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Abstract: In this paper, the problem of prediction is discussed for inverse Weibull distribution. Posterior distribution is obtained using

different informative priors when observations are mid type II censored. When the shape parameter of the model is known, prediction

interval is obtained using predictive probability density function method. Whereas, when both parameters are known, inferences from

the posterior distribution are drawn using Bayes computation. Comparisons have been made on the basis of simulated data set for the

smallest ordered future observation.
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1. Introduction

Weibull model has a significant position in analyzing reliability and lifetime data for reliability practitioners and
statisticians. Its spontaneous failure rate or hazard rate may be constant, monotone increasing or monotone decreasing.
Depending upon its parameters, the density may be increasing, decreasing or unimodal. If a product consists of several
small devices, and each of its devices has an identical hazard rate, with the breakdown of the weakest device, the product
will fail finally. In this situation, Weibull model is a suitable probability distribution for such failure pattern (See Nelson
(1982)). Numerous works has been done on Weibull distribution in classical as well as in Bayesian perspective. Some
important references on the model include works of Johnson et al. (1995), Nordman and Meeker (2002), Kundu (2008)
and Jia et. al. (2016) among others.

If random variable Z follows the Weibull distribution with scale parameter α and shape parameter λ , having
probability density function (pdf) as

f (z;α,λ ) = αλ zα−1e−λ zα
;z > 0,α,λ > 0

Transforming the above random variable Z to a new random variable X by means of transformation X = 1
Z

has an inverse
Weibull distribution with pdf

f (x;α,λ ) = αλ e−λ x−α
x−(α+1);x > 0α > 0,λ > 0 (1)

Here α is the shape parameter, and λ is the scale parameter, and its cumulative distribution function (cdf) can be expressed
as

F (x;α,λ ) = e−λ x−α
;x > 0α > 0,λ > 0 (2)

In the reliability and life testing application, inverse Weibull distribution is an important lifetime probability model.
Inverse Weibull model is acceptable in a variety of failure characteristics such as in wear out period of machines, cost of
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maintenance of devices and also for several devices which include regulators, capacitors, among several others.
Adaptability of the distribution along with measure of central tendencies; dispersion and Pearsonian coefficients were
studied by Khan et. al (2008).Whereas, Kundu and Howlader (2010) provided predictive inferences of the model when
observations are right type-II censored in Bayesian perspective. Performance of Bayes estimators of inverse Weibull
scale parameter have been studied by Yahgmaei et.al. (2013) using uniform, gamma and quasi priors, when loss function
was symmetric as well as asymmetric.

For ordered observations statistical prediction, in life testing and reliability problem, we can see how far a lot of products or
items might perform until all get crashed or failed. For making inferences about future sample characteristics, predictive
density is determined by combining the posterior distribution with the pdf of future characteristics given parameters.
Predictive distribution for the future characteristics, is obtained when integrating with respect to each of the parameters.
This provides the information about future samples, considering knowledge supplied by the given sample.

Bayesian prediction for exponential distribution was discussed by Upadhyay and Pandey (1989). Prediction of future
samples based on censored observation drawn from inverse Weibull model was dealt by Calabria and Pulcini (1994),
without a prior information. Kundu and Howlader (2010) constructed two sided prediction interval for inverse Weibull
distribution when the observations are censored. Singh et. al. (2013) obtained the Bayesian methods for predicting future
samples from inverse Weibull distribution when observations are compounded by hybrid censoring mechanism. Recently,
Xiuyun and Zaizai (2016) considered estimation and prediction of parameters when observations are general progressive
censored. For the prediction problem related to inverse Weibull distribution, when the data are mid type II censored, it is
untouched in the literature.

Mid type II censoring was discussed by Upadhyay et. al. (1996) while estimating exponential scale parameter, as a
particular case of multiply type II censoring. Mid censoring arises when an experimenter could not observe some middle
observations due to some unforeseen reasons. This means he records only two sets of observations, i.e., one set,
recording of failure times in the beginning of the experiment, thereafter, he misses some observations and, finally, the
another set, at the end till all items get failed.

