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Abstract: This paper aims to use the tree-based methods for time series data forecasting and compare between Decision Tree (DT),

Random Forest (RF), Gradient Boosted Trees (GBT) and ARIMA model to predict monthly gold prices. The time series data for the

monthly gold prices was used during the period from Nov-1989 to Dec-2019, which represents 362 observations. ARIMA, DT, RF, and

GBT models were fitted based on 90% of data as training set. Then, their accuracy was compared using the statistical measure RMSE.

The results indicated that RF was better than DT, GBT and ARIMA (0,1,1) in predicting future gold prices, based on RMSE= 38.52.
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1 Introduction

Machine learning (ML) is a branch of artificial intelligence which is related to the development of algorithms that can
be learned and adapted based on data. Its name distinguishes it from human learning. It is a relatively new field that has
evolved in the computer science community[1]. Statistics and machine learning share much work, but statistics is an older
field that has evolved in the field of mathematics. The main difference between machine learning and statistics is the
assumption about the data. In statistics, we usually assume that data model is the true data generating process and try to
estimate its parameters. In machine learning, we often assume that the data has been generated from some unknown data
generating process and different learning algorithms are used to approximate it. Thus, statistics addresses models, while
machine learning deals with learning algorithms or procedures [2]. Supervised, unsupervised and reinforced learning
are the general forms of machine learning. Tree-based methods are considered as one of the best and the most used
supervised machine learning methods. Tree based methods provide higher accuracy and stability and enhance improved
interpretation of results for predictive models. They are better than linear models in mapping non-linear relationships and
are highly adaptable in solving both classification and regression problems. Time series analysis and forecasting have
been a dynamic research area over the last few decades. Different types of forecasting models have been developed, and
researchers have relied on statistical techniques to predict time series data. One of the most popular traditional approaches
used to analyze stochastic time series is the Autoregressive Integrated Moving Average (ARIMA). It is commonly used
due to the ease of understanding and interpreting the resulting models. The main assumption in the implementation of this
model is to consider the time series to be linear and following a particular known statistical distribution like the normal
distribution. However, time series data are often full of nonlinearity and irregularity, such as economic and financial time
series. To address this, Tree based methods can be used as a modern technique to overcome the problems of forecasting
non-linearity and non-stationary time series data. In this study, we will apply Decision Tree (DT), Random forest (RF)
and Gradient Boosted Trees (GBT) as modern methods of forecasting techniques and see how they could be used as an
alternative method to traditional methods. In this study, some comparisons among ARIMA, DT, RF and GBT methods
will be performed. Python software was used for building the best model for forecasting and comparing the results of these
techniques to determine the best one. These models were applied particularly in this study because comparing tree-based
methods and statistics models, focuses on data classification more than on time series data forecasting. In particular, it
focuses on extracting patterns and anomalies from data sets.
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The rest of the study is organized, as follows: Section 2 covers the related studies that have been conducted in this study.
Methodology is presented in Section 3. Results are presented in Section 4. Conclusion is presented in Section 5.

