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Abstract: In this paper, we have derived explicit expressions and some recurrence relations for single and product moments of dual

generalized order statistics from extended Erlang-truncated exponential distribution. These relations are used to discuss the special cases

of dual generalized order statistics viz. order statistics and lower record values. Further, we have also characterized this distribution

using conditional moments and recurrence relations for single moments of dual generalized order statistics.
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1 Introduction

The concept of generalized order statistics was introduced by Kamps (1995) as the unified approach of models of ordered
random variables. The model of gos contains special cases as order statistics, sequential order statistics and record values.
Pawlas and Szynal (2001) introduced the concept of lower generalized order statistics (lgos), which was further studied
by Burkschat et al. (2003) as a dual generalized order statistics (dgos). The dgos models enable us to study decreasingly
ordered random variables such as reversed order statistics, k−th lower record values and lower Pfeiffer’s records, through
a common approach as follows:
Let n ∈ N, k ≥1, then m̃ =(m1,m2, . . . ,mn−1) ∈ ℜn−1 be the parameters such that γr = k+ n− r+Mr, Mr = ∑n−1

j=r m j, for

1 ≤ r ≤ n. By the dgos from an absolutely continuous distribution function (df ) F() with the probability density function
(pdf ) f () we mean random variables X∗(1,n,m,k),X∗(2,n,m,k), . . . ,X∗(n,n,m,k), having a joint density function of the
form

k

(
n−1

∏
j=1

γ j

)(
n−1

∏
i=1

[F(xi)]
mi f (xi)

)
[F(xn)]

k−1
f (xn), (1)

on the cone F−1(1)> x1 ≥ x2 ≥ . . . . > F−1(0).
There are two cases of dgos given as:
case I. mi = m j = m, i, j = 1,2, . . . ,n− 1.
case II. γi 6= γ j, i 6= j, i, j = 1,2, . . . ,n− 1.
If mi = m j = m , the corresponding dgos is called m-dgos. In this paper, we have considered the case I.
The pdf of r− th dgos X∗(r,n,m,k),1 ≤ r ≤ n is

fX∗(r,n,m,k)(x) =
Cr−1

(r− 1)!
[F(x)]γr−1

f (x)gr−1
m (F(x)) . (2)
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The joint pdf of X∗(r,n,m,k) and X∗(s,n,m,k),1 ≤ r < s ≤ n is

fX∗(r,n,m,k),X∗(s,n,m,k)(x,y) =
Cs−1

(r− 1)!(s− r− 1)!
[F(x)]m f (x)gr−1

m (F(x))

× [hm(F(y))− hm(F(x))]
s−r−1 [F(y)]γs−1 f (y), x > y. (3)

where

Cr−1 =
r

∏
i=1

γi, hm(x) =

{
− 1

m+1
(x)m+1, m 6= 1

− ln(x), m =−1

and

gm(x) = hm(x)− hm(1), x ∈ [0,1) .

If m = 0 and k = 1, then X∗(r,n,m,k) reduces to (n− r+ 1)−th order statistics, and when m =−1, X∗(r,n,m,k) reduces
to the k−th lower record values.
Many authors have utilized the concept of dgos in their work. References are Ahsanullah (2005), Mbah and Ahsanullah
(2007), Khan et al. (2008), Khan and Kumar (2010, 2011), Khan et al. (2012), Khan and Khan (2015), Khan and Iqrar
(2019) and many more.
A random variable X is said to have extended Erlang-truncated exponential distribution if its pdf is given by

f (x) = αβ
(

1− e−λ
)

e−β (1−e−λ )x
(

1− e−β (1−e−λ)x
)α−1

, x > 0, α, β , λ > 0 (4)

with the df

F(x) =
(

1− e−β (1−e−λ)x
)α

, x > 0, α, β , λ > 0. (5)

Using (4) and (5), we get

f (x)

F(x)
=

αβ
(
1− e−λ

)

eβ (1−e−λ )x − 1
. (6)

The extended Erlang-truncated exponential distribution has been introduced by Okorie et al. (2017) as a new life time
distribution. This distribution is useful for analysing decreasing and unimodal data sets. The hazard rate function of this
distribution could be increasing, decreasing or constant, depending upon the values of shape parameter (α).
The remaining part of the paper organized as follows. In section 2, we have presented the exact expressions and recurrence
relations for single moments of dgos and also discussed the special cases for these relations. In section 3, exact expressions
and recurrence relations are presented for product moments of dgos, and we also discuss the special cases for these
relations. The relations presented in sections 2 and 3 generalized the results given by Khan and kumar (2011). In section
4, we have discussed the characterizing results using conditional moments and recurrence relation for single moments of
dgos.