To draw Bayesian inferences for inverse Weibull distribution, a difficulty is faced due to involvement of intractable
integrals, therefore, Bayes computation is sought for drawing inferences from posterior distribution. The major
impediment with the inverse Weibull distribution lies when the available data is censored. When the shape parameter of
the model is known, the routine method is implemented for obtaining predictive inference. Whereas, when both
parameters are unknown, likelihood function (LF) is not that easy because of the involvement of complex function,
hence, we have implemented one of Markov Chain Monte Carlo techniques for drawing predictive inferences. Predictive
intervals are obtained using Metropolis-Hastings technique. A brief description of Bayes computation is given in the next
section which contains the Metropolis-Hastings algorithm.

2. Bayes Computation

One of the major difficulties with the Bayesian method is the involvement of high dimensional numerical integration, in
drawing the posterior based inferences, and, thereby, providing a very challenging task from the conventional numerical
quadrature perspective. The problem becomes even worse if complexities such as censored data or constrained parameter
are taken into account. In reliability analysis, most widely used method is Gaussian quadrature. Other significant
methods for treating sophisticated numerical integration are those based on Laplace and Lindley’s approximation
techniques, reparameterization strategies leading to iterative quadrature, and Monte Carlo techniques, etc. For related
references, one may refer to Smith (1991), Upadhyay and Mukherjee (2008) and Chen et. al. (2012), among others. But
the implementation of these techniques requires an insight of mathematical sophistication, and, perhaps, the knowledge
of a specialist use of software. As an alternative to these techniques, sample based approaches have started growing in
recent years. Among the various approaches, the developments include the refinement in the techniques of standard
Monte Carlo importance sampling and growth of interest in Markov chain Monte Carlo methods, such as Gibbs sampler,
Metropolis-Hastings versions of algorithm and some hybrid strategies combining the different algorithms (c.f. Gelfand
et. al. (1990), Smith and Roberts (1993), etc.). Although these algorithms have been developed with the aim of exploring
high dimensional posterior surfaces, a work by Upadhyay and Smith (1993) has demonstrated the algorithm for low
dimensional models.

Metropolis algorithm is one of the popular algorithms in Bayesian literature to draw a sample from high dimensional

posterior surfaces. This algorithm is similar to accept reject algorithm and needs a symmetric proposal density, q
(

θ
′
|θ
)

. Suppose one has to draw a sample from f (θ ). He/She, first, generates an observation θ ′ from q
(

θ
′
|θ ∗

)

for the given

value of θ ∗, where θ ∗ is the previous realization of parameter θ , then he will calculate the acceptance probability, ρ =
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min

{

1,
f
(

θ
′
)

f (θ∗)

}

. Metropolis algorithm accepts the proposed realization, θ
′
, with probability ρ . If the proposed realization

is rejected, then it sets previous realization θ ∗ as the current realization. Starting with an initial value of θ , we can generate
a single chain of θ ′s with stationary distribution f (θ ). Thus, this chain can be used to draw inferences about distribution
f (θ ).

3. Prediction Limits

Let x1,x2, . . . ,xn items be put on a life test, where experimenter records first r observations, x1 < .. . < xr. After recording
first r observations, he/she is not in a position to record l middle observations due to some unforeseen events, namely
xr+1 < .. . < xr+l observations, and, thereafter, he/she records the last (n− r− l) observations, xr+l+1 < .. . < xn till the
end of the experimentation. Failure times obtained for (n− l) observations, is a special case of multiply type II censored
sample, known as mid type II censored sample.

Likelihood function for mid type II censored observations is expressed as

L(x;α,λ ) =
n!

l!
[F(xr+l+1)−F (xr)]

l
r

∏
i=1

f (xi)
n

∏
i=r+l+1

f (xi) (3)

On substituting values from (1) and (2) and solving, we have

L(x;α,λ ) =
n!

l!
(αλ )n−l

r

∏
i=1

x
−(α+1)
i

n

∏
i=r+l+1

x
−(α+1)
i

l

∑
g=0

Ωg exp

[

−λ

{

(l − g)x−α
r+l+1 + gx−α

r +
r

∑
i=1

x−α
i +

n

∑
i=r+l+1

x−α
i

}]

(4)

where Ωg = (−1)g
(

l
x

)

. We have considered two different cases for parameters in the next subsections.