2 Related Works

The search for efficient time series forecasting techniques is profound in literature that is motivated partly by the dynamic
nature of the problem as well as the need for better results. [3] compared the performance of four different machine
learning methods, including Neural Network (NN), Decision Tree (DT), Naive Bayes (NB), and k-nearest neighbors
(KNN) in stock market prediction. The study predicts variations of market index within the next 1, 6, and 21 days. In the
mean times, the study claimed that although NN models have high accuracy, many of them are not put into practice due
to the inability of neural networks to explain its reasoning. For the results, DT with 3 classes is considered the best model
in the study. [4] compared different machine learning methods for forecasting time series from the M3 competition. The
study showed better predictive performances using multilayer perceptron and Gaussian process methods. However, the
study did not compare machine learning methods with traditional approaches, such as exponential smoothing or ARIMA.
[5] compared the performance of two machine learning methods: Artificial Neural Networks (ANNs) and Support Vector
Machine (SVM). Moreover, the Box-Jenkins Approach and the Autoregressive Integrated Moving Average (ARIMA)
model were utilized to predict the demand for consumer products in modelling time series data based on modelling
accuracy. The study revealed that the SVM method had a better forecast accuracy (in terms of MAPE) than ANN and
ARIMA. [6] used decision tree and support vector regression (SVR) to develop a forecasting model for forecasting gold
prices based on past historical prices of gold. The results showed that the decision tree takes less time to process the
data and has less mean square error than the SVM. [7] developed a model for forecasting gold price using sample data
in US$ per ounce from January 02, 2003 to March 1, 2012. Data was generated until January 02, 2012 to develop the
model, whereas the rest the of data was used in forecasting the gold price and determining the accuracy of the model.
The study used Box-Jenkins methodology for building ARIMA model and suggested ARIMA (0, 1, 1) being the most
suitable model to forecast the gold price. Forecasting accuracy, Root Mean Square Error, Mean Absolute Error, and
Mean Absolute Percentage Error were calculated to choose the best model. [8] elaborated on a study that used nine types
of infectious disease data collected by a national public health surveillance system in China to evaluate and compare
the performances of two decomposition methods of regression and exponential smoothing, ARIMA and support vector
machine (SVM). The 2005 to 2011 and 2012 data were used for modeling and forecasting the samples respectively.
Their performances were evaluated according to mean absolute error (MAE), mean absolute percentage error (MAPE),
and mean square error (MSE) and the accuracy in forecasting future epidemic disease that proved their effectiveness in
epidemiological surveillance. Although the comparisons found that no single method to be superior, the current study has
emphasized that the SVM outperforms the ARIMA model and decomposition methods in most cases. [9] compared several
statistical methods including ARIMA, naive, exponential smoothing, and theta, among others with machine learning
methods, including different types of neural networks, the nearest neighbors method, a decision tree, support vector
regression and Gaussian processes. The results suggest that most of the statistical methods outperform machine learning
methods for univariate time series forecasting.

3 Proposed Methodology

In this section, the dataset and the proposed methods to predict future values for the same time series of the monthly gold
price are introduced. First, the dataset will be introduced, then predictive models will be explained.

3.1 Dataset

The dataset used in our study is based on monthly gold prices. It was obtained from the index Mundi website
www.indexmundi.com from Nov-1989 to Dec 2019.This means that we have 362 observations for the monthly gold
price. To evaluate the out-of-sample forecasting ability of the various models, some observations at the end of the sample
period are not used in estimating the models. Thus, there are two periods in the analysis: a training series which is
composed of 90% of the dataset in the period (Nov-1989 to Nov-2016) and a test series which contains the remaining
10% of the set in the period (Dec. 2016 to Dec. 2019). Table 1 represents some descriptive statistics of the training series
of a monthly gold price.
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3.1.1 Descriptive Statistics for the Monthly Gold Price

Table 1 shows that the mean of the training series equals 673.95, the median of the time series is 393.06, the maximum
number of gold price is 1772.14 per month, the minimum number of gold price is 256.08 per month, and the standard
deviation of time series is 451.01. It also shows that the Skewness for gold price is small (=0.96) and close to zero which
implies that the distribution of the data is approximate normal. Moreover, Kurtosis is a negative coefficient of -0.53, and
the number of observations is 325.

Table 1: Descriptive Statistics for Training Series of the Monthly Gold Price

Statistics Value

Observations 325

Min 256.08

Median 393.06

Mean 673.95

Max 1772.14

Standard deviation 451.01

Skewness 0.96

Kurtosis -0.53

Table 2 represents some descriptive statistics of the testing series of a monthly gold price. The mean of the test series
equals 1302.4, the median of the time series is 1283.04, the maximum number of gold price is 1510.58 per month, the
minimum number of gold price is 1157.36 per month, and the standard deviation of time series is 90.93. Also, the skewness
for gold price is small (=1.03) and close to zero which indicates that the distribution of the data is approximate normal.
Moreover, kurtosis is a positive coefficient of 0.45, and the number of observations is 37.

Table 2: Descriptive Statistics for Test Series of the Monthly Gold Price.