2 Relations for Single Moments

In this section, the exact expressions and recurrence relations for single moments of dgos are deduced.
Theorem 2.1. For the distribution given in (4) and 1 ≤ r ≤ n, k = 1,2, . . . , m 6=−1,

E
[
X∗ j(r,n,m,k)

]
=

Cr−1[
β (1− e−λ)

] j
(r− 1)!(m+ 1)r−1

∞

∑
p=0

r−1

∑
u=0

(−1)u

(
r− 1

u

)
αp( j)

γr−u +( j+ p)/α
. (7)

Proof. Using (2), we have

E
[
X∗ j(r,n,m,k)

]
=

Cr−1

(r− 1)!

∫ ∞

0
x j [F(x)]γr−1

f (x)gr−1
m (F(x))dx.
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On expanding gr−1
m (F(x)) =

{
1

m+1
(1− (F(x))m+1)

}r−1
binomially, we get

E
[
X∗ j(r,n,m,k)

]
=

Cr−1

(r− 1)!(m+ 1)r−1

r−1

∑
u=0

(−1)u

(
r− 1

u

)∫ ∞

0
x j [F(x)]γr−u−1

f (x)dx. (8)

Substituting [F(x)]1/α = z in (8), we get

E
[
X∗ j(r,n,m,k)

]
=

αCr−1[
β
(
1− e−λ

)] j
(r− 1)!(m+ 1)r−1

r−1

∑
u=0

(−1)u

(
r− 1

u

)∫ 1

0
[− log(1− z)] j

zαγr−u−1dz. (9)

we have the logarithmic expansion

[− ln(1− t)] j =

(
∞

∑
p=1

t p

p

) j

=
∞

∑
p=0

αp( j)t j+p, (10)

where αp( j) is the coefficient of t j+p in the above expansion (see Balakrishnan and Cohen (1991)).
Using (10), (9) can be expressed as

E
[
X∗ j(r,n,m,k)

]
=

αCr−1[
β
(
1− e−λ

)] j
(r− 1)!(m+ 1)r−1

∞

∑
p=0

r−1

∑
u=0

(−1)uαp( j)

(
r− 1

u

)∫ 1

0
zαγr−u+ j+p−1dz. (11)

On simplifying (11), we obtain the required result.
Identity 2.1. For γr ≥ 1, k ≥ 1 and m 6=−1,

r−1

∑
u=0

(−1)u

(
r− 1

u

)
1

γr−u

=
(r− 1)!(m+ 1)r−1

∏r
t=1 γt

. (12)

Proof. This identity can be proved by setting j = 0 and p = 0 in (7).
Special cases:
(i). Putting m = 0 and k = 1 in (7), we get the explicit expression for the moments of order statistics from extended
Erlang-truncated exponential distribution as given below

E(X
j

n−r+1:n) =
Cr:n[

β
(
1− e−λ

)] j

∞

∑
p=0

r−1

∑
u=0

(−1)u

(
r− 1

u

)
αp( j)

(n− r+ u+ 1)+ ( j+ p)/α
,

where Cr:n =
n!

(r−1)!(n−r)! .

(ii). For m =−1, we see that (7) is in indeterminate form as

r−1

∑
u=0

(−1)u

(
r− 1

u

)
= 0 (see Balakrishnan and Cohen (1991)).

From (7),

E
[
X∗ j(r,n,m,k)

]
=

Cr−1[
β
(
1− e−λ

)] j
(r− 1)!

∞

∑
p=0

r−1

∑
u=0

(−1)u

(
r− 1

u

)

×
αp( j)((k+(n− r+ u)(m+ 1))+ ( j+ p)/α)−1

(m+ 1)r−1
. (13)

Since (7) is in the indeterminate form, when applying L’ Hospital rule on (13) and differentiating the numerator and
denominator of (13) by (r− 1) times with respect to m, we get

E
[
X∗ j(r,n,m,k)

]
=

Cr−1[
β
(
1− e−λ

)] j

∞

∑
p=0

r−1

∑
u=0

(−1)u+r−1

(
r− 1

u

)

×
αp( j)(n− r+ u)r−1

(r− 1)!((k+(n− r+ u)(m+ 1))+ ( j+ p)/α)r
.
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Taking limit m →−1 on both sides, we get

E(X
(k)
L(r))

j =
kr

[
β
(
1− e−λ

)] j
(r− 1)!