3.1 Case I : When Shape Parameter α is Known

When shape parameter α is known, we consider prior distribution for scale parameter λ as

g1 (λ |c0,d0) =
d

c0
0

Γ (c0)
λ c0−1e−d0λ ; λ > 0,c0,d0 > 0 (5)

Posterior of parameter λ is

p1 (α,λ |x) =
L(x;α,λ )g1 (λ |c0,d0)

∫

L(x;α,λ )g1 (λ |c0,d0)dλ

Substituting from (4) and (5) and solving, yields the posterior

p1 (λ |x) =
∑l

g=0 Ωg exp [−λ (Sx + d0)]λ
n−l+c0−1

Γ (n− l+ c0)∑l
g=0 Ωg (Sx + d0)

−(n−l+c0)
(6)

here, Sx = ∑r
i=1 xα

i +∑n
i=r+l+1 xα

i +(l − g)x−α
r+l+1 + gx−α

r .

Let y1,y2, . . . ,ym be m sized future observations which are independently drawn from inverse Weibull distribution given
in (1), then the density of kth ordered future observation, where 1 ≤ k ≤ m, will be obtained by

f
(

y(k)|α,λ
)

=
m!

(k− 1)!(m− k)!

[

F
(

y(k)
)]k−1

f
(

y(k)
)[

1−F
(

y(k)
)]m−k

Substituting values from (1) and (2),

f
(

y(k)|α,λ
)

= β−1 (k,m− k+ 1)αλ y
−(α+1)
(k)

m−k

∑
i=0

Ωi exp
[

−λ (i+ k)y−α
(k)

]

(7)
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where, Ωi = (−1)i
(

m−k
i

)

. Predictive pdf is expressed as

h1

(

y(k)|x
)

=

∫

f
(

y(k)|α,λ
)

p1 (λ |α,x)dλ

Using (6) and (7), we get

h1

(

y(k)|x
)

=
∫

β−1 (k,m− k+ 1)αλ y
−(α+1)
(k)

m−k

∑
i=0

Ωi exp
[

−λ (i+ k)y−α
(k)

] ∑l
g=0 Ωg exp [−λ (Sx + d0)]λ

n−l+c0−1

Γ (n− l+ c0)∑l
g=0 Ωg (Sx + d0)

−(n−l+c0)
dλ

which, on simplification, gives

h1

(

y(k)|x
)

=
(n− l+ c0)β−1 (k,m− k+ 1)αy

−(α+1)
(k)

∑l
g=0 Ωg (Sx + d0)

−(n−l+c0)

m−k

∑
i=0

l

∑
g=0

ΩiΩg

{

(i+ k)y−α
(k) + Sx + d0

}−(n−l+c0+1)
(8)

Prediction limits is the solution of following equation:

P[t1k ≤ y(k) ≤ t2k] = 1− γ

which is equivalent to the solution of following equation:

P
[

y(k) ≤ t1k

]

=
γ

2
and P

[

y(k) ≥ t2k

]

=
γ

2

where γ is the level of significance.
Lower Bayes prediction limit t1k is the solution of following expression:

∫ t1k

0

(n− l+ c0)β−1 (k,m− k+ 1)αy
−(α+1)
(k)

∑l
g=0 Ωg (Sx + d0)

−(n−l+c0)

m−k

∑
i=0

l

∑
g=0

ΩiΩg

{

(i+ k)y−α
(k) + Sx + d0

}−(n−l+c0+1)
dy(k) =

γ

2

Solving integration in above expression yields lower prediction bound as

β−1 (k,m− k+ 1)

∑l
g=0 Ωg (Sx + d0)