Statistics Value

Observations 37

Min 1157.36

Median 1283.04

Mean 1302.4

Max 1510.58

Standard deviation 90.93

Skewness 1.03

Kurtosis 0.45

3.1.2 Data Plot

Fig.1 depicts the price of gold on the y-axis against the equally-spaced time intervals (i.e. months) on the x-axis. It is used
to evaluate patterns, knowledge of the general trend, and data behavior over time. The positive trend of data is clear.

3.2 Predictive Models

3.2.1 ARIMA models

ARIMA model is represented by three parameters: p order of an autoregressive component (AR), d order of differencing,
and q order of a moving average component. ARIMA model takes historical data and decomposes that data into an
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Fig. 1: Time Series Plot of the Monthly Gold Price - US Dollars per Troy Ounce 1989 to 2019

autoregressive (AR) process which maintains memory of past events, an Integrated (I) process which makes data stationary
for easy forecast and a moving average (MA) process of forecast errors. The p order autoregressive process, AR(p), is
simply the linear relationship between a dependent variable and its own lag [10]. The AR(p) can be expressed as:

yt = Φ +θ1yt−1 +θ2yt−2 + .....+θpyt−p + εt (1)

where p is the lag order and t = (1,2,....,n)

Similarly, the q order moving average process, MA(q), can be expressed as:

yt = Φ + εt −λ1εt−1 −λ2εt−2 − ...−λqεt−q (2)

Where q is the lag order of the error term εt .

Combining the AR(p) and MA(q) models, we can express an ARMA(p,q) model as:

yt = Φ +θ1yt−1 +θ2yt−2 + .....+θpyt−p + εt −λ1εt−1 −λ2εt−2 − ...−λqεt−q (3)

The ARMA model assumes that the time series data is stationary (that is statistical properties of data do not change
over time). But usually the real data are not stationary in nature. Differencing process is usually used to make time series
data stationary. The first order differencing process of time series yt is defined as △yt = yt − yt−1 . For example, if yt is
non-stationary series, we will take a first-difference of yt , so △yt becomes stationary. Then, the ARIMA (p, 1, q) model
is:

∆yt = Φ +θ1∆yt−1 +θ2∆yt−2 + .....+θp∆yt−p + εt −λ1εt−1 −λ2εt−2 − ...−λqεt−q (4)

* The Box-Jenkins Approach

Box-Jenkins is a set of approaches for time series analysis and for finding out the best fit for ARIMA models. This
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includes four stages in building and assessing Box-Jenkins time series model [11] . Fig. 2 shows the four stages of
modeling according to this approach.

Fig. 2: Box-Jenkins Modeling Approach

• The Box-Jenkins Approach to Fitting ARIMA Model for the monthly gold price

1. identification:

The first step in developing a Box-Jenkins model is to make sure that the series is stationary and identifying seasonality
in the series, and using the plots of the Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF)
of the series to find out the appropriate values of p, d, q of the order of general ARIMA model. Fig.1 indicates that there
is a general tendency in the data, so the time series is not a stationary. For further investigation of the stationarity of the
time series, Augmented Dickey-Fuller (ADF), Dickey-Fuller (DF), Philips-Perron (PP), and
Kwiatkowski-Philip-Schmidt-Shin (KPSS) tests were applied for the training series. The null hypothesis of ADF and PP
tests is that the data are non-stationary. Therefore, large p-values indicate the data non-stationarity while small p-values
imply the reverse. Using the usual 5% threshold, differencing is required if the p-value is greater than 0.05. The popular
unit root test KPSS has reversed hypotheses, so its null hypothesis assumes the data are stationary. In this case, small
p-values (e.g., less than 0.05) indicate that differencing is required. The results of applying KPSS, ADF, PP, and DF tests
are shown in Table 3.

Table 3: P-values for KPSS, ADF, PP, and DF Tests for Training Series.