∞

∑
p=0

r−1

∑
u=0

(−1)u+r−1

(
r− 1

u

)
(n− r+ u)r−1αp( j)

(k+( j+ p)/α)r
. (14)

However, for all integers n ≥ 0 and for all real numbers x, from Ruiz (1996), we have

n

∑
i=0

(−1)i

(
n

i

)
(x− i)n = n!. (15)

Using (14) and (15), we obtain the exact expression for the moments of k− th lower record values from the extended
Erlang-truncated exponential distribution as given bellow

E(X
(k)
L(r))

j =
kr

[
β
(
1− e−λ

)] j

∞

∑
p=0

(
r− 1

u

)
αp( j)

(k+( j+ p)/α)r
,

as obtained by Singh and Khan (2018).
Remarks: When λ → ∞ in (2.1), we obtain the exact expression for the moments of dgos from generalized exponential
distribution as (see Khan and kumar (2011))

E
[
X∗ j(r,n,m,k)

]
=

Cr−1

β j(r− 1)!(m+ 1)r−1

∞

∑
p=0

r−1

∑
u=0

(−1)u

(
r− 1

u

)
αp( j)

γr−u +( j+ p)/α
.

Numerical computation

We have computed the means of order statistics for the arbitrary values of parameters α , β and λ for various sample
sizes n = 1,2, . . . ,10 by using the results of special case (i).

Table 1
α = 0.5, β = 1, λ = 1

n r=1 r=2 r=3 r=4 r=5 r=6 r=7 r=8 r=9 r=10

1 0.97087
2 0.35975 1.58198
3 0.19219 0.694892 2.02552
4 0.12072 0.40660 0.98318 2.37297
5 0.08325 0.27062 0.61057 1.23159 2.65831
6 0.06103 0.19433 0.42320 0.79795 1.44841 2.90029
7 0.04673 0.14683 0.31308 0.57003 0.96888 1.64022 3.11030
8 0.03697 0.11509 0.24204 0.43148 0.70858 1.12507 1.81193 3.29578
9 0.02999 0.09276 0.19323 0.33968 0.54624 0.83845 1.26837 1.96723 3.46185

10 0.02483 0.07643 0.15809 0.27520 0.43639 0.65607 0.96003 1.40052 2.10891 3.61218

Table 2
α = 0.5, β = 1, λ = 2

n r=1 r=2 r=3 r=4 r=5 r=6 r=7 r=8 r=9 r=10

1 0.97087
2 0.35975 1.58198
3 0.19219 0.694892 2.02552
4 0.12072 0.40660 0.98318 2.37297
5 0.08325 0.27062 0.61057 1.23159 2.65831
6 0.06103 0.19433 0.42320 0.79795 1.44841 2.90029
7 0.04673 0.14683 0.31308 0.57003 0.96888 1.64022 3.11030
8 0.03697 0.11509 0.24204 0.43148 0.70858 1.12507 1.81193 3.29578
9 0.02999 0.09276 0.19323 0.33968 0.54624 0.83845 1.26837 1.96723 3.46185

10 0.02483 0.07643 0.15809 0.27520 0.43639 0.65607 0.96003 1.40052 2.10891 3.61218

By using the fact ∑n
i=1 X

j
i:n = nE(X) j (David and Nagaraja (2003)), we can test the validity of the calculated results for

the moments of order statistics.
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Recurrence relations for single moments:
Theorem 2.2. For the distribution as given in (4) and m ∈ R, n ∈ N, 2 ≤ r ≤ n, n ≥ 2, k = 1,2, ...

E
[
X∗ j(r,n,m,k)

]
−E

[
X∗ j(r− 1,n,m,k)

]
=

j

αβ γr(1− e−λ)

{
E
[
X∗ j−1(r,n,m,k)

]
−E [φ(X∗(r,n,m,k))]

}
, (16)

where φ(x) = x j−1eβ (1−e−λ )x.
Proof: As viewed by khan et al. (2008), note that

E
[
X∗ j(r,n,m,k)

]
−E

[
X∗ j(r− 1,n,m,k)

]
=−

jCr−1

γr(r− 1)!