−(n−l+c0)

m−k

∑
i=0

l

∑
g=0

ΩiΩg

(i+ k)

[

{

(i+ k)t−α
1k + Sx + d0

}−(n−l+c0)−{Sx + d0}
−(n−l+c0)

]

=
γ

2
. (9)

Similarly, upper prediction limit t2k is the solution of following expression:

β−1 (k,m− k+ 1)

∑l
g=0 Ωg (Sx + d0)

−(n−l+c0)

m−k

∑
i=0

l

∑
g=0

ΩiΩg

(i+ k)

[

{

(i+ k)t−α
2k + Sx + d0

}−(n−l+c0)−{Sx + d0}
−(n−l+c0)

]

= 1−
γ

2
(10)

Above equations are solved using bisection method.

3.2 Case II : When Shape and Scale Parameters are Both Unknown

For the shape parameter as well as scale the parameter, separate prior have been considered as

g2 (α|a0,b0) =
b

a0
0

Γ (a0)
αa0−1e−b0α ; α > 0,a0,b0 > 0 (11)

g3 (λ |c0,d0) =
d

c0
0

Γ (c0)
λ c0−1e−d0λ ; λ > 0,c0,d0 > 0 (12)

Combining likelihood function with the priors, we get the posterior as

p2 (α,λ |x) =
L(x;α,λ )g2 (α|a0,b0)g3 (λ |c0,d0)

∫ ∫

L(x;α,λ )g2 (α|a0,b0)g3 (λ |c0,d0)dαdλ
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Substituting LF (4) and priors (11) and (12), and by solving, the posterior can be expressed as

p2(α,λ |x) =
∏r

i=1 x−α
i ∏n

i=r+l+1 x−α
i αn−l+a0−1e−b0α λ n−l+c0−1 ∑l

g=0 Ωg exp [−λ (Sx + d0)]

Γ (n− l+ c0)
∫

α ∏r
i=1 x−α

i ∏n
i=r+l+1 x−α

i αn−l+a0−1e−b0α ∑l
g=0 Ωg (Sx + d0)

−(n−l+c0) dα

Posterior up to proportionality is

p2 (α,λ |x) ∝
r

∏
i=1

x−α
i

n

∏
i=r+l+1

x−α
i αn−l+a0−1e−b0α λ n−l+c0−1

l

∑
g=0

Ωg exp [−λ {Sx + d0}]

Density for kth order future observation as discussed in case I is

f
(

y(k)|α,λ
)

= β−1 (k,m− k+ 1)αλ y
−(α+1)
(k)

m−k

∑
i=0

Ωi exp
[

−λ (i+ k)y−α
(k)

]

Hence, the predictive pdf is

h2

(

y(k)|x
)

=

∫ ∫

f
(

y(k)|α,λ
)

p2 (α,λ |x)dαdλ

Above predictive pdf can not be solved using routine implementation of numerical quadrature. Hence in this situation,
the Monte Carlo Markov chain methods with Gibbs sampler and Metropolis-Hastings algorithm shall be used to compute
predictive estimates.

These techniques have already been comprehensively discussed in the previous section. Gibbs algorithm requires full
conditional, we have the full conditional of predictive pdf as

h2

(

y(k)|x
)

∝

∫

α

∫

λ

r

∏
i=1

x−α
i

n

∏
i=r+l+1

x−α
i y

−(α+1)
(k) αn−l+a0λ n−l+c0e−b0α

m−k

∑
i=0

l

∑
g=0

ΩiΩg exp
[

−λ
{

Sx + d0 +(i+ k)y−α
(k)

}]

dαdλ

h2

(

y(k)|x
)

∝
∫

α ∏r
i=1 x−α

i ∏n
i=r+l+1 x−α

i y
−(α+1)
(k)

αn−l+a0e−b0αΓ (n− l+ c0 + 1)∑m−k
i=0 ∑l

g=0 ΩiΩg

{

(Sx + d0)+ (i+ k)y−α
(k)

}−(n−l+c0+1)
dα

or

h2

(

y(k)|x
)