Test ADF DF KPSS PP

P-Value 0.91 0.81 0 0.91

As shown in Table 3, the p-value of KPSS test is 0.00 which is less than p = 0.05. On the other hand, the p-value of
ADF test is 0.91, DF test is 0.81, and PP test is 0.91 which are greater than p = 0.05. The results indicate that the training
series for the monthly gold price is not stationary. Fig.3 is also useful for identifying non-stationary time series where
ACF and PACF of the data decreases slowly which indicates non-stationarity of data [12]. All the above results and plots
confirm that the training series data are not stationary.
As shown in Fig.3, the identification of AR model is often best done with PACF, while MA model can be best identified
with ACF. ACF has significant autocorrelations at lag 1 which leads to MA (1). The PACF plot shows definite significant
values at lag 1 that leads to AR(1).

c© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


234 E. A. Rady et al.: Time Series Forecasting Using ...

Fig. 3: ACF and PACF for Training Series for the Monthly Gold Price

• Achieving Stationarity of the Series

Table 3 illustrates that the training series of monthly gold price is not stationary. First, differencing is required for the
training series of monthly gold price. To examine if another differencing is needed, ADF, DF, KPSS, and PP tests were
applied. The results of these tests are listed in Table 4.

Table 4: P-values for KPSS, ADF, PP, and DF Tests for Training Series.

Test ADF DF KPSS PP

P-Value 0 0 0.14 0

As seen in Table 4, the p-value of KPSS is 0.14 which is greater than 0.05, while the p-values of ADF, PP, and DF are
0.00 which is less than 0.05, so there is no need for a second differencing. Thus, the first difference removes the trend
and becomes stationary. The general upward trend has also disappeared. The plot of the data after taking the first
difference of the training series for the monthly gold price is shown below in Fig. 4.
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Fig. 4: Time Series Plot of the first difference of the training series for the monthly gold price

To decide the degree of the model, values of p, d, q, two different methods were used as illustrated below:

Degree of Differencing: From the above results and as shown in Table 4 and Fig. 4, we have to differentiate the data
only once. Thus, ARIMA (p,d,q) model with d = 1 will be used to represent the process.

Finding p and q: for determining the values of p and q, Fig. 3 depicts that ACF has significant autocorrelations at
lag 1 which leads to MA (1). The PACF plot shows definite significant values at lag 1 that leads to AR(1). These tools
are important in the identification stage since they evaluate the statistical relationship between observations in a univariate
time series. The tentative ARIMA model based on the ACF and PACF plots is ARIMA (1, 1, 1). After selecting the model
parameters values to be ARIMA (1, 1, 1), different ARIMA (p, d, q) models are fitted to find out the best model for
the monthly gold price. Moreover, to choose the best model for the data, the estimated model should be compared with
other ARIMA models. The two common criteria, Bayesian Information Criteria (BIC) and Akaike’s Information Criterion
(AIC), are defined by:

BIC = ln(n)m− 2ln(L̂) (5)

and

AIC = 2n− 2ln(L̂) (6)

Where (L̂) denotes the maximum value of the likelihood function for the model, m is the number of parameters
estimated by the model, and n is the number of observations. The best model that has smaller AIC and BIC because of
the number of parameters is the smallest. Different models associated with accuracy criteria are listed in Table 5.
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Table 5: The Values of (AIC, BIC) for Different ARIMA Models.

Model AIC BIC

ARIMA (0, 1, 0) 3153.97 3161.47

ARIMA (1, 1, 0) 3145.82 3157.17

ARIMA (0, 1, 1) 3144.9 3156.24

ARIMA (1, 1, 1) 3145.55 3160.67

ARIMA (0, 1, 2) 3146.49 3161.62

ARIMA (1, 1, 2) 3146.13 3165.03

According to the results in Table 5, the best model is ARIMA (0, 1, 1) because the model has the smallest values of
AIC and BIC criteria suggesting that the ARIMA (0, 1, 1) model is the best one. Therefore, the ARIMA (0, 1, 1) is the
most suitable model that can be obtained for the training series of a monthly gold price.