∫ ∞

0
x j−1 [F(x)]γr gr−1

m (F(x))dx, (17)

on substituting (6) in (17); after simplification, we get the required result.
Special cases:

(i). Setting m = 0 in (16), we get the recurrence relation for single moments of order statistics from extended Erlang-
truncated exponential distribution given by

E(X
j

n−r+1:n)−E(X
j

n−r+2:n) =
j

αβ (n− r+ 1)(1− e−λ)

{
E(X

j−1
n−r+1:n)−E (φ(Xn−r+1:n))

}
. (18)

(ii) For m = −1 in (16), we get the recurrence relation for moments of k-th lower record values from extended Erlang-
truncated exponential distribution given by

E(X
(k)
L(r)

) j −E(X
(k)
L(r−1)

) j =
j

αβ k(1− e−λ)

{
E(X

(k)
L(r)

) j−1 −E(φ(X
(k)
L(r)

))
}
, (19)

as obtained by Singh and Khan (2018).
Remarks.
(i) When λ → ∞ in (17), we get the recurrence relation for single moments of dgos from generalized exponential
distribution as

E
[
X∗ j(r,n,m,k)

]
−E

[
X∗ j(r− 1,n,m,k)

]
=

j

αβ γr

{
E
[
X∗ j−1(r,n,m,k)

]
−E [φ(X∗(r,n,m,k))]

}
.

as obtained by Khan and kumar (2011).
(ii) When λ → ∞ in (18) and (19), we get the recurrence relations for single moments of order statistics and k− th lower
record values from generalized exponential distribution, respectively, as

E(X
j

n−r+1:n)−E(X
j

n−r+2:n) =
j

αβ (n− r+ 1)

{
E(X

j−1
n−r+1:n)−E (φ(Xn−r+1:n))

}
,

E(X
(k)
L(r)

) j −E(X
(k)
L(r−1)

) j =
j

αβ k

{
E(X

(k)
L(r)

) j−1 −E(φ(X
(k)
L(r)

))
}
.

3 Relations for Product Moments

In this section, the exact expressions and recurrence relations for product moments of dgos are deduced.
Theorem 3.1. For the distribution as given in (4) and 1≤ r < s ≤ n, k = 1,2, . . . , m 6=−1

E
[
X∗i(r,n,m,k)X∗ j(s,n,m,k)

]
=

Cs−1[
β (1− e−λ )

]i+ j
(r− 1)!(s− r− 1)!(m+ 1)s−2

×
∞

∑
p=0

∞

∑
q=0

r−1

∑
u=0

s−r−1

∑
v=0

(−1)u+v

(
r− 1

u

)(
s− r− 1

v

)
αp( j)αq(i)

[γs−v +(p+ j)/α] [γr−u +(p+ q+ i+ j)/α]
. (20)

Proof. On using (3), we have

E
[
X∗i(r,n,m,k)X∗ j(s,n,m,k)

]
=

Cs−1

(r− 1)!(s− r− 1)!(m+ 1)s−2

×

∫ ∞

0
xi [F(x)]m f (x)

[
1− (F(x))m+1

]r−1
I(x)dx, (21)
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where

I(x) =
∫ x

0
y j
[
(F(x))m+1 − (F(y))m+1

]s−r−1
[F(y)]γs−1

f (y)dy.

On expanding
[
(F(x))m+1 − (F(y))m+1

]s−r−1
binomially and simplifying, we get

I(x) =
s−r−1

∑
v=0

(−1)v

(
s− r− 1

v

)
[F(x)](s−r−1−v)(m+1)

∫ x

0
y j [F(y)]γs−v−1

f (y)dy. (22)

On Substituting [F(y)]1/α = t in (22) and simplifying, we get

I(x) = α
∞

∑
p=0

s−r−1

∑
v=0

(−1)v

(
s− r− 1

v

)
αp( j) [F(x)]γr+1+(p+ j)/α

[
β (1− e−λ)

] j
[αγs−v + p+ j]

. (23)

On substituting (23) in (21), we get

E
[
X∗i(r,n,m,k)X∗ j(s,n,m,k)

]
=

αCs−1[
β (1− e−λ)

] j
(r− 1)!(s− r− 1)!(m+ 1)s−2

×
∞

∑
p=0

r−1

∑
u=0

s−r−1

∑
v=0

(−1)u+v

(
r− 1

u

)(
s− r− 1

v

)
αp( j)

[αγs−v + p+ j]

∫ ∞

0
xi [F(x)]γr−u+(p+ j)/α−1

dx. (24)

Again, substituting [F(x)]1/α = z in (24); and after simplifying, we get the required result.
Identity 3.1. For γr, γs ≥ 1, k ≥ 1, 1 ≤ r < s ≤ n and m 6=−1

s−r−1

∑
v=0

(−1)v

(
s− r− 1

v

)
1

γs−v

=
(s− r− 1)!(m+ 1)s−r−1

∏s
t=r+1 γt

. (25)

Proof. At i = j = 0 in (20), we have

1 =
Cs−1

(r− 1)!(s− r− 1)!(m+ 1)s−2

∞

∑
p=0

∞

∑
q=0

r−1

∑
u=0

s−r−1

∑
v=0

(−1)u+v

(
r− 1

u

)(
s− r− 1

v

)
αp(0)αq(0)

[γs−v + p/α] [γr−u +(p+ q)/α]
.