∝

∫

α

r

∏
i=1

x−α
i

n

∏
i=r+l+1

x−α
i y

−(α+1)
(k) αn−l+a0e−b0α

m−k

∑
i=0

l

∑
g=0

ΩiΩg

{

(Sx + d0)+ (i+ k)y−α
(k)

}−(n−l+c0+1)
dα (13)

Prediction limit are the solution of
∫ t3k

0
h2

(

y(k)|x
)

dy(k) =
γ

2
(14)

and
∫ ∞

t4k

h2

(

y(k)|x
)

dy(k) =
γ

2
(15)

Using (13), we get

∫ t3k

0

∫

α

r

∏
i=1

x−α
i

n

∏
i=r+l+1

x−α
i y

−(α+1)
(k)

αn−l+a0e−b0α
m−k

∑
i=0

l

∑
g=0

ΩiΩg

{

(Sx + d0)+ (i+ k)y−α
(k)

}−(n−l+c0+1)
dy(k)dα =

γ

2

Taking (Sx + d0)+ (i+ k)y−α
(k)

= z =⇒ −α (i+ k)y−α−1
(k)

dy(k) = dz and integrating out, we have lower prediction limit

∫

α

r

∏
i=1

x−α
i

n

∏
i=r+l+1

x−α
i αn−l+a0−1 e−b0α

(n− l+ c0)

m−k

∑
i=0

l

∑
g=0

ΩiΩg
1

(i+ k)

[{

(Sx + d0)+ (i+ k)t−α
3k

}

− (Sx + d0)
α]

dα =
γ

2
(16)

Using (15), the upper prediction limit is

∫

α

r

∏
i=1

x−α
i

n

∏
i=r+l+1

x−α
i αn−l+a0−1 e−b0α

(n− l+ c0)

m−k

∑
i=0

l

∑
g=0

ΩiΩg
1

(i+ k)

[{

(Sx + d0)+ (i+ k)t−α
4k

}

− (Sx + d0)
α]

dα = 1−
γ

2

(17)
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4. Prediction Limits for the First Order Future Observation

For numerical study, we have dealt with the first order future observation only. On substituting k=1 in the results discussed
in the previous section, we get the prediction limits for the smallest order future observation

4.1 Case I : When Parameter α is Known

On substituting k=1 in (9), lower prediction limit t11 is the solution of following equation:

m

∑l
g=0 Ωg (Sx + d0)

−(n−l+c0)

m−1

∑
i=0

l

∑
g=0

ΩiΩg

(i+ 1)

[

{

(i+ 1)t−α
11 + Sx + d0

}−(n−l+c0)−{Sx + d0}
−(n−l+c0)

]

=
γ

2
(18)

Similarly, the upper prediction limit t21 is obtained by solving the following equation using (10)

m

∑l
g=0 Ωg (Sx + d0)

−(n−l+c0)

m−1

∑
i=0

l

∑
g=0

ΩiΩg

(i+ 1)

[

{

(i+ 1)t−α
21 + Sx + d0

}−(n−l+c0)−{Sx + d0}
−(n−l+c0)

]

= 1−
γ

2
(19)

Upper and lower prediction limits, t21 and t11, are obtained numerically by solving (18) and (19), respectively, using
bisection method, utilizing starting guess values.

4.2 Case II : When Both Parameters α and λ are Unknown

Similarly, substituting k = 1 in (16), we get lower prediction limit t31 , on solving the following equation ***

∫

α

r

∏
i=1

x−α
i

n

∏
i=r+l+1

x−α
i αn−l+a0−1 e−b0α

(n− l+ c0)

m−1

∑
i=0

l

∑
g=0

ΩiΩg
1

(i+ 1)

[{

(Sx + d0)+ (i+ 1)t−α
31

}

− (Sx + d0)
α]

dα =
γ

2
(20)

Similarly, by substituting k = 1 in (17), upper prediction limit t41 is obtained by solving the following expression:

∫

α

r

∏
i=1

x−α
i

n

∏
i=r+l+1

x−α
i αn−l+a0−1 e−b0α

(n− l+ c0)

m−1

∑
i=0

l

∑
g=0

ΩiΩg
1

(i+ 1)

[{

(Sx + d0)+ (i+ 1)t−α
41

}

− (Sx + d0)
α]

dα =
γ

2
(21)

For this case, prediction limits have been obtained using Metropolis Hasting technique.

