( f1(x)) are com-
pact subsets inRn. The uniqueness of these solutions comes
from the strong convexity of functionsf1(x) and f2(x,k,M)
for all k ∈ Z+.

Theorem 6.3. For anyk ∈ Z+, we have the following
inequality

‖x(k)∗− x∗‖2
2 ≤

m
2Qmax(k,M)

≤
1

40k2 m. (17)

and lim
k→∞

x(k)∗ = x∗.

Proof. It follows from the strong convexity off1(x)
and f2(x,k,M) that we have

f1(x(k)
∗)− f1(x

∗)≥ ∇ f1(x∗)(x(k)∗− x∗)+ (18)
1
2‖(x(k)

∗− x∗)‖2
2,

and

f2(x∗,k,M)− f2(x(k)∗,k,M)≥
∇ f2(x(k)∗,k,M)(x∗− x(k)∗)+ 1

2‖(x
∗− x(k)∗)‖2

2.

Since thecp(x,k,M)≥ x+ we have

f2(x,k,M)≥ f1(x)≥ 0

for all k ∈ Z+. Then, we have

‖x(k)∗− x∗‖2
2 ≤ ( f2(x

∗,k,M)− f1(x
∗))− (19)

( f2(x(k)
∗,k,M)− f1(x(k)

∗))

≤ ( f2(x
∗,k,M)− f1(x

∗))

It follows from iii) of Theorem 6.1 that

‖x(k)∗− x∗‖2
2 ≤

m
2Qmax(k,M)

≤
1

40k2 m.

Based on the above inequality, it is easy to verify that
lim
k→∞

x(k)∗ = x∗. �

Theorem 6.3 shows that the optimal solution of SVM
model (6) can be obtained by successively solving problem
(15). So we use this SVM to predict public bicycle traffic
flow.

7. Practical Application

The software of Hangzhou Public Bicycle System was de-
veloped by our team. We get all of the rent-return records
in half a year. Actually, from 1th July 2011 to 31th De-
cember 2011. We selected 20% randomly from the actual
historical records as the modeling data. The prediction re-
sult is compared with the actual result and other methods.

At first, we need to determine the weights for each di-
mension before carrying out clustering. In our application,
weight coefficients of all dimensions are shown in table
7.1. It can be seen from the table, the biggest weight is
the weather, the day before prediction day and one week
before prediction day at the same time.

Table 1 weight coefficients of all dimensions

Dimension Weight Dimension Weight
W(d) 1.000 T(d-14,h) 0.802

T(d-1,h) 1.000 W3(d) 0.330
T(d-2,h) 0.913 W2(d) 0.272
T(d-3,h) 0.783 W1(d) 0.272
T(d-7,h) 0.990 S(d) 0.504

Secondly, we do a preprocessing on the training data
set usingk−means clustering algorithm before training the
support vector machine. Through experiments, we found
that our application get the best results whenK = 24. In
this case, we get 24 clustering centers.

Finally, we use the sixth order polynomial smoothing
support vector machine to predict the public bicycle traffic
flow data.

7.1. Comparison with Actual Value

The prediction results of the intelligent public bicycle traf-
fic flow prediction system based on above methods show
as follows. We compared the prediction value with the ac-
tual value. The comparison results are shown in Figure 3,
Figure 4 and Figure 5.
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Figure 3 April 2, 2012(Monday) predictions

Figure 4 April 7, 2012(Saturday) predictions

Figure 5 May 1, 2012(May Day) predictions.

7.2. Comparison with other methods

Using the same data and the environment, we have estab-
lished the BP neural network model and the pure SVM
model. The BP neural network has three-layer structure.
Hidden layer has 12 nodes and use the S-type function.
The input layer has 10 input. The pure SVM model only

use the SVM prescribed in section VI. The comparison re-
sults of these three methods are shown in Table 2.

Table 2 Error Rate Comparison

Date BP
Error
Rate

SVM
Error
Rate

Our Hybrid
Model Error
Rate

April 3, 2012(Tuesday) 8.23% 5.17% 3.57%
T(d-1,h) 1.000 W3(d) 0.330
T(d-2,h) 0.913 W2(d) 0.272
T(d-3,h) 0.783 W1(d) 0.272
T(d-7,h) 0.990 S(d) 0.504

8. Conclusion

This paper presents a hybrid model for public bicycle traf-
fic flow prediction. In this model, there are three major
components: Normalization Processing, K-means Cluster-
ing, and SVM Predictor. For the convenience of data set
processing and the acceleration of program convergence,
normalization processing is needed. Then the hybrid model
uses our improved K-means algorithm to cluster the orig-
inal sample set. Finally, we proposed a sixth order poly-
nomial smooth support vector machine. It is used to fore-
cast the public bicycle traffic flow. Experimental results are
presented to show the effectiveness of the proposed model.
Now, an Intelligent Public Bicycle Traffic Flow Predic-
tion System based on the hybrid model has been applied
in Hangzhou.
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