In view of Bakoban and Ibrahim (2008), for i = j = 0,

{
αp(0) = αq(0) = 1, p = q = 0

αp(0) = αq(0) = 0, p,q > 0

Therefore,

s−r−1

∑
v=0

(−1)v

(
s− r− 1

v

)
1

γs−v

=
(r− 1)!(s− r− 1)!(m+ 1)s−2

Cs−1 ∑r−1
u=0(−1)u

(
r−1

u

)
1

γr−u

Now, using (12), we obtain the result given in (25).
Special cases
(i) Putting m = 0, k = 1 in (20), we obtain the exact expression for product moments of order statistics from extended
Erlang-truncated exponential distribution as given by

E[X i
n−r+1X

j
n−s+1] =

Cr:s,n[
β (1− e−λ)

]i+ j

∞

∑
p=0

∞

∑
q=0

r−1

∑
u=0

s−r−1

∑
v=0

(−1)u+v

(
r− 1

u

)(
s− r− 1

v

)

×
αp( j)αq(i)

[(n− s+ v+ 1)+ (p+ j)/α][(n− r+ u+ 1)+ (p+q+ i+ j)/α]
, (26)

where

Cr:s,n =
n!

(r− 1)!(s− r− 1)!(n− s)!
.
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(ii) For m =−1, (20) is in indeterminate form

as
r−1

∑
u=0

(−1)u

(
r− 1

u

)
= 0 and

s−r−1

∑
v=0

(−1)v

(
s− r− 1

v

)
= 0.

Consider

E
[
X∗i(r,n,m,k)X∗ j(s,n,m,k)

]
=

1
[
β (1− e−λ)

]i+ j
(r− 1)!(s− r− 1)!

∞

∑
p=0

∞

∑
q=0

αp( j)αq(i)

×
r−1

∑
u=0

(−1)u

(
r− 1

u

)
[γr−u +(p+ q+ i+ j)/α]−1

(m+ 1)r−1(Cs−1)−1

s−r−1

∑
v=0

(−1)v

(
s− r− 1

v

)
[γs−v +(p+ j)/α]−1

(m+ 1)s−r−1
.

Now, applying the L’Hospital rule independently on the series in the above expression and using the result given in
(15), we obtain the exact expression for product moments of k− th lower record values from extended Erlang-truncated
exponential distribution as given by

E[(X
(k)
L(r)

)i(X
(k)
L(s)

) j] =
ks

[
β (1− e−λ)

]i+ j

∞

∑
p=0

∞

∑
q=0

αp( j)αq(i)

[k+(p+ q+ i+ j)/α]r [k+(p+ j)/α]s−r , (27)

as obtained by Singh and Khan (2018).
Remarks
(i) When λ → ∞ in (20), this expression reduces to the product moment of lgos from generalized exponential distribution
as

E
[
X∗i(r,n,m,k)X∗ j(s,n,m,k)

]
=

Cs−1

(r− 1)!(s− r− 1)!(m+ 1)s−2β i+ j

×
∞

∑
p=0

∞

∑
q=0

r−1

∑
u=0

s−r−1

∑
v=0

(−1)u+v

(
r− 1

u

)(
s− r− 1

v

)
αp( j)αq(i)

[γs−v +(p+ j)/α] [γr−u +(p+ q+ i+ j)/α]
, (28)

as obtained by Khan and kumar (2011).
(ii). When λ → ∞ in (26) and (27), we get the exact expressions for product moments of order statistics and k− th lower
record values from generalized exponential distribution respectively as

E[X i
n−r+1X

j
n−s+1] =

Cr:s,n

β i+ j

∞

∑
p=0

∞

∑
q=0

r−1

∑
u=0

s−r−1

∑
v=0

(−1)u+v

(
r− 1

u

)(
s− r− 1

v

)

×
αp( j)αq(i)

[(n− s+ v+ 1)+ (p+ j)/α][(n− r+ u+ 1)+ (p+q+ i+ j)/α]
,

E[(X
(k)
L(r)

)i(X
(k)
L(s)