5. Discussion

Numerical findings for the prediction intervals for the first order future observation are discussed based on simulated data
set. For this purpose, we have randomly generated mid type II censored data from inverse Weibull distribution. Samples are
generated from uniform distribution and then converted to inverse Weibull data, using cdf inversion technique. Prediction
intervals are obtained as a difference of upper prediction limit and lower prediction limit at 95% confidence level. The
present section is further subdivided into two subsections, where prediction intervals for two cases has been discussed.

5.1 Prediction Intervals for the Smallest Future Observation When the Parameter is Known

We have generated inverse Weibull sample using cdf inversion technique, using λ = 2.0 and varying parameter α =
(0.5,1.0,2.0,4.0). A simulation study of 1000 samples has been done in each case, using Monte Carlo technique. In
the all cases width of prediction interval is reported by taking the difference between prediction limits t21 − t11. Tables
1-4 summarize the prediction interval for the smallest future observation from inverse Weibull distribution for scale
parameter λ , ehere shape parameter α is known at 0.5, 1.0, 2.0 and 4.0. Effect of hyperparameter d0 is studied at 1.0,
2.0 and 4.0, keeping other hyperparameter c0 fixed at 1.0 in all tables. Whereas, the prediction interval for the smallest
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future observation from inverse Weibull distribution for scale parameter, where shape parameter is known at 0.5, 1.0, 2.0
and 4.0 are presented in Tables 5-8 to study the effect on varying hyperparameter c0 at 1.0, 2.0 and 4.0, keeping other
hyperparameter d0 fixed at 1.0. We have considered four different values of r, namely 2, 4, 6 and 8 and four different
values of l, namely 2, 4, 6 and 8. We have studied nine different combinations of r and l, which are reported in Tables 1-8.

Number of censored observations in the middle is l, and number of observed failure time observations is (n-l). A higher
value of r gives higher number of observations on the left than on right. While analyzing Tables 1-4, it has been figured out
that by increasing the value of hyperparameter d0, prediction limits tend to decrease. A significant change in the prediction
limits has been noticed as the number of observations on the left (r) increases. We have noted that, as the number of middle
censored observation (l) increases, prediction limit decreases in number of cases for smaller values of (α ≤ 1), but the
trend mentioned earlier get reversed for the larger value of (α = 4). While studying the effect of the shape parameter, we
noticed that prediction limits decrease as the shape parameter increases, except when hyperparameter d0 is high enough.
We have noticed that whatever the censoring combination is, there is a sudden fall in prediction limit at α = 4.0.

While studying Tables 5-8, we have noticed that prediction limits increase as we increase the value of hyperparameter
c0. A significant change in the prediction limits has been noticed when the number of observations on the left increases.
With an increase in the number of middle censored observations (l), prediction limits tend to decrease in some cases,
particularly, for smaller values of shape parameter α < 1, but the mentioned trend get reversed with a larger value of
parameter (α = 4). The effect of shape parameter is observed in Tables 5-8; we noticed that prediction limits decrease as
shape parameter increases, almost everywhere.

5.2 Prediction Intervals for the Smallest Future Observation When Both Parameters are Unknown

In order to provide the numerical illustration for both unknown parameters, we have used simulated datasets. First, we
have simulated 500 datasets corresponding to each parametric value and censoring positions l and r, as given in table 9.

For the calculation of the predictive interval of the first order statistics, we have, first, simulated 1000 observations from
posterior distribution using Metropolis algorithm and then simulated 1000 predictive observations of the first order
statistic. Based on these predictive observations, we have obtained the highest predictive density interval and its length.