2. Parameters Estimation:

After getting the appropriate value of p, d, q, the next stage is to find the values of the coefficients that best fit the
selected ARIMA model. The most common methods use non-linear least-squares estimation or Maximum Likelihood
Estimation (MLE).
We concluded that the ARIMA (0, 1, 1) model is the best model with the smallest values of AIC and BIC. Modeling
results of an ARIMA (0, 1, 1) process have been estimated by MLE and the following model was obtained: ARIMA (0,
1, 1); coefficient MA1= 0.1923. Investigating the results of these estimates shows that all the coefficients are significant
and the diagnostic check of the parameter estimates suggests that this model is suitable. Thus, the tentatively identified
ARIMA model is as in Eq. 7.

Table 6: Parameter estimates of ARIMA (0, 1, 1) model.

Variable Estimate Standard Error t-statistic P-value

Constant 2.6017 0.217 2.379 0.019

MA(1) 0.1923 0.057 3.372 0.001

yt =C+ yt−1 + εt +θεt − 1, εt ∼W N(0,1), |θ |< 1 (7)

From Table 6 and Eq. 7, we can write the estimated model as:

yt = 2.6017+ yt−1+ εt − 0.1923εt−1 (8)

3. Diagnostic of the Model:

It is the most important step to modeling ARIMA model in time series. In this step, we test whether the estimated
parameters and residuals of the fitted ARIMA model are significant. The estimated errors of an estimated ARIMA model
should resemble a white noise process if the model is correct.
Before we accept a fitted model and interpret its findings, it is essential to check whether the model is correctly specified
, i.e. whether the model assumptions are supported by data. We must check the residuals of our model.
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Fig. 5: Diagnostic Plots for the Residuals of the ARIMA (0, 1, 1) Model

Fig. 5 depicts three diagnostic tools for the fitted ARIMA (0, 1, 1) model that are the residuals, sample ACF and PACF of
the residuals, for a whole range of values of K from 2 to 12. These suggest that the ARIMA (0, 1, 1) model fits the gold
price time series. It can be concluded that the model of ARIMA (0, 1, 1) is the best model and can forecast the gold price
quite good.

4. Forecasting:
Since ARIMA (0, 1, 1) model is fitted to the gold price data, we can use Eq. 8 directly to forecast gold price data for the
testing data. In Table 7, the comparison of forecast values with actual data for the gold price for 37 months is displayed.
Fig. 6 represents the plot of data and forecasts with 95% confidence interval where the series of the forecasted values
follow the same behavior as the original series of the monthly gold price. Table 7 shows the results which illustrate the
forecasts of 37 values of the time series and compare them with the last 37 actual values with 95% forecast limits.
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Fig. 6: Plot of the Data and the Forecasts with 95% Confidence Interval

Table 7: Observed and Forecasted Values of Gold Price using the ARIMA Model.