) j] =
ks

β i+ j

∞

∑
p=0

∞

∑
q=0

αp( j)αq(i)

[k+(p+ q+ i+ j)/α]r [k+(p+ j)/α]s−r .

as obtained by Khan and kumar (2011).
(iii) At j = 0 and p = 0 in (20), we have

E
[
X∗i(r,n,m,k)

]
=

Cs−1[
β (1− e−λ)

]i
(r− 1)!(s− r− 1)!(m+ 1)s−2

×
∞

∑
q=0

r−1

∑
u=0

s−r−1

∑
v=0

(−1)u+v

(
r− 1

u

)(
s− r− 1

v

)
αq(i)

γs−v [γr−u +(q+ i)/α]
. (29)

Making the use of identity 3.1. in (29) and simplifying the resulting expression, we get

E
[
X∗i(r,n,m,k)

]
=

Cr−1[
β
(
1− e−λ

)]i
(r− 1)!(m+ 1)r−1

∞

∑
q=0

r−1

∑
u=0

(−1)u

(
r− 1

u

)
αq(i)

γr−u +(q+ i)/α
,
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This is the exact expression for single moments as given in (7).
Recurrence relations for product moments

Theorem 3.2. For the distribution given in (4) and 2 ≤ r < s ≤ n, n ≥ 2, k = 1,2, . . .

E
[
X∗i(r,n,m,k)X∗ j(s,n,m,k)

]
−E

[
X∗i(r,n,m,k)X∗ j(s− 1,n,m,k)

]

=
j

αβ γs(1− e−λ )

{
E
[
X∗i(r,n,m,k)X∗ j−1(s,n,m,k)

]
−E [φ(X∗(r,n,m,k),X∗(s,n,m,k))]

}
, (30)

where

φ(x,y) = xiy j−1eβ (1−e−λ )y.

Proof: Khan et al. (2008) have shown that for 1 ≤ r < s ≤ n , n ≥ 2 and k = 1,2, . . .

E
[
X∗i(r,n,m,k)X∗ j(s,n,m,k)

]
−E

[
X∗i(r,n,m,k)X∗ j(s− 1,n,m,k)

]
=−

jCs−1

γs(r− 1)!(s− r− 1)!

×

∫ ∞

0

∫ x

0
xiy j−1 [F(x)]m f (x)gr−1

m (F(x)) [hm(F(y))− hm(F(x))]s−r−1 [F(y)]γs dydx. (31)

On substituting (6) in (31) and simplifying, we get the required result.
Special cases
(i) Putting m = 0,k = 1 in (30), we obtain the recurrence relation for product moments of order statistics from extended
Erlang-truncated exponential distribution as given by

E[X i
n−r+1:nX

j
n−s+1:n]−E[X i

n−r+1:nX
j

n−s+2:n]

=
j

αβ (1− e−λ)(n− s+ 1)

{
E[X i

n−r+1:nX
j−1

n−s+1:n]−E[φ(Xn−r+1:n,Xn−s+1:n)]
}
. (32)

(ii) For m=−1 in (30), we obtain the recurrence relation for product moments of k− th lower record values from extended
Erlang-truncated exponential distribution as given by

E[(X
(k)
L(r)

)i(X
(k)
L(s)

) j]−E[(X
(k)
L(r)

)i(X
(k)
L(s−1)

) j ]

=
j

αβ k(1− e−λ )

{
E[(X

(k)
L(r)

)i(X
(k)
L(s)

) j−1]−E[φ(X
(k)
L(r)

,X
(k)
L(s)

)]
}
. (33)

Remark. (i). When λ → ∞ in (30), we get the recurrence relation for product moments of lgos from generalized
exponential distribution as

E
[
X∗i(r,n,m,k)X∗ j(s,n,m,k)

]
−E

[
X∗i(r,n,m,k)X∗ j(s− 1,n,m,k)

]

=
j

αβ γs

{
E
[
X∗i(r,n,m,k)X∗ j−1(s,n,m,k)

]
−E [φ(X∗(r,n,m,k),X∗(s,n,m,k))]

}
,

as obtained by Khan and kumar (2011).
(ii). When λ → ∞ in (32) and (33)), we get the recurrence relations for product moments of order statistics and k− th
lower record values from generalized exponential distribution, respectively, as

E[X i
n−r+1:nX

j
n−s+1:n]−E[X i

n−r+1:nX
j

n−s+2:n]

=
j

αβ (n− s+ 1)