We have repeated the above process for each of the 500 simulated datasets, and obtained 500 lengths and averaged them
which is given in the single cell of the table. We have calculated the average predictive length for each parameter set,
and censoring point set l and r which are reported in Table 9. It is evident from the table that the average predictive
length decreases everywhere as we increase the value of either parameters shape parameter or scale parameter. As far as
censored observation is concerned, a clear cut indication is seen from Table 9 that as we increase the number of censored
observations (l), a decrease in average predictive length is seen. However, no pattern has been found for the left censored
observation (r).

We have also plotted the kernel density estimate for the predictive density for few sets of parameters which is given in
Figs. 1-3. Note that these plotting were done for only a single data set, where r=2 and l=3 everywhere. The plots for λ < 4
is seen as unimodal, but the plot for α = λ = 4 is bimodal. The plots for predictive densities are seen as platykurtic curves
in nature, through they are close to symmetric curves.

Prediction intervals are obtained with 99% confidence level also, and it was found shorter everywhere, due to paucity of
space not reported over here.

Table 1: Prediction interval for inverse Weibull scale parameter λ when the shape parameter is known at α=0.5, and hyperparameter

c0 is fixed at 1.0

r l d0 = 1 d0 = 2 d0 = 4

2 4 0.05948 0.04027 0.02486

2 6 0.05594 0.03808 0.02352

2 8 0.05183 0.03893 0.02301

4 2 0.05709 0.04023 0.02410

4 4 0.05704 0.03825 0.02455

4 6 0.05483 0.03816 0.02529

6 2 0.05042 0.0462 0.02542

6 4 0.05700 0.03955 0.02454

8 2 0.06071 0.03947 0.02670
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Table 2: Prediction interval for inverse Weibull scale parameter λ when the shape parameter is known at α=1.0, and hyperparameter

c0 is fixed at 1.0

r l d0 = 1 d0 = 2 d0 = 4

2 4 0.04033 0.03371 0.02670

2 6 0.04128 0.03449 0.02514

2 8 0.04024 0.03375 0.02606

4 2 0.03959 0.03451 0.02715

4 4 0.04072 0.03479 0.02712

4 6 0.04134 0.03424 0.02675

6 2 0.03923 0.03309 0.02683

6 4 0.03942 0.03376 0.02668

8 2 0.04059 0.03371 0.02693

Table 3: Prediction interval for inverse Weibull scale parameter λ when the shape parameter is known at α=2.0, and hyperparameter

c0 is fixed at 1.0

r l d0 = 1 d0 = 2 d0 = 4

2 4 0.02488 0.02276 0.01983

2 6 0.02428 0.02270 0.01990

2 8 0.02474 0.02243 0.02005

4 2 0.02481 0.02223 0.02014

4 4 0.02425 0.02236 0.02002

4 6 0.02443 0.02270 0.02039

6 2 0.02414 0.02252 0.02036

6 4 0.02405 0.02250 0.02021

8 2 0.02424 0.02235 0.01977

Table 4: Prediction interval for inverse Weibull scale parameter λ when the shape parameter is known at α = 4.0, and hyperparameter

c0 is fixed at 1.0

r l d0 = 1 d0 = 2 d0 = 4

2 4 0.01362 0.01305 0.01234

2 6 0.01375 0.01311 0.01231

2 8 0.01392 0.01327 0.01240

4 2 0.01348 0.01296 0.01229

4 4 0.01361 0.01304 0.01220

4 6 0.01344 0.01297 0.01224

6 2 0.01349 0.01308 0.01231

6 4 0.01356 0.01302 0.01233

8 2 0.01344 0.01305 0.01230
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Table 5: Prediction interval for inverse Weibull scale parameter λ when the shape parameter is known at α=0.5, and hyperparameter

d0 is fixed at 1.0

r l c0 = 1 c0 = 2 c0 = 4

2 4 0.05767 0.06562 0.07672

2 6 0.05172 0.06245 0.07985

2 8 0.05419 0.06420 0.09397

4 2 0.05414 0.05680 0.08409

4 4 0.05102 0.06626 0.07700

4 6 0.05654 0.05865 0.09464

6 2 0.05204 0.05956 0.08363

6 4 0.05748 0.06303 0.09668

8 2 0.05460 0.06356 0.08260

Table 6: Prediction interval for inverse Weibull scale parameter λ when the shape parameter is known at α=1.0, and hyperparameter