Month Forecast Actual Month Forecast Actual

Dec-2016 1237.24 1157.36 Jul-2018 1286.68 1237.71

Jan-2017 1239.85 1192.1 Aug-2018 1289.28 1201.71

Feb-2017 1242.45 1234.2 Sep-2018 1291.88 1198.39

Mar-2017 1245.05 1231.42 Oct-2018 1294.48 1215.39

Apr-2017 1247.65 1266.88 Nov-2018 1297.08 1220.65

May-2017 1250.25 1246.04 Dec-2018 1299.68 1250.4

Jun-2017 1252.85 1260.26 Jan-2019 1302.28 1291.75

Jul-2017 1255.46 1236.84 Feb-2019 1304.89 1320.07

Aug-2017 1258.06 1283.04 Mar-2019 1307.49 1300.9

Sep-2017 1260.55 1314.07 Apr-2019 1310.09 1285.91

Oct-2017 1263.26 1279.51 May-2019 1312.69 1283.7

Nov-2017 1265.86 1281.9 Jun-2019 1315.29 1359.04

Dec-2017 1268.46 1264.45 Jul-2019 1317.9 1412.89

Jan-2018 1271.07 1331.3 Aug-2019 1320.5 1500.41

Feb-2018 1276.67 1330.73 Sep-2019 1323.1 1510.58

Mar-2018 1276.27 1324.66 Oct-2019 1325.7 1494.81

Apr-2018 1278.87 1334.76 Nov-2019 1328.3 1470.79

May-2018 1281.47 1303.45 Dec-2019 1330.9 1479.13

Jun-2018 1284.07 1281.57 - - -

3.2.2 Decision Tree

A decision trees (DT) is one of the simplest and most useful supervised machine learning structures that use a tree like
model for decisions. Decision trees build regression or classification problems in the form of a tree structure. It breaks
down the data into smaller subsets that contain similar values, while at the same time an associated decision tree is
incrementally developed [13]. The final result is a tree with a root node, internal nodes and leaf nodes. Internal nodes
contain one of the possible input variables (features) available at that point in the tree. The selection of input variable
is chosen using information gain or impurity for classification problems and standard deviation reduction for regression
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problems. The leaves represent labels/predictions. In this study, decision tree method is applied for regression problems
where variance reduction is employed for selection of variables in the internal nodes. First, variance of root node is
calculated using Eq. 9, then variance of features is calculated using Eq. 10 to construct the tree.

σ2 =
∑

n
i=1(xi − x̄)2

n
(9)

In Eq. 9, n is the total number of samples and is the mean of the samples in the training set. Calculating variance of
the root node, we calculate variance of input variables, as follows:

σ2
X = ∑

cεX

P(C)σ2 (10)

In Eq. 10, X is the input variable and P(c) is probability of the distinct values of this feature. Input variable that has
the minimum variance or largest variance reduction is selected as the best node as shown in Eq. 11:

Vrx = σ2 −σ2
x (11)

Finally, leaves represent the average values of instances with bootstrapping method. This process continues
recursively until variance of leaves gets smaller than a threshold or all input variables are used. Once a tree has been
constructed, new instance is tested by asking questions to the nodes in the tree. When getting a leaf, value of that leaf is
taken as prediction.
To construct the DT model for gold price, the largest variance reduction was achieved using decision trees over 5-class
classification.

* Forecasting using Decision Tree algorithm

In Fig. 7 and Table 8, the comparisons of the forecast values with actual data for gold price are shown.

Fig. 7: Actual and Forecast results by Decision Tree
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Table 8: Observed and Forecasted Values of Gold Price using Decision Tree.

Month Forecast Actual Month Forecast Actual

Dec-2016 1209.15 1157.36 Jul-2018 1283.35 1237.71

Jan-2017 1128.87 1192.1 Aug-2018 1209.15 1201.71

Feb-2017 1209.15 1234.20 Sep-2018 1209.15 1205.92

Mar-2017 1209.15 1231.42 Oct-2018 1209.15 1215.39

Apr-2017 1209.15 1266.88 Nov-2018 1209.15 1220.65

May-2017 1283.35 1246.044 Dec-2018 1209.15 1250.4

Jun-2017 1283.35 1260.26 Jan-2019 1283.35 1291.75

Jul-2017 1283.35 1236.84 Feb-2019 1283.35 1320.07

Aug-2017 1283.35 1283.04 Mar-2019 1283.35 1300.9

Sep-2017 1283.35 1314.07 Apr-2019 1283.35 1285.91

Oct-2017 1283.35 1279.51 May-2019 1283.35 1283.7

Nov-2017 1236.55 1281.9 Jun-2019 1283.35 1359.04

Dec-2017 1283.35 1264.45 Jul-2019 1352.70 1412.89

Jan-2018 1283.35 1331.3 Aug-2019 1352.70 1500.41

Feb-2018 1283.35 1330.73 Sep-2019 1507.61 1510.58

Mar-2018 1283.35 1324.66 Oct-2019 1507.61 1494.81

Apr-2018 1283.35 1334.76 Nov-2019 1507.61 1470.79

May-2018 1283.35 1303.45 Dec-2019 1507.61 1479.13

Jun-2018 1283.35 1281.57 - - -

The results shown in Fig. 7 and Table 8 indicate that the tendencies of the predicted value curve are basically near to
those of the actual value one, and the predicted values fit the actual ones very well.