{
E[X i

n−r+1:nX
j−1

n−s+1:n]−E[φ(Xn−r+1:n,Xn−s+1:n)]
}
,

E[(X
(k)
L(r))

i(X
(k)
L(s))

j]−E[(X
(k)
L(r))

i(X
(k)
L(s−1))

j]

=
j

αβ k

{
E[(X

(k)
L(r)

)i(X
(k)
L(s)

) j−1]−E[φ(X
(k)
L(r)

,X
(k)
L(s)

)]
}
,

as obtained by Khan and kumar (2011).
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4 Characterization

In this section, we have characterized the extended Erlang-truncated exponential distribution using conditional moments
and recurrence relation for single moments of dgos.
Let X∗(r,n,m,k),r = 1,2, . . . ,n be dgos from a continuous population with pdf f (x) and cdf F(x) then the conditional
distribution of X∗(s,n,m,k) given X∗(r,n,m,k) = x, for 1 ≤ r < s ≤ n is given by

fX∗(s,n,m,k)|X∗(r,n,m,k)(y|x) =
Cs−1

(s− r− 1)!Cr−1

[hm(F(y))− hm(F(x))]s−r−1 [F(y)]γs−1

[F(x)]γr+1
f (y), x > y, m 6=−1. (34)

f
X
(k)
L(s)

|X
(k)
L(r)

(y|x) =
ks−r

(s− r− 1)!
[lnF(x)− lnF(y)]s−r−1

(
F(y)

F(x)

)k−1
f (y)

F(x)
, x > y, m =−1. (35)

Theorem 4.1. For a non-negative random variable having an absolutely continuous df F(x)

E [X∗(s,n,m,k)|X∗(r,n,m,k) = x]

= 1

β (1−e−λ )
∑∞

p=1
(1−e−β(1−e−λ )x)p

p ∏s−r
j=1

γr+ j

γr+ j+p/α , m 6=−1 (36)

= 1

β (1−e−λ )
∑∞

p=1
(1−e−β(1−e−λ )x)p

p ∏s−r
j=1

k
k+p/α , m =−1. (37)

if and only if

F(x) =
(

1− e−β (1−e−λ)x
)α

, x > 0, α, β , λ > 0.

Proof. Using (34), we have

E [X∗(s,n,m,k)|X∗(r,n,m,k) = x] =
Cs−1

(s− r− 1)!Cr−1

∫ x

0
y

(
1−

(
F(y)

F(x)

)m+1
)s−r−1(

F(y)

F(x)

)γs−1
f (y)

F(x)
dy. (38)

Substituting
F(y)
F(x) = z in (38), we obtain

E [X∗(s,n,m,k)|X∗(r,n,m,k) = x] =
Cs−1

β (1− e−λ)(s− r− 1)!Cr−1(m+ 1)s−r−1

×
∞

∑
p=1

(
1− e−β (1−e−λ)x

)p

p

∫ 1

0
zγs+p/α−1(1− zm+1)s−r−1dz. (39)

Setting zm+1 = t in (39) , we get

E [X∗(s,n,m,k)|X∗(r,n,m,k) = x] =
Cs−1

β (1− e−λ)(s− r− 1)!Cr−1(m+ 1)s−r

×
∞

∑
p=1

(
1− e−β (1−e−λ)x

)p

p

∫ 1

0
t
(k+p/α)

m+1 +n−s−1(1− t)s−r−1dt.

E [X∗(s,n,m,k)|X∗(r,n,m,k) = x] =
Cs−1

β (1− e−λ)(s− r− 1)!Cr−1(m+ 1)s−r

×
∞

∑
p=1

(
1− e−β (1−e−λ)x

)p

p

Γ
(

k+p/α
m+1

+ n− s
)

Γ (s− r)

Γ
(

k+p/α
m+1

+ n− r
) . (40)

After simplifying (40), we obtain the required result in (36).
To prove the sufficient part using (36) and (38), we get

Cs−1

(s− r− 1)!Cr−1(m+ 1)s−r−1

∫ x

0
y
[
(F(x))m+1 − (F(y))m+1

]s−r−1
[F(y)]γs−1

f (y)dy = [F(x)]γr+1 Hs|r(x), (41)
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where

Hs|r(x) =
1

β (1− e−λ)

∞

∑
p=1

(1− e−β (1−e−λ)x)p

p

s−r

∏
j=1

γr+ j

γr+ j + p/α
.