d0 is fixed at 1.0

r l c0 = 1 c0 = 2 c0 = 4

2 4 0.04026 0.0435 0.04897

2 6 0.0411 0.04284 0.04886

2 8 0.0399 0.04366 0.05058

4 2 0.03928 0.04291 0.04649

4 4 0.04032 0.04224 0.04702

4 6 0.03848 0.04298 0.04736

6 2 0.04083 0.04224 0.04666

6 4 0.04044 0.04124 0.04754

8 2 0.0392 0.04316 0.04734

Table 7: Prediction interval for inverse Weibull scale parameter λ when the shape parameter is known at α=2.0, and hyperparameter

d0 is fixed at 1.0

r l c0 = 1 c0 = 2 c0 = 4

2 4 0.02466 0.02527 0.02644

2 6 0.02512 0.02579 0.02657

2 8 0.02503 0.02548 0.02717

4 2 0.02481 0.02524 0.02667

4 4 0.02451 0.02507 0.02663

4 6 0.02402 0.02518 0.02628

6 2 0.02435 0.02505 0.02598

6 4 0.02431 0.02446 0.02653

8 2 0.02406 0.02496 0.02637
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Table 8: Prediction interval for inverse Weibull scale parameter λ when shape parameter is known at α=2.0 and hyperparameter d0 is

fixed at 1.0

r l c0 = 1 c0 = 2 c0 = 4

2 4 0.01346 0.01373 0.01387

2 6 0.01371 0.01382 0.01412

2 8 0.01386 0.01382 0.01413

4 2 0.01337 0.01349 0.01374

4 4 0.01368 0.01355 0.01383

4 6 0.01361 0.01356 0.01403

6 2 0.01357 0.01363 0.01381

6 4 0.01371 0.01363 0.01356

8 2 0.01355 0.01362 0.01364

Table 9: Prediction interval for inverse Weibull scale and shape parameters

(r,l)
Variation in Parameters (α , λ )

(2,2) (2,4) (3,4) (4,3) (4,2) (4,4)

(2,2) 1.741339 1.682455 1.033206 0.8246686 0.9875498 0.7778541

(2,3) 1.661818 1.634784 0.9863835 0.7470398 0.839274 0.7326823

(2,4) 1.575451 1.508359 0.9715497 0.7219768 0.7793068 0.7114554

(3,2) 1.666175 1.638689 1.049793 0.8375615 0.9273114 0.7674046

(3,3) 1.629811 1.617737 1.004488 0.7895658 0.859431 0.7389515

(3,4) 1.597743 1.5776 0.9901628 0.7398998 0.822865 0.7246762

(4,2) 1.709496 1.629259 1.032112 0.8167973 0.9661159 0.7695671

(4,3) 1.693198 1.673873 0.9985587 0.7729078 0.8483346 0.7616518

(4,4) 1.586376 1.557612 0.9735342 0.6986156 0.7785551 0.7209336

Fig. 1: Kernel density estimate for predictive density at α = 4 and λ = 2
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Fig. 2: Kernel density estimate for predictive density at α = 4 and λ = 3

Fig. 3: Kernel density estimate for predictive density at α = 4 and λ = 4

6. Conclusion

Prediction interval for inverse Weibull distribution is recommended with higher prediction confidence. When the scale
parameter is known, then its higher values are suggested in order to obtain the shortest prediction interval. In case both
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parameters are unknown, Metropolis Hasting technique is suggested to obtain the predictive inferences. As the number
of mid censored observations increases, a significant shorter average predictive length is found. As far as prior
hyperparameters are concerned, the use of smaller values of a0 and b0, and larger value of c0 and d0 are suggested. To
obtain predictive inferences, mid type II censoring scheme is suggested for use.
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