3.2.3 Random Forest

Random forest (RF) is a type of meta learner that uses number of decision trees for both classification and regression
problems [14]. The features and samples are drawn randomly for every tree in the forest that are trained independently.
Each tree is generated using bootstrap sampling method. Bootstrapping relies on sampling with replacement. Given a
dataset D with N samples, a training data set of size N is created by sampling from D with replacement. The remaining
samples in D that are not in the training set are separated as the test set. This kind of sampling is called bootstrap sampling.
The probability of an example not being chosen in the dataset that has N samples is:

Pr = 1−
1

N
(12)

The probability of being in the test set for a sample is:

Pr = (1−
1

N
)Nexp−1 = 0.3673 (13)

Every tree has a different test set and this set consists of totally 63.27% of data. Samples in the test set are called
out-of-bag data. On the other hand, every tree has different features which are selected randomly. While selecting nodes
in the tree, only a subset of the features is selected and the best one is chosen as separator node from this subset. Then
this process continues recursively until a certain error rate is reached. Each tree is grown independently to reach the
specified error rate.
To construct the RF model for gold price, minimum root mean squared error was achieved using random forest with 200
trees in the first level.

Forecasting using Random forest algorithm

In Fig. 8 and Table 9, the comparisons of the forecast values with actual data for gold price are shown.
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Fig. 8: Actual and Forecast results by Random forest

Table 9: Observed and Forecasted Values of Gold Price using Random forest.

Month Forecast Actual Month Forecast Actual

Dec-2016 1273.11 1157.36 Jul-2018 1296.53 1237.71

Jan-2017 1163.79 1192.1 Aug-2018 1234.38 1201.71

Feb-2017 1205.86 1234.2 Sep-2018 1223.61 1198.39

Mar-2017 1224.82 1231.42 Oct-2018 1206.44 1215.39

Apr-2017 1222.31 1266.88 Nov-2018 1222.76 1220.65

May-2017 1262.24 1246.04 Dec-2018 1221.45 1250.4

Jun-2017 1253.79 1260.26 Jan-2019 1251.30 1291.75

Jul-2017 1263.11 1236.84 Feb-2019 1295.30 1320.07

Aug-20178 1230.09 1283.04 Mar-2019 1299.35 1300.90

Sep-2017 1296.24 1314.07 Apr-2019 1299.57 1285.91

Oct-2017 1299.29 1279.51 May-2019 1296.55 1283.7

Nov-2017 1295.60 1281.9 Jun-2019 1296.24 1359.04

Dec-2017 1296.95 1264.45 Jul-2019 1345.56 1412.89

Jan-2018 1264.78 1331.3 Aug-2019 1395.85 1500.41

Feb-2018 1301.67 1330.73 Sep-2019 1517.15 1510.58

Mar-2018 1301.46 1324.66 Oct-2019 1534.31 1494.81

Apr-2018 1299.79 1334.76 Nov-2019 1507.05 1470.79

May-2018 1305.22 1303.45 Dec-2019 1507.05 1479.13

Jun-2018 1299.63 1281.57 - - -

The results shown in Fig. 8 and Table 9 indicate that the tendencies of the predicted value curve are basically near to those
of the actual value one, and the predicted values fit the actual ones very well.
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3.2.4 Gradient Boosted Trees

The gradient boosted trees (GBT) method is an ensemble learning method that combines a large number of decision
trees to produce the final prediction [15]. Boosting indicates that the model is built using a boosting process. Boosting
is built on the principle that a collection of weak learners can be combined to produce a strong learner, where a weak
learner is defined as a hypothesis function that can produce results only slightly better than chance and a strong learner
is a hypothesis with an "arbitrarily high accuracy". The hallmark of all boosting methods is the additive training method
which adds a new weak learner to the model in each step. In the case of gradient boosted tree, the weak learner is a new
decision tree. This is shown in Eq.14, where F(x) is our full model after t-1 rounds and h(x) is the new tree we add to the
model.

Ft(x) = Ft−1(x)+ h(x) (14)

GBT are similar to random forest models, but the difference is that trees are built successively. With each iteration,
the next tree fits the residual errors from the previous tree to improve the fit.
The results shown in Fig.9 and Table 10 indicate that the tendencies of the predicted values are identical to those of the
actual value one, and the predicted values fit the actual ones very well.
Forecasting using Gradient Boosted Trees algorithm
In Fig. 9 and Table 10, the comparisons of the forecast values with actual data for gold price are shown.