Differentiating (41) on both sides with respect to x, we get

Cs−1[F(x)]m f (x)

(s− r− 2)!Cr−1(m+ 1)s−r−2

∫ x

0
y
[
(F(x))m+1 − (F(y))m+1

]s−r−2
[F(y)]γs−1

f (y)dy

= γr+1 [F(x)]γr+1−1
f (x)Hs|r(x)+ [F(x)]γr+1 H

′

s|r(x)

or
γr+1 [F(x)]γr+2+m

f (x)Hs|r+1(x) = γr+1 [F(x)]
γr+1−1

f (x)Hs|r(x)+ [F(x)]γr+1 H
′

s|r(x). (42)

After simplifying (42), we get

f (x)

F(x)
=

H
′

s|r(x)

γr+1

[
Hs|r+1(x)−Hs|r(x)

] ,

where

H
′

s|r(x) = e−β (1−e−λ )x
∞

∑
p=1

(1− e−β (1−e−λ)x)p−1
s−r

∏
j=1

γr+ j

γr+ j + p/α

Hs|r+1(x)−Hs|r(x) =
1

β (1− e−λ)γr+1

∞

∑
p=1

(
1− e−β (1−e−λ)

)p s−r

∏
j=1

γr+ j

γr+ j + p/α
.

Therefore,

f (x)

F(x)
=

αβ (1− e−λ )

eβ (1−e−λ )x − 1
.

This proves that

F(x) =
(

1− e−β (1−e−λ)x
)α

, x > 0, α, β , λ > 0.

For the case m =−1 from (35), we have

E(X
(k)
L(s)

|X
(k)
L(r)

= x) =
ks−r

(s− r− 1)!

∫ x

0
y [lnF(x)− lnF(y)]s−r−1

(
F(y)

F(x)

)k−1
f (y)

F(x)
dy.

By using the transformation

u =
F(y)

F(x)
=

(
1− e−β (1−e−λ)y

1− e−β (1−e−λ)x

)α

we obtain

E(X
(k)
L(s)

|X
(k)
L(r)

= x) = ks−r
∞

∑
p=0

(1− e−β (1−e−λ)x)p

p

∫ 1

0
uk+p/α−1(lnu)s−r−1du. (43)

We have Gradeshteyn and Ryzhik (2007, p-551),

∫ 1

0
(− lnw)δ−1wθ−1dw =

Γ (δ )

θ δ
, δ , θ > 0. (44)

By using (44) in (43), we obtain the required result in (37).
The sufficiency part can be proved on the lines of case m 6=−1.
Remark: For λ → ∞ , we have obtained the characterization result for generalized exponential distribution.
Theorem 4.2. For a non-negative random variable having an absolutely continuous df F(x),

E
[
X∗ j(r,n,m,k)

]
−E

[
X∗ j(r− 1,n,m,k)

]
=

j

αβ γr(1− e−λ)

{
E
[
X∗ j−1(r,n,m,k)

]
−E [φ(X∗(r,n,m,k))]

}
, (45)
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if and only if

F(x) =
(

1− e−β (1−e−λ)x
)α

, x > 0, α, β , λ > 0.

Proof. The necessary part follows immediately from the theorem 2.2. Now, from (45), we have

Cr−1

(r− 1)!

∫ ∞

0
x j [F(x)]γr−1

f (x)gr−1
m (F(x))dx

=
Cr−2

(r− 2)!

∫ ∞

0
x j [F(x)]γr+m

f (x)gr−2
m (F(x))dx

+
jCr−1

αβ (1− e−λ)γr(r− 1)!

∫ ∞

0
x j−1 [F(x)]γr−1

f (x)gr−1
m (F(x))dx

−
jCr−1

αβ (1− e−λ)γr(r− 1)!

∫ ∞

0
x j−1eβ (1−e−λ )x [F(x)]γr−1

f (x)gr−1
m (F(x))dx. (46)

Now, integrating by parts the first integral on the right hand side of (46) and simplifying the resulting expression, we get

Cr−2

(r− 1)!

∫ ∞

0
x j−1 [F(x)]γr−1

f (x)gr−1
m (F(x))

{
1

αβ (1− e−λ )
−

eβ (1−e−λ )x

αβ (1− e−λ)
+

F(x)

f (x)

}
dx = 0. (47)

Now, applying a generalization of the Muntz-Szasz theorem (Hwang and Lin (1984)) to (47), we get

1

αβ (1− e−λ )
−

eβ (1−e−λ )x

αβ (1− e−λ )
+

F(x)

f (x)
= 0.

=⇒
f (x)

F(x)
=

αβ (1− e−λ)

eβ (1−e−λ )x − 1
,

which proves that

F(x) = (1− e−β (1−e−λ)x)α , x > 0, α, β , λ > 0.
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