Fig. 9: Actual and Forecast results by Gradient Boosted Trees
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Table 10: Observed and Forecasted Values of Gold Price using the GBT Model.

Month Forecast Actual Month Forecast Actual

Dec-2016 1250.43 1157.36 Jul-2018 1297.22 1237.71

Jan-2017 1189.72 1192.1 Aug-2018 1234.44 1201.71

Feb-2017 1208.91 1234.2 Sep-2018 1222.44 1198.39

Mar-2017 1202.86 1231.42 Oct-2018 1205.15 1215.39

Apr-2017 1203.46 1266.88 Nov-2018 1207.90 1220.65

May-2017 1255.52 1246.04 Dec-2018 1215.28 1250.40

Jun-2017 1247.87 1260.26 Jan-2019 1241.44 1291.75

Jul-2017 1259.28 1236.84 Feb-2019 1287.00 1320.07

Aug-2017 1222.68 1283.04 Mar-2019 1285.59 1300.90

Sep-2017 1280.88 1314.07 Apr-2019 1279.68 1285.91

Oct-2017 1293.17 1279.51 May-2019 1278.60 1283.70

Nov-2017 1288.12 1281.9 Jun-2019 1285.09 1359.04

Dec-2017 1293.35 1264.45 Jul-2019 1355.06 1412.89

Jan-2018 1256.08 1331.3 Aug-2019 1385.44 1500.41

Feb-2018 1303.89 1330.73 Sep-2019 1490.04 1510.58

Mar-2018 1290.86 1324.66 Oct-2019 1536.68 1494.81

Apr-2018 1282.79 1334.76 Nov-2019 1516.42 1470.79

May-2018 1294.02 1303.45 Dec-2019 1510.06 1479.13

Jun-2018 1301.04.57 1281.57 - - -

The results shown in Fig. 9 and Table 10 indicate that the tendencies of the predicted value curve are basically near to
those of the actual value one, and the predicted values fit the actual ones very well.

Evaluation methods for gold price forecasting

We used Root Mean Squared Error (RMSE) to evaluate model performances. It is square root of the summation of
differences between actual and predicted values. RMSE is frequently used in time series analysis. RMSE can be
calculated as shown in Eq. 15.

RMSE =

√

∑
n
i=1(yi − ŷi)2

n
(15)

Where yi is the actual value and ŷi is the predicted value and n is the number of observations [16].

4 Results

Table 11 presents accuracy measure results for the ARIMA, DT, and RF Models. The smaller the (RMSE) values, the
better the performance and the predicted values are closer to the actual values.

Table 11: A Comparison of the Performance Criteria for the Models ARIMA, DT and RF.

Model ARIMA (0,1,1) DT RF GBT

RMSE 75.46 43.70 38.52 43.26

The minimum accuracy measure (RMSE) of monthly gold price time series define the best model.The
above-mentioned table indicates the following:
1. RF model performs better than the GBT model using (RMSE).
2. RF model performs better than the DT model using (RMSE).
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3. RF model performs better than the ARIMA model using (RMSE).
4. GBT model performs better than the DT model using (RMSE).
5. GBT model performs better than the ARIMA model using (RMSE).
6. DT model performs better than the ARIMA model using (RMSE).

5 Conclusion

The present paper aimed to construct the best (ARIMA, DT, RF and GBT) models for the time series data of a monthly
gold price from Nov-1989 to Dec 2019 and compare between models to see which one is better in forecasting the monthly
gold price. The results of applying the ARIMA, DT, RF and GBT methods were compared through the (RMSE) results.
From this study, it can be concluded from the presented discussion that results of RF were more accurate (with the lowest
RMSE) and RF was more efficient forecasting technique for monthly gold price than DT, GBT and ARIMA models. In
the future, we intend to improve our results using a hybrid method of ARIMA and Tree Based Methods to benefit from
the qualities of both models